Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization
Hebala, Osama M. and Aboushady, Ahmed A. and Ahmed, Khaled H. and Abdelsalam, Ibrahim (2019) Generic closed-loop controller for power regulation in dual active bridge DC-DC converter with current stress minimization. IEEE Transactions on Industrial Electronics, 66 (6). pp. 4468-4478. ISSN 0278-0046 (https://doi.org/10.1109/TIE.2018.2860535)
Preview |
Text.
Filename: Hebala_etal_IEEE_TIE_2018_Generic_closed_loop_controller_for_power_regulation.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
This paper presents a comprehensive and generalized analysis of the bidirectional dual active bridge (DAB) DC/DC converter using triple phase shift (TPS) control to enable closed loop power regulation while minimizing current stress. The key new achievements are: a generic analysis in terms of possible conversion ratios/converter voltage gains (i.e. Buck/Boost/Unity), per unit based equations regardless of DAB ratings, and a new simple closed loop controller implementable in real time to meet desired power transfer regulation at minimum current stress. Per unit based analytical expressions are derived for converter AC RMS current as well as power transferred. An offline particle swarm optimization (PSO) method is used to obtain an extensive set of TPS ratios for minimizing the RMS current in the entire bidirectional power range of - 1 to 1 per unit. The extensive set of results achieved from PSO presents a generic data pool which is carefully analyzed to derive simple useful relations. Such relations enabled a generic closed loop controller design that can be implemented in real time avoiding the extensive computational capacity that iterative optimization techniques require. A detailed Simulink DAB switching model is used to validate precision of the proposed closed loop controