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Ferroelectric ordering in chiral smectic C∗ liquid crystals

determined by nonchiral intermolecular interactions
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General microscopic mechanism of ferroelectric ordering in chiral smectic C* liquid crystals is
considered. It is shown that if the mesogenic molecules have a sufficiently low symmetry, the
spontaneous polarization is proportional to one of the biaxial vector order parameters of the
smectic C phase. This order parameter may be determined by intermolecular interactions which
are not sensitive to molecular chirality. At the same time, the polarization is also proportional to
a pseudoscalar parameter which vanishes if the molecules are nonchiral. The general statistical
theory of ferroelectric ordering is illustrated by two particular models. The first model is
based on electrostatic quadrupole-quadrupole interactions, and it enables one to obtain explicit
analytical expressions for the spontaneous polarization. In the second model, the molecular
chirality and polarity are determined by a pair of off-center nonparallel dipoles. For this case, the
spontaneous polarization is calculated numerically as a function of temperature. The theory pro-
vides a more general interpretation of the previous approaches including the classical Boulder model.

PACS numbers: 64.70.mf, 77.80.Bh, 42.70.Df

I. INTRODUCTION

Ferroelectric smectic liquid crystals are unique sys-
tems where the spontaneous polarization is determined
by molecular chirality. Ferroelectric ordering in the chiral
smectic C∗ phase has been predicted theoretically about
three decades ago [1], and both ferro- and antiferroelec-
tric phases continue to attract a significant attention be-
cause of their unusual structure and properties, and be-
cause of their applications in electro-optical devices [2].
Ferroelectricity is observed only in tilted smectic phases.
In these systems the spontaneous polarization is induced
by the tilt and does not appear self-consistently like in
conventional solid ferroelectric materials. In every tilted
layer of a chiral smectic phase, the polarization appears
in the direction of the polar C2 symmetry axis which is
perpendicular to the tilt plane. In the bulk tilted phase
molecular chirality also results in the formation of the
macroscopic helical structure. In this structure, the di-
rection of the tilt rotates while moving along the z-axis
which is perpendicular to the smectic layers. As a result,
chiral tiled smectics are characterized by the helical dis-
tribution of the spontaneous polarizations and thus may
also be called ’helielectric’. One notes that recently fero-
and antiferroelectric ordering has been found in a novel
class of smectic liquid crystal phases formed by achiral
bent-core molecules. In those phases the spontaneous po-
larization is not induced by the tilt and thus appears also
in orthogonal smectic phases [3].

In the synclinic smectic C∗ phase, the direction of the
tilt in adjacent layers is practically the same and thus the
spontaneous polarization only slowly varies from layer to
layer. In contrast, in the anticlinic smectic C∗

A phase
the direction of the tilt alternates from layer to layer to-
gether with the polarization creating the structure with
an antiferroelectric type ordering. In addition, many chi-
ral smectic materials exhibit a sequence of the so-called

intermediate phases in a narrow temperature interval be-
tween the synclinic ferroelectric Smectic C∗ and the an-
ticlinic antiferroelectric Smectic C∗

A phase. Intermediate
smectic phases are characterized by a 3D chiral distri-
bution of the spontaneous polarization within the unit
cell of 3 or 4 smectic layers [2]. Recently, the remarkably
wide intermediate phases have also been discovered in
mixtures of synclinic and anticlinic smectics where they
can exist in a broad temperature range of up to 500 [4, 5].
Finally, ferroelectric ordering also exists in smectic I and
F phases which are characterized by some in-plane posi-
tional or hexatic order.

In spite of all diversity of tilted smectic phases with
ferro-, antiferro- and ferrielectric ordering, the underly-
ing mechanism is always related to the induction of the
polarization by the tilt in individual chiral smectic lay-
ers. Complex structures with a polarization distribution
along the direction perpendicular to the layers appear
due to interactions between the molecules in different lay-
ers (see, for example, [8, 9]) which are generally weaker
than intermolecular interactions within the same layer.

The detailed microscopic mechanism of ferroelectric
ordering in tilted smectics which is responsible for the
induction of the polarization by the collective molecu-
lar tilt has been the issue of debate during the past two
decades. In particular, the role of molecular chirality has
not been completely clarified. On the one hand, there is
a general agreement that the spontaneous polarization in
tilted smectics cannot exist without molecular chirality,
i.e. at least a part of molecules must be chiral. On the
other hand the role of chiral intermolecular interactions
remains unclear. Some molecular models of the ferroelec-
tric smectic C∗ phase are based on the assumption that
the spontaneous polarization is directly determined by
appropriate interactions between chiral molecules includ-
ing, for example, interactions with a molecular chiral cen-
ter [6, 7, 10, 11, 12]. These models have been developed
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FIG. 1: (Color online) a) Simple models for nonchiral
molecules of the C2h symmetry used by Wulf [28] and Goosens
[20, 21]. b) Corresponding models for chiral molecules where
chirality is determined by the additional dipole perpendicular
to the molecular plane.

using an analogy with cholesteric liquid crystals where
the helical twisting power is determined by chiral (albeit
nonpolar) intermolecular interactions [13, 14, 15]. Other
models are based on a different microscopic mechanism
[16, 17, 18, 19, 20, 21, 22]which also requires molecular
chirality, but, at the same time, takes into consideration
only nonchiral intermolecular interactions. Some of these
models are rather qualitative, but the underlying micro-
scopic mechanism is essentially the same.

The first extended description of this mechanism
has been given by Goosens [20, 21] who considered
the electrostatic interaction between model molecular
quadrupoles composed of two antiparallel dipoles which
are perpendicular to the long molecular axis ( see
Fig. 1). Goosens has shown that the polarization in
the smectic C∗ phase may be induced by the nonchiral
quadrupole-quadrupole electrostatic interaction provided
the molecules possess the additional dipole in the direc-
tion perpendicular to the molecular plane. The latter
dipole is responsible for the molecular chirality in this
simple model, and the spontaneous polarization is pro-
portional to the magnitude of the dipole and to the novel
order parameter of the smectic C [20] phase which is re-
lated to the relatively low symmetry of the molecule pre-
sented in Fig. 1. One notes, however, that the papers of
Goosens are focused into one particular model, and do
not contain any general theory of ferroelectric ordering
or general expressions for the spontaneous polarization.

A more general and a very successful model has been
proposed by the Boulder group [16, 17]. In the Boul-
der model the molecules of the zig-zag shape (see Fig. 2)
are ordering in the so-called binding cites which have the
same point symmetry as the smectic C phase itself. Then
transverse molecular dipoles are ordered in the particular
direction perpendicular to the tilt plane simply because
the zig-zag molecule fits into the binding cite of the same
shape only for a particular direction of the transverse
dipole. The Boulder model has been successfully used
to describe and predict the value and sign of the spon-
taneous polarization for a significant number of chiral
smectic materials. This indicates that the corresponding
mechanism of the ferroelectric ordering may be predomi-
nant at least for conventional smectics C∗. One notes also

FIG. 2: (Color online) Schematic of biaxial molecule in the
curved binding site as assumed in the Boulder model

that the symmetry of a zig-zag molecule is exactly the
same as that of the molecule with two equal antiparallel
dipoles considered by Goosens. The interaction between
the molecule and the binding cite , which is responsi-
ble for the polar order, is also nonchiral in nature be-
cause the binding cite itself is nonchiral. Boulder model
emphasizes the steric mechanisms of the ordering, but
the idea behind the model is much more universal. It is
shown in this paper that in the context of a rather general
molecular-statistical theory the concept of the ’binding
cite’ corresponds to the average one-particle mean-field
potential which is created by all other molecules of the
medium, and which reflects the symmetry of the smectic
C phase.

Terzis, Photinos, Samulski et.al. have developed a
similar model [18, 19]. This detailed model is based
on a mean-field -like one-particle orientational potential
for each molecular segment and, similar to the Boulder
model, involves a summation over the molecular confor-
mations. Using this model Terzis et.al. have obtained
good quantitative results for the spontaneous polariza-
tion of a number of ferroelectric smectics C∗ [19].

Existing microscopic models for ferroelectric smectics
C∗ have played an important role in the development of
the theory of such materials. At the same time, from
the point of view of theoretical physics, these models
are too detailed in terms of a molecular structure and
a particular choice of a coupling with the macroscopic
environment. As a result, the models only indirectly ad-
dress some of the more general physical problems related
to the origin of ferroelectricity in tilted smectic phases
including, for example, the description of the symmetry
properties of relevant model interaction potentials and
an interplay between the spontaneous polarization and
the order parameters of the smectic C∗ phase.

In this paper we develop a general mean-field
molecular-statistical theory of ferroelectric ordering in
the the smectic C∗ phase based on the general mech-
anism described above, i.e., we consider the ferroelec-
tric ordering in chiral smectics caused by nonchiral in-
termolecular interactions. We obtain a simple expres-
sion for the model interaction potential which may be
responsible for ferroelectric ordering in tilted smectics,
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and interpret the general microscopic mechanism of the
ordering mathematically using the concept of the pseu-
dovector order parameter. The results of the theory will
be used to obtain explicit expressions for the sponta-
neous polarization in the smectic C∗ phase composed
of biaxial molecules with quadrupole-quadrupole inter-
action potential. The spontaneous polarization together
with other order parameters of the smectic C∗ phase will
also be calculated numerically for another two interaction
model; Finally, we will consider in detail the molecular
origin of the ferroelectric ordering in novel smectic ma-
terials which have recently been investigated by Lemieux
et.al. [23, 24, 25, 26]. These materials, which are used
as chiral dopants in a nonchiral smectic C host, possess
a molecular structure which is rather different from that
of conventional ferroelectric smectics. In particular, the
molecular chirality is mainly determined by the chiral
distribution of permanent dipoles within the molecular
structure. It is shown that despite a different nature of
intermolecular interactions, the spontaneous polarization
in smectics C doped with such molecules is still deter-
mined by the same general mechanism.

II. SPONTANEOUS POLARIZATION AND

ORDER PARAMETERS OF THE SMECTIC C∗

PHASE

A. Coupling between polarization, tilt and chirality

It is well known since the work by R. Meyer [27] that
from the purely macroscopic point of view the ferroelec-
tric ordering in tilted smectics is determined by the linear
coupling between the polarization and the tilt in a chiral
medium. In terms of the Landau-de Gennes expansion
the free energy of the ferroelectric smectic C∗ phase can
be expressed as (see, for example, [12]):

FC = FA + F (Θ) +
1

χ⊥

P 2
s + cp(Ps · w), (1)

where FA is the free energy of the smectic A phase, F (Θ)
is the expansion of the excess free energy of the smectic
C phase in powers of the tilt angle Θ and the last two
terms describe the contribution which depends on the
spontaneous polarization Ps. Here w = (n · k)(k × n)
is the so-called pseudovector tilt order parameter of the
SmC phase where n is the director and k is the smectic
layer normal as shown in Fig. 3. Minimization of the free
energy (1) yields the well known result:

Ps = cpw = cp(n · k)(k × n), (2)

which indicates that the spontaneous polarization is pro-
portional to the pseudovector tilt order parameter and
the coupling constant cp.

One notes that the polarization is a polar vector while
the tilt order parameter w is a pseudovector with dif-
ferent transformation properties (i.e, in contrast to the

k
n

Ps w

t

FIG. 3: (Color online) Spontaneous polarization Ps and the
pseudovector tilt order parameter w in the SmC* phase.

polar vector Ps it does not change sign under space in-
version). Thus the linear relationship (2) between polar-
ization and the tilt is only possible if the coupling con-
stant cp is a pseudoscalar (which also changes sign under
space inversion). Then the product of the pseudoscalar
cp and the pseudovector w makes the polar vector like
polarization. Pseudoscalar quantities are nonzero only
in a chiral medium. They are proportional to molecu-
lar chirality and change sign when all chiral molecules
reverse their handedness. Thus one arrives at a well es-
tablished conclusion that the spontaneous polarization in
tilted smectic phases occurs only if at least a fraction of
molecules are chiral.

At the same time, the pseudovector order parameter w

is nonzero also in the nonchiral smectic C phase. Indeed,
w is invariant under all symmetry transformations of the
smectic C phase including the reflection with respect to
the tilt plane, which is a symmetry plane. This is re-
lated to the transformation properties of a pseudovector
different from those of a polar vector. In this case, w is
invariant under a reflection with respect to the tilt plane
because both vectors n and k are in the tilt plane and
thus are not effected by the reflection. In contrast, the
spontaneous polarization Ps , of course, changes sign un-
der a reflection with respect to the tilt plane. One notes
that this does not violate the linear relationship (2) be-
cause the pseudoscalar parameter cp also changes sign
under the reflection. In a nonchiral smectic C phase the
coupling constant cp vanishes identically and the sponta-
neous polarization does not appear.

B. Microscopic interpretation

The purpose of any molecular theory of ferroelectric
ordering in tilted smectics is to establish a relationship
between the general macroscopic description presented
in the previous subsection and the molecular ordering
on the microscopic level. An intuitive interpretation of
the ferroelectric ordering in the chiral smectic C∗ phase
[16, 18, 22] can be illustrated using Fig. 4.

For illustration only, let us consider a simple model of
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a)                 b)

A             B                      A              B 

FIG. 4: (Color online) a) Molecular orientation A and B,
which correspond to the opposite directions of the molecular
transverse dipole, are equivalent in the SmA phase. b) In the
SmC* phase molecular orientation A is more energetically
favorable than the orientation B.

a chiral biaxial molecule represented as a rigid rod with
two ’lateral groups’ and a permanent dipole perpendicu-
lar to the molecular plane as shown in Fig. 4a. Note that
the lateral groups make the molecule biaxial while the
chirality is determined by the transverse dipole. With-
out this dipole, the molecule possesses a mirror plane
and thus it is nonchiral. Now let us assume that the lat-
eral groups have a tendency to point in the direction of
the region between two adjacent smectic layers. One can
readily see that in the smectic A phase (i.e. without any
tilt) the two orientations of such a molecule, which cor-
respond to opposite directions of the transverse dipole µ

are energetically equivalent. Thus the macroscopic po-
larization in the untilted smectic phase should vanish.
In contrast, in the tilted phase the balance between two
opposite directions of the transverse molecular dipole is
violated because the the molecular orientation A is more
favorable than the orientation B (see Fig.2b). As a re-
sult, the average molecular dipole does not vanish, and
a macroscopic polarization appears in the direction per-
pendicular to the tilt plane. Now one has to clarify how
this type of ordering corresponds to the general macro-
scopic description presented above.

Firstly one notes that this simple argument is valid for
molecules which are characterized by the C2h symmetry
when the transverse dipole is removed. Simple examples
of molecules of the C2h symmetry, presented in Fig.1, in-
clude a molecule with two in-plane antiparallel dipoles
(a model considered by Goosens [20]) and a molecule of
the ’zig-zag’ shape (considered by Wulf [28] and others)
which very roughly characterize the actual shape of typi-
cal mesogenic molecules. Orientation of any rigid biaxial
molecule can be specified by the unit vectors a and b

in the direction of short and long molecular axis, respec-
tively. In practice, the orientation of a nonpolar molecule
is usually characterized by second rank tensors composed
of the components of the vectors a and b. For exam-
ple, uniaxial molecules are characterized by the molecular
tensor QM

αβ = aαaβ − (1/3)δαβ. The statistical average

of QM is the nematic tensor order parameter Q. Biaxial
molecules of high symmetry, which possess two mutually
perpendicular symmetry planes, are also characterized by
the second molecular tensor BM

αβ = bαbβ−cαcβ where the

unit vector c⊥b is the second molecular short axis. In
addition, the molecules of the C2h or lower symmetry are
characterized by the third molecular tensor aαbβ which
is invariant under all symmetry operations which leave
the molecule intact. Indeed, one can readily see that the
molecules presented in Figs.1 and 4 are not invariant un-
der the sign inversion of the axes a or b individually. At
the same time, the molecules are invariant under simul-
taneous inversion of both axis a and b. This symmetry
enables one to introduce the transverse molecular pseu-
dovector (a×b) which is related to the skew part of aαbβ.
One notes that the existence of this transverse pseudovec-
tor does not violate the mirror symmetry of the molecule
because the pseudovector (a×b) is invariant under a re-
flection with respect to the molecular mirror plane which
is parallel to a and b.

Now it can readily be shown that the average 〈a×b〉 is
nonzero only in a tilted smectic phase and is proportional
to w = (n · k)(k × n) Thus the expression

wab = 〈a × b〉 (3)

is a microscopic definition of a pseudovector tilt order
parameter of the smectic C phase. One notes that in
the smectic C phase composed of biaxial molecules there
exist several tilt order parameters. However, only the
parameter (3) is directly related to the spontaneous po-
larization.

Indeed, one notes that the molecular orientations A
and B in Fig. 4 are characterized by the opposite direc-
tions of molecular pseudovector (a×b) (because the the
short axis b points in the opposite directions while the
long axis a is the same). Thus one concludes that the
average pseudovector 〈a×b〉 6= 0 in the smectic C phase
where the orientation A is more energetically favorable
than the orientation B. Moreover, it follows from the gen-
eral symmetry arguments that 〈a×b〉 ∝ w = (n·k)(k×n)
because w is the only pseudovector allowed by the sym-
metry of the smectic C∗ phase. Indeed, any macroscopic
vector or pseudovector must be parallel to the C2 sym-
metry axis of the smectic C∗ layer which is normal to the
tilt plane. This is exactly the direction of w. A different
derivation of this result is presented in Section 3.

Finally it can be shown that the spontaneous polar-
ization Ps is proportional to the average 〈a × b〉 ∝ w.
We assume for simplicity that the transverse molecular
dipole is parallel to the short molecular axis c⊥b⊥a. i.e
µ = µ⊥c. Then the macroscopic polarization in the
smectic C∗ phase equals

Ps = ρ〈µ〉 = ρµ⊥〈c〉, (4)

where ρ is the molecular number density.
The unit vector c can be expressed in terms of the unit

vectors a and b in the following way

c = ∆(a × b), (5)

where ∆ = ((a×b) ·c) is the molecular unit pseudoscalar
which specifies the handedness of the molecular coordi-
nate system. Note that in Eq.(5) c is the conventional
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polar vector which is expressed as a product of the pseu-
dovector (a × b) and the pseudoscalar ∆.

Now the spontaneous polarization (4) can be rewritten
as:

Ps = ρµ⊥〈c〉 = ρµ⊥∆〈a × b〉 = ρ∆µ〈a × b〉, (6)

where ∆µ = (µ·(a×b)). Here we have taken into account
that the parameter ∆ is independent of the molecular
orientation.

According to Eq.(6), the spontaneous polarization Ps

is proportional to the tilt order parameter 〈a×b〉 ∝ w =
(n · k)(k × n). Thus the simple microscopic interpreta-
tion of the appearance of the spontaneous polarization
in the smectic C∗ phase, presented in this subsection, is
fully consistent with the general phenomenological the-
ory outlined in subsection II A.

In summary, one concludes that if the smectic C∗ phase
is composed of molecules of the C2h symmetry or lower
with an additional transverse dipole in the direction per-
pendicular to the molecular plane, the spontaneous polar-
ization is proportional to the order parameter (3) and the
pseudoscalar quantity ∆µ = (µ·(a×b)) which character-
izes the molecular chirality determined by the transverse
dipole µ. A consistent statistical theory of the ferroelec-
tric ordering in the smectic C∗ phase is presented in the
following section.

III. MOLECULAR STATISTICAL THEORY OF

FERROELECTRIC ORDERING IN THE

SMECTIC C∗ PHASE

A. General results

As discussed in the previous section, the orientation of
a biaxial molecule can be specified by the unit vectors a

and b in the direction of the long and short molecular
axis, respectively. The second molecular short axis c is
then given by Eq.(5). The spontaneous polarization can
be expressed in the following general form:

Ps = ρ〈µ⊥〉 = ρ

∫

µ⊥f1(a,b)dadb, (7)

where f1(a,b) is the orientational distribution function of
the smectic C∗ phase, and the transverse molecular dipole
µ⊥ = µ⊥c. The orientational distribution function can
always be expressed in terms of the effective one-particle
potential U1(a,b):

f1(a,b) =
1

Z
exp

[

−U1(a,b)

kBT

]

, (8)

where

Z =

∫

exp

[

−U1(a,b)

kBT

]

da db. (9)

For molecules which are polar in the direction of the
c-axis, in the quadrupolar approximation the effective

one-particle potential depends on the unit vector c and
the second rank molecular tensors aαaβ, bαbβ and aαbβ

which are invariant under all symmetry operations of a
molecule. Here c is expressed in terms of a and b by
Eq.(5). As discussed in subsection II B, the invariant
aαbβ exists only for biaxial molecules of sufficiently low
symmetry. Thus in the quadrupolar approximation the
potential U1(a,b) reads:

U1(a,b) = aαaβAαβ + bαbβBαβ+

(aαbβ + bαaβ)Cαβ + (a × b) ·W, (10)

where W and Aαβ , Bαβ, Cαβ are the material pseudovec-
tor and tensors correspondingly, which depend on the
symmetry of the chiral smectic C∗ phase. This sym-
metry, in turn, is determined by the two tensors nαnβ

and kαkβ which specify the macroscopic structure of the
phase. One notes that the last term in Eq.(10) contains
a pseudovector (a×b), which means that W has also to
be a pseudovector in order to insure that U1(a,b) is a
scalar. We conclude that this last term is determined by
chiral interactions in the system, i.e., the interactions de-
pending on the handedness of the interacting molecules.
Indeed, let us consider the case when Eq.(10) describes
an effective one-particle potential of a chiral dopant in
the chiral smectic C* host. Inversion of the host chirality
results in sign inversion of the pseudovector W while all
material tensors Aαβ , Bαβ and Cαβ remain the same. As
a result, the last term in Eq.(10) changes sign. Thus the
last term describes the so called chiral discrimination en-
ergy, i.e. the difference of energy of interaction between
the same chiral molecule and the two enantiomeric forms
of the chiral host. In many cases such a discrimination
is small and then this term may be neglected.

Taking into account that all macroscopic quantities in
the smectic C phase must be quadratic both in n and
k, the pseudovector W can be expressed in the following
general form:

W = ωPs + κw, (11)

where ω is a pseudoscalar and κ is a scalar. The sym-
metric tensors A, B and C are expressed as:

Aαβ = A1nαnβ + A2kαkβ + A3(n · k)(nαkβ + kαnβ),

Bαβ = B1nαnβ + B2kαkβ + B3(n · k)(nαkβ + kαnβ),

Cαβ = C1nαnβ+C2kαkβ+C3(n · k)(nαkβ+kαnβ), (12)

where we have neglected the terms quadratic in Ps and
w because these terms are of the order of Θ2 at small tilt
angle Θ ≪ 1 while all other terms in Eq.(12) are of the
order of 1.

The effective one particle potential U1(a,b) is deter-
mined by intermolecular interactions in the smectic C∗
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phase which may, or may not be sensitive to molecu-
lar chirality. For example, the electrostatic interaction
between permanent dipoles and quadrupoles is not sen-
sitive to molecular chirality while the interactions in-
volving molecular octupoles are different for the pairs
of molecules of equal and opposite handedness, respec-
tively. In particular, the pseudovector quantity W in
Eq.(11) must vanish if the molecules are nonchiral. This
parameter is determined by some chiral intermolecular
interactions which exist only between chiral molecules.
All other material parameters in Eqs.(10-12) are scalars,
and therefore they are generally nonzero in the corre-
sponding nonchiral smectic C phase. The difference be-
tween scalar and pseudoscalar material parameters in the
effective one-particle potential enables one to distinguish
between two different microscopic mechanisms of ferro-
electric ordering in the smectic C∗ phase.

Taking into account that the spontaneous polarization
Ps and the pseudovector w are small at small tilt angles
Θ, the orientational distribution function (8) can be ex-
panded in powers of Ps and w keeping the linear terms,
and substituted into the general expression for the spon-
taneous polarization (7). As a result, the spontaneous
polarization in the smectic C∗ phase can be expressed
as:

ξ · Ps = ρ∆κλ · w+

ρ

∫

µ⊥

1

Z0
exp

[

−U
(0)
1 (a,b)

kBT

]

da db, (13)

where the inverse polarizability tensor ξαβ =
δαβ + (ρ/kBT )〈ωµ⊥αcβ〉0, the tensor λαβ =
−(ρ/kBT )〈µ⊥αcβ〉0 , the averaging 〈...〉0 is per-
formed with the orientational distribution function
f0 = (1/Z0) exp(−U

(0)
1 (a,b)/kBT ) and U

(0)
1 (a,b) is

given by Eqs.(10-12) with W = 0.
According to Eq.(13) there exist two qualitatively dif-

ferent contributions to the spontaneous polarization of
the smectic C∗ phase which correspond to the two terms
in the r.h.s. of Eq.(13). The first term comes from the
last term in the one-particle potential (10), which is de-
termined by chiral intermolecular interactions. This con-
tribution corresponds to the microscopic mechanism of
ferroelectric ordering determined by chiral interactions
which has been considered in refs.[6, 10, 11, 12]. In con-
trast, the second term describes the ferroelectric ordering
of chiral molecules determined by nonchiral intermolecu-
lar interactions. Indeed, this contribution describes the
ordering of a transverse molecular dipole in a nonchiral

effective one-particle potential U
(0)
1 (a,b). This potential

does not depend on any pseudoscalar parameters, and
thus, in the first approximation, it is exactly the same as
in the corresponding nonchiral smectic C phase. Molecu-
lar chirality in this case is determined by the orientation
of the molecular transverse dipole and manifests itself
during the averaging process as described below. Now
let us consider this contribution in more detail.

In the general case the effective one-particle potential

U
(0)
1 (a,b) can be expressed as a sum of the following two

terms:

U
(0)
1 (a,b) = Ua(a) + Ub(a,b), (14)

where Ua(a) = aαaβAαβ and Ub(a,b) = bαbβBαβ +
(aαbβ + bαaβ)Cαβ . In Eq.(14) the first term depends
only on the orientation of the long molecular axis a while
the second term depends also on the orientation of the
short axis b. Smectic liquid crystals are composed of
strongly anisotropic molecules, and in this case one may
assume that the intermolecular interaction energy associ-
ated with a change of orientation of the long axes is much
larger than the change of the energy associated with the
rotation of short molecular axes. Then the second term in
Eq.(14) is expected to be much smaller than the first one,
i.e. Ub ≪ Ua. One notes that the first term in Eq.(14)
determines the orientational (nematic) ordering of long
molecular axis, while the second term is responsible for a
weaker ordering of short molecular axes. Now the orien-
tational distribution function f0(a,b) can be expanded
in powers of Ub keeping the linear term:

1

Z0
exp

[

−U
(0)
1 (a,b)

kBT

]

≈ fa(a)

[

1 − Ub(a,b)

kBT

]

, (15)

where the uniaxial orientational distribution function
fa(a) depends only on the orientation of the long axis
a:

fa(a) =
1

Za
exp

[

−Ua(a)

kBT

]

. (16)

Substituting Eq.(15) into the second term in Eq.(13) one
obtains the following expression for the spontaneous po-
larization

Ps ≈ −∆
ρµ⊥

kBT

∫

(a × b) Ub(a,b) fa(a)dadb. (17)

Now Eqs.(14) and (16) can be substituted into Eq.(17)
where the averaging is performed over b and a taking
into account that the function fa(a) is independent of b.
Neglecting biaxiality of the smectic C phase one may use
the following simple formulae:

1

2π

∫

bαbβdb =
1

2
(δαβ − aαaβ); (18)

and

1

4π

∫

fa(a)(aαaβ − 1

3
δαβ) da = S(nαnβ − 1

3
δαβ), (19)

and obtain the final expression for the spontaneous po-
larization:

Ps =
ρ∆µC3S

2kBT
[n× k](n · k), (20)

where S is the nematic order parameter.
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Eq.(19), which has been obtained without using any
particular model, presents a general expression for
the spontaneous polarization of the chiral smectic C∗

phase determined by nonchiral intermolecular interac-
tions. The spontaneous polarization is proportional to
the pseudoscalar parameter ∆µ = (µ⊥(a × b)) which
specifies molecular chirality determined by the orienta-
tion of the transverse dipole, and the parameter C3 which
is determined by nonchiral interactions. One notes that
the general microscopic mechanism of ferroelectric order-
ing described by the present theory is qualitatively the
same as the one considered in the Boulder model [16, 17].
In the framework of the Boulder model the restrictions
imposed by the binding cite on the orientation of a given
molecule are equivalent to the specific form of the effec-

tive one-particle potential U
(0)
1 (a,b). From the qualita-

tive point of view, both the binding cite and the effective
one-particle potential possess the same symmetry as the
nonchiral smectic C phase (i.e. the C2 symmetry axis
and the mirror plane) and are not sensitive to molecular
chirality. On the other hand, the present theory also cov-
ers the model of Goosens [21] based on the electrostatic
interaction between molecules with pairs of antiparallel
dipoles. Detailed numerical results obtained using a ver-
sion of this model are presented in Section IV. Explicit
expressions for effective one-particle potential and the
spontaneous polarization in the quadrupole-quadrupole
interaction model are derived in the following section us-
ing the mean-field approximation.

B. Quadrupole-Quadrupole interaction model

In this section we obtain explicit analytical results for
the spontaneous polarization in the smectic C∗ phase us-
ing the simple model of a rigid molecule with essentially
uniaxial quadrupole tensor slightly tilted with respect to
the primary molecular axis (which is determined by the
shape or molecular inertia tensor and orders along the
director). Such a molecule is biaxial, and the molecular
biaxiality is determined by the angle between the axis of
the quadrupole tensor and the primary molecular axis.
Assuming that this angle is small, one obtains approxi-
mate expressions for the polarization using the general-
ized mean-field theory.

Let us consider the system of rigid molecules with pri-
mary axes ai. The molecules are characterized by the
permanent quadrupole tensor qαβ which depends on the
distribution of effective charges within a molecule. It
should be noted that for molecules of the C2h symme-
try, considered here, one primary axis of any molecular
tensor (including the quadrupole one) must be parallel
to the two-fold symmetry axis of the molecule c. At the
same time, the orientation of the two remaining primary
axes, which lie in the symmetry plane of the molecule, is
not specified by the molecular symmetry. As a result, the
orientation of these axes should generally be different for
different molecular tensors characterizing different molec-

ular properties. In particular, the primary axes of the
quadrupole tensor qαβ are not expected to coincide with
those of the molecular inertia tensor, a and b. Thus in
the general case the traceless symmetric quadrupole ten-
sor can be expressed in terms of molecular axes a⊥b⊥c

in the following way:

qαβ = q1(aαaβ−δαβ/3)+q2(bαbβ−cαcβ)+q3(aαbβ+bαaβ).
(21)

It will be shown below that the spontaneous polarization
is proportional to the off-diagonal element q3, which char-
acterizes the difference in the orientation of the molecular
inertia and quadrupole tensors.

The electrostatic interaction between permanent
quadrupoles of the molecules i and j can be written in
the form:

Uqq(i, j) = qi
αβDαβγδq

j
γδ, (22)

where the quadrupole-quadrupole coupling tensor D is
given by

Dαβγδ =
3

4R5
(δαδδβγ + δαβδγδ + δαγδβδ−

5δαβuγuδ − 5δαγuβuδ − 5δαδuγuβ − 5δβγuδuα−
5δδβuγuα − 5δγδuαuβ + 35uαuβuγuδ), (23)

where R = Rij is the intermolecular vector and the unit
vector u = R/|R|.

Now the quadrupole-quadrupole interaction can be
taken into account in the generalized mean-filed approx-
imation of the smectic C∗ phase. In this approximation
(see, for example [30, 31, 32]) the free energy of the sys-
tem without positional order can be expressed as:

F/V =
1

2
ρ2

∫

f1(Ω1)U(1, 2)f1(Ω2)d
2R dΩ1dΩ2+

ρkBT

∫

f1(Ω1) ln f1(Ω1) dΩ1, (24)

where f1(Ω) is the one-particle orientational distribution
function, the variable Ωi = [ai,bi] specifies the orienta-
tion of the molecule i, U(1, 2) is the effective pair interac-
tion potential which takes into account the steric cut-off,
and ρ is the number density of molecules per unit area
of the smectic layer.

Minimization of the free energy (24) yields the one-
particle distribution function in the form (8, 9) with the
one-particle potential U1 being equal to the mean-field
potential

UMF (a,b) = ρ

∫

U(1, 2)f1(a2,b2)d
2R db2 da2. (25)

The total effective pair interaction potential U(1, 2)
can be expressed as

U(1, 2) = U0(1, 2) + Uqq(1, 2), (26)

where U0(1, 2) is the effective interaction potential for
molecules without permanent quadrupole moments, and
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Uqq(1, 2) is the quadrupole-quadrupole interaction energy
given by Eq.(22). We assume for simplicity that the po-
tential U0(1, 2) is even in a1,a2,b1,b2,, and thus it can-
not be responsible for the ferroelectric ordering in the
smectic C∗ phase.

Substituting Eqs.(22,23) for the quadrupole-
quadrupole interaction potential into Eq.(26) and
then into Eq.(25) one obtains the following expression
for the total mean-field potential after averaging over
a2,b2 and integration over R:

UMF (a,b) = U
(0)
MF (a,b) + U qq

MF (a,b), (27)

where U
(0)
MF (a,b) is even in a and b, and where

U qq
MF (a,b) =

π

4
ρR2

0 q
(1)
αβ Dαβγδ(k)〈qγδ〉. (28)

Here q
(1)
αβ is the quadrupole tensor of the molecule 1 given

by Eq.(21), R0 is the distance of minimum approach be-
tween the neighboring molecules in the layer, and the
tensor D is given by Eq.(23) with R = R0 and u = k.

At this point we can neglect the weak biaxiality of
the molecular distribution and use the average of the
quadrupole tensor (21) in the simple form

〈qαβ〉 = q1S (nαnβ − δαβ/3), (29)

After some algebra the corresponding expression for
Dαγδβ(k)〈qγδ〉 can be written as:

Mαβ = Dαβγδ(k)〈qγδ〉 =
3

4R5
0

q1S×

[δαβ(1 − 5 cos2 Θ) + 2nαnβ − 5(1 − 7 cos2 Θ)kαkβ−
10(k · n)(nαkβ + nβkα)]. (30)

Assuming that the off-diagonal element q3 of the
molecular quadrupole tensor is small one may expand the
exponent in Eqs.(8,9) in powers of q3 keeping the linear
terms. This yields the following approximate expression
for the orientational distribution function:

f1(a,b) = f0(a,b) + ∆f(a,b), (31)

where

f0(a,b) =
1

Z0
exp

[

−U
(0)
MF (a,b)

kBT
+

πρR2
0q

0
αβMαβ

4kBT

]

,

(32)
and

∆f(a,b) =
πρ

4kBT
R2

0q3(aαbβ +aβbα)Mαβ f0(a,b), (33)

and where q0
αβ is the molecular quadrupole tensor given

by Eq.(21) without the off-diagonal term.
Only the term containing ∆f makes a contribution to

the spontaneous polarization given by the general equa-
tions (6,7). Substituting Eqs.(31-33) and assuming that

the biaxial ordering in the system is weak (i.e. using
Eqs. (18,19) for the averaging) one obtains the following
expression for the spontaneous polarization of the smec-
tic C∗ phase:

Ps = ρ∆µc0
p[n × k](n · k), (34)

with

c0
p =

15πρ

16kBTR3
0

q1q3S
2(4 − 7 sin2 Θ). (35)

This explicit analytical expression for the spontaneous
polarization was obtained in the context of the model
of the quadrupole-quadrupole intermolecular interactions
and confirms all results of the previous section which have
been obtained using general theory arguments. In partic-
ular, the spontaneous polarization is proportional to the
pseudoscalar parameter ∆µ = (µ · [a × b]) which speci-
fies molecular chirality. At the same time, the remaining
factor c0

p is completely independent of the molecular chi-
rality, and is obtained using the orientational distribution
function of the nonchiral smectic C phase. In this simple
model, the factor c0

p depends only on the diagonal com-
ponents of the molecular quadrupole moment, the orien-
tational order parameters of the smectic C phase and the
distance of minimum approach R0.

In the following section we consider a more realistic
model based on electrostatic interactions between local-
ized molecular dipoles.

IV. INTERACTION BETWEEN CHIRAL PAIRS

OF MOLECULAR DIPOLES

In a recent series of papers by Lemieux et.al. [23, 24,
25, 26] a number of novel compounds with unconven-
tional structure have been used as chiral dopants to in-
duce the large spontaneous polarization in the smectic C
phase. One notes that the chirality of these molecules
is not determined by any chiral centers, but is a con-
sequence of a chiral distribution of permanent molecular
dipoles. Disregarding other elements of the actual molec-
ular structure, one can use the minimum model shown in
Fig. 5. In this model, the molecule is presented by a rigid
rod (with some dispersion interactions between rods) and
a pair of off-center dipoles with large transverse compo-
nents lying in orthogonal planes. Introducing the orthog-
onal transverse unit vectors e± we write

µ± = µ(e± sin α ± a cosα). (36)

One can readily see that the molecule presented in Fig. 5
is chiral because it does not have any symmetry planes.
The total dipole moment of the molecule is transverse
µ⊥ = (µ+ + µ−) and directed along the unit vector

c = (e+ + e−)/
√

2. Accordingly, another short molec-

ular axis is to be defined as b = (e+ − e−)/
√

2. The
spontaneous polarization in such a system is given by
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FIG. 5: Schematic of molecular axes and dipoles

the general eqs. (4,6) where the pseudoscalar parameter
is expressed as:

∆µ =

√
2

µ sinα
a · [µ+ × µ−] =

√
2∆ µ sin α, (37)

This parameter quantitatively determines the molecular
chirality in the context of the present model..

An interaction potential for a pair of such molecules is
expressed as a sum of effective interaction potentials be-
tween rigid uniaxial cores and the sum of all electrostatic
dipole-dipole interactions:

U(1, 2) = Uaa(a1,R,a2) + Uµ(1, 2) (38)

with Uµ depending also on the orientation of short molec-
ular axes:

Uµ(1, 2) = µ+
1 ·D↑↑ · µ+

2 + µ−
1 · D↑↑ · µ−

2

+ µ+
1 · D↑↓ · µ−

2 + µ−
1 ·D↑↓ · µ+

2 , (39)

where the both tensors D involved have the form

Dij(a1,a2,R) =
1

r5

(

r2δij − 3rirj

)

, (40)

with the distance between the interacting dipoles r being
the function of molecular orientation and intermolecular
distance: r = r(a1,a2,R). For D↑↑ it reads r = R +
νa2 − νa1, while for D↑↓ it is r = R + νa2 + νa1.

We assume that the tilting of the director in the smec-
tic C phase is due to the long-axes potential Uaa(1, 2).
We then employ the following model expression for the
uniaxial potential which has been extensively used in the
general theory of SmA–SmC transition [33, 34]:

Uaa(a1,R,a2) ≈ v1(R)
[

(a1 · u)2 + (a2 · u)2
]

+ v2(R)(a1 · a2)
2 + v3(R)(a1 · a2)(a1 · u)(a2 · u)

+ v4(R)(a1 · u)2(a2 · u)2, (41)

As discussed in detail in [33, 34] the corresponding mean-
field potential

Uaa
MF(a) = w1P2(cos γ) + w2SkP2(cos γ)+

w3Pk sin2 γ cos 2φ + w4V sin 2γ cosφ, (42)

depends on three order parameters

Sk = 〈P2(cos γ)〉, Pk = 〈sin2 γ cos 2ϕ〉, (43)

V = 〈sin 2γ cosϕ〉, (44)

where γ and ϕ are the polar and azimuthal angles of the
unit vector a respectively.

If these order parameters are known, conventional or-
der parameters such as nematic order parameter S, ne-
matic tensor biaxiality P , and the tilt angle Θ can be
easily calculated as

tan 2Θ =
V

Sk − 0.5Pk
, (45)

S =
1

4
Sk +

3

8
Pk +

3 V

4 sin 2Θ
, (46)

B =
1

2
Sk +

3

4
Pk − V

2 sin 2Θ
. (47)

The potential (42)promotes the tilt if the nematic order
parameter exceeds the critical value

SAC =
3w1

4w4 − 3w2
, (48)

which means that the growth of the nematic order is
the driving force of the tilting transition. Thus in this
model the molecular dipoles are not responsible for the
tilt of the director, but the interaction between such pairs
of dipoles gives rise to the spontaneous polarization as
shown below.

One notes that the actual form of the interaction po-
tential for off-center dipoles is too complicated to be
used directly in the statistical theory [34]. In particular,
substituting the actual potential (39) into the Eq.(25)
one cannot obtain the mean-field potential as an ex-
plicit function of the orientational order parameters. As
a result the free energy cannot be minimized to deter-
mine the transition point and the temperature variation
of the parameters. However, we can expand the actual
dipole-dipole potential in spherical invariants neglecting
the higher order terms. One notes that the statistical
averages of higher order terms are expressed in terms
of higher order orientational order parameters which are
normally not important from the qualitative point of view
[32]. The details of the expansion procedure are pre-
sented in the Appendix A.

As shown in the Appendix A, the actual interaction
potential between the pairs of off-center dipoles can be
approximated by the relatively simple expression:

UΓ
MF = w5[cotα V (a · k)(b · t)+

cotα Γ sin 2γ cosϕ +
√

2 Γ (a · k)(b · t)], (49)

which involves the biaxial order parameter Γ = 〈(a·k)(b·
t)〉. Combining this with the uniaxial mean-field poten-
tial (42) we can write the total mean-filed approximation
of the LC free energy (24).
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FIG. 6: (Color online) (a) SmA–SmC phase transition ob-
tained using the parameters w1 = −0.05, w2 = −1, w3 =
−0.9, w4 = −0.8, w5 = 0 (thin lines), w5 = −0.05 (dashed),
w5 = −0.1 (solid) and α = 30o. Biaxial order parameters Γ
and Gk together with the normalized polarization Ps/ρ∆µ are
shown in (b) for the case w5 = −0.05 and in (c) for w5 = −0.1

Now the orientational order parameters can be evalu-
ated by numerical minimization of the free energy at a
given temperature, and the spontaneous polarization can
be calculated using the general Eq.(7) for the orienta-
tional distribution function (8) and the sum of Eqs. (42)
and (49) as the total mean-field potential. Typical results
of these calculations are presented in Fig. 6.

Thus the present general theory enables one to calcu-
late the spontaneous polarization explicitly as a function
of temperature using the model of rod-like molecules with
chiral distribution of dipoles. In this case the ferroelec-
tric ordering also occurs according to the general mecha-
nism described in the previous sections. Indeed, one can
readily see from Fig. 6 that the spontaneous polariza-
tion is approximately proportional to the order parame-
ter Γ which is mainly determined by the nonchiral part
U0(1, 2) of the total interaction potential. At the same
time, the spontaneous polarization is proportional to the
pseudoscalar parameter ∆µ ∝ (a · [µ+ × µ−]), which, of
course, vanishes if the molecules are nonchiral, for ex-
ample, if both dipoles and the long axis of the molecule
presented in Fig. 5 are in the same plane.

V. CONCLUSIONS

I this paper we have used the general statistical theory
and two particular molecular models to demonstrate how
the ferroelectric ordering of polar and chiral molecules
in the Smectic C* phase may be determined by nonchi-

ral intermolecular interactions. It has been shown that
if the molecules are characterized by C2h symmetry or
lower, the spontaneous polarization is given by the gen-
eral expression Ps = ρ∆µ〈a × b〉 (see Eq.(6)), which
is an exact result derived without any approximations.
Here the parameter ∆µ = (µ⊥ · (a × b)) characterizes
the molecular chirality determined by the relative orien-
tation of the transverse molecular dipole and the molecu-
lar plane containing the long and short molecular axes, a
and b respectively. For rigid molecules of C2h symmetry
(see Fig.1), the spontaneous polarization is always pro-
portional to the pseudovector order parameter 〈a × b〉
which is nonzero also in the nonchiral Smectic C phase.
Thus, if specific chiral and polar intermolecular interac-
tions are not important, the spontaneous polarization is
essentially determined by the molecular chirality coeffi-
cient ∆µ and the order parameter 〈a × b〉 emerging due
to nonchiral molecular interactions in the corresponding
nonchiral Smectic C phase.

One notes that this general mechanism of ferroelec-
tric ordering corresponds to the one considered in the
Boulder model [16, 17]. In the Boulder model, a sin-
gle molecule of sufficiently low symmetry is ordered in
the binding cite which plays the role of the effective one-
particle (mean-field) potential considered in the present
statistical theory. Similar to the effective mean-field po-
tential, the binding site itself has exactly the same sym-
metry as the nonchiral smectic C phase (see Fig. 2), i.e.,
possesses the mirror plane and the two-fold symmetry
axis and thus is nonchiral. One notes also that, in the
first approximation, the ordering of a molecule of the
zig-zag shape in the binding site is not determined by its
possible chirality. The corresponding nonchiral molecule
with a similar overall shape will also order in the same
binding site, although no polarization will be created in
this case, of course. The ordering of such a nonchiral
molecule in the binding site is described by the same
nonchiral pseudovector order parameter w which is con-
sidered in this paper. The same general mechanism cor-
responds also to the one considered in [18, 19, 20] for
some particular cases. At the same time, the Boulder
model as well as the models considered in [18, 19] enable
one to account for a selection of molecular conformations
which fit the site or minimize some interaction potential.
This effect is not taken into consideration in the present
paper which deals with rigid molecules.

In this paper, the general mechanism of ferroelectric
ordering has been illustrated using two particular molec-
ular models. The first model is based on the electrostatic
interaction between anisotropic molecular quadrupoles.
Here the molecular quadrupole tensor is assumed to be
nondiagonal in the molecular frame determined by the
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molecular axes a,b and c (i.e. one of the primary axes
of the molecular quadrupole is tilted with respect to the
long axis a) . The existence of the nonzero off-diagonal
element q3 (see Eq.(21)) determines the C2h symmetry
of the molecule. If this off-diagonal element is small, it
is possible to expand the orientational distribution func-
tion in powers of q3 and obtain the explicit analytical ex-
pression for the spontaneous polarization proportional to
q3. This models shows that the electrostatic quadrupole-
quadrupole interaction, which is not sensitive to molecu-
lar chirality, may be responsible for the ferroelectric or-
dering of chiral molecules in the Smectic C* phase.

Finally we have considered a more realistic molecular
model related to the materials recently synthesized by
Lemieux et.al. [23, 24, 25, 26] , in which the molecular
chirality is mainly determined by the distribution of per-
manent dipoles. We consider a simple model of a uniaxial
rod with two nonparallel off-center dipoles which make
approximately an angle of 90o. In this simple case, the
pair of permanent dipoles is responsible for both molec-
ular chirality, polarity and biaxiality. The model inter-
action potential for such molecules is composed of the
uniaxial interaction responsible for the tilt in the smec-
tic C phase, and the electrostatic interaction between all
dipoles. We obtain that here the ferroelectric ordering

also follows the general mechanism described above, and
the spontaneous polarization is proportional to the pseu-
dovector order parameter w. The polarization is also
proportional to the pseudoscalar parameter ∆µ which
vanishes if we set the molecule to be nonchiral by placing
the two dipoles and the long molecular axis a within the
same plane. One notes that for real materials of the type
reported in [23, 24, 25, 26], the direct interaction between
pairs of dipoles may not be the only cause of spontaneous
polarization. Such molecules may also possess a zig-zag
shape or have conformational states of the corresponding
symmetry. Then the molecule would order in the bind-
ing site according to the Boulder model just due to steric
interactions, and this will make an additional contribu-
tion to the spontaneous polarization. Which contribu-
tion is predominant for particular materials can be de-
termined by experiments involving systematic variation
of the molecular structure.
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APPENDIX A: APPROXIMATION FOR THE

ELECTROSTATIC INTERACTION BETWEEN

PAIRS OF DIPOLES

Let us consider the electrostatic dipole-dipole interac-
tion (39) between two molecules described in Section IV .
In order to calculate the corresponding part of the mean-
field potential (25), one has first to integrate (39) over the
intermolecular distances. This involves the integrals

D̄(a1,a2,k) =

∫

R/∈Π(a1,a2)

D(a1,a2,R) d2R. (A1)

taken over the distances R within the smectic plane and
accounting for the steric cut-off between the rigid cores
of the molecules with long axes a1 and a2.

The tensors (A1) have important properties: they are
invariant under the following transformations

a1 ↔ a2 and a1,a2 ↔ −a1,−a2, (A2)

and are traceless and symmetric:

δijD̄ij = 0, D̄ij = D̄ji. (A3)

Furthermore, the substitutions

a1,a2 ↔ −a1,a2 and a1,a2 ↔ a1,−a2 (A4)

transform D̄↑↑ into D̄↑↓ and vice versa.
We are interested in the orientational interaction which

containing the lowest possible (i.e. first) power of a1,2.
There are four tensorial expressions obeying the above
requirements, and thus one can approximately present
the tensor D in the following form:

r0 D̄ij(a1,a2,k) =

D1 (a1ia2j + a2ia1j − 2 (a1 · a2) δij/3 )+

(kikj − δij/3)[D2 (a1 · a2) + D3 (a1 · k)(a2 · k)]+

D4[(a1 · k)(a2ikj + a2jki) + (a2 · k)(a1ikj + a1jki)−
4δij (a1 · k)(a2 · k)/3]. (A5)

Note that we have introduced a characteristic scale pa-
rameter, molecular breadth r0 which is used to make the
constants D1−4 dimensionless.

In order to evaluate of the constants D1−4 it is conve-
nient to convolute the tensor (A5) with another second
rank tensor. There are several possible second-rank ten-
sors which can be constructed from the vectors a1,a2

and k. We use the simple tensor a1ia2j − δij , which is
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FIG. 7: Coefficients D1−4 for the tensor D↑↑ as functions of
the dipole location on the molecular long axis. The molecular
axial ratio is set to be equal to 4.

orthogonal to the long axes of both molecules in the case
of ideal nematic order. It results in a convenient form of
the convolution product:

D̃(a1,a2,k) = r0 D̄ :(a1 a2 − I) =

D1 +D4 [(a1 ·k)2 +(a2 ·k)2]+ (a1 ·a2)
2 [D1/3−D2/3]+

(a1 · a2)(a1 · k)(a2 · k)[D2 − D3/3 + 2D4/3]+

D3(a1 · k)2(a2 · k)2. (A6)

Eq.(A6) can be expressed as a function of the molec-
ular tilting angles γ1,2 and the difference of molecular
azimuthal angles φ = ϕ2 − ϕ1:

D̃(γ1, γ2, φ) = d0 + d1 [P2(cos γ1) + P2(cos γ2)] +

d2 P2(cos γ1) P2(cos γ2) + d3 sin2 γ1 sin2 γ2 cos 2φ+

d4 sin 2γ1 sin 2γ2 cosφ (A7)

where the coefficients are

d0 = 10D1/9 − 2D2/27 + 20D4/27, (A8)

d1 = 2D2/9 + 4D3/27 + 22D4/27, (A9)

d2 = 2D1/9 + 2D2/9 + 8D3/27 + 8D4/27, (A10)

d3 = D1/6 − D2/6; (A11)

d4 = D1/6 + D2/12 − D3/12 + D4/6. (A12)

It is possible to determine the coefficients d1−4 by cal-
culating numerically the coefficients of the spherical har-
monic representation of D̃ (see e.g. [33] for details). Then
the coefficients D1−4 can be expressed as

D1 = −d1 + 5d2/4 + 5d3/3 + 8d4/3, (A13)

D2 = −d1 + 5d2/4 − 13d3/3 + 8d4/3, (A14)

D3 = 9d2/4 + d3 − 4d4, (A15)

D4 = 3d1/2 − 3d2/4 + d3. (A16)

In Figure 7 the coefficients D1−4 for D↑↑ are presented.
They have been calculated for the molecules with ellip-
soidal core. One can readily see that the coefficient D3
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clearly dominates in D, and thus one may neglect other
coefficients and write

D̄↑↑ ij ≈ r−1
0 D3 (a1 · k)(a2 · k)(kikj − δij/3). (A17)

Obviously, the approximate form (A5) changes sign un-
der the transformations (A4), which means that D̄↑↓ =
−D̄↑↑. As a result one can write the integrated interac-
tion energy as

Ūµ(1, 2) =

∫

Uµ(1, 2) d2R =

(µ+
1 − µ−

1 ) · D̄↑↑ · (µ+
2 − µ−

2 ) (A18)

Substituting the dipole moments (36) one arrives at the
potential which depends on both long and short molec-
ular axes. The uniaxial part which depends only on the
long axes provides a small correction to initial uniaxial in-
teraction potential, and we omit it here. Secondly, there
is a part which depends on a coupling of the short axes
of the two molecules:

Ūbb(1, 2) =
2µ2

r0
D3 sin2 α(a1 · k)(a2 · k)×

[

(b1 · k)(b2 · k) − 1

3
(b1 · b2)

]

. (A19)

Finally there exists the most important contribution
which contains terms describing the coupling of the short
axis of one molecule with the long axis of the other. This
part is responsible for the induction of biaxial ordering
by the tilt of long axes which is of primary importance
for the description of ferroelectricity in the smectic C*
phase. This part of the potential can be written in the
form

Ūab(1, 2) =

√
2µ2

r0
D3 sin 2α(a1·k)(a2·k)[(b1·k)(a2·k)+

(a1 · k)(b2 · k) − 1

3
(b1 · a2) −

1

3
(a1 · b2)], (A20)

The corresponding contribution to the mean-field po-
tential is obtained after averaging of (A19) and (A20)

over all orientations of the molecule ’2’, UMF(1) =
ρ 〈Ū(1, 2)〉2, which yields

Ubb
MF(1) =

2µ2

r0
ρ D3 sin2 α ×

[

2

3
Gk(a1 · k)(b1 · k) − 1

3
Γ(a1 · k)(b1 · t)

]

, (A21)

and

Uab
MF(1) =

2
√

2µ2

9r0
ρ D3 sin 2α ×

[(2S + 1)(a1 · k)(b1 · k) + Gk(2P2(cos γ) + 1)−
3

4
V (a1 · k)(b1 · t) −

3

4
Γ sin 2γ cosϕ], (A22)

where the order parameters Gk = 〈(a · k)(b · k)〉 and
Γ = 〈(a · k)(b · t)〉 have been introduced. Apparently,
the terms containing V (a1 · k)(b1 · t) and Γ sin 2γ cosϕ
induce the biaxial order parameter Γ below the tilting
transition.

The order parameter Gk is of minor importance, since
it is nonzero already in the SmA phase. We have found
that it is normally of the order of 0.1 and does not af-
fect the transition significantly. The biaxial potential is
significantly simplified if one neglects all terms contain-
ing Gk and (a · k)(b · k). The corresponding simplified
mean-field potential can then be written as

UΓ
MF = w5[cotα V (a · k)(b · t)+

cotα Γ sin 2γ cosϕ +
√

2Γ (a · k)(b · t)], (A23)

where the parameter w5 = −
√

2/3 ρµ2r−1
0 D3 sin2 α is

negative and can be easily estimated for given values of
molecular breadth r0, 2D molecular number density ρ,
dipole strength µ, and dipole orientation angle α. The
reasonable values of the constant D3 are between 4 and
8 (see Fig. 7).




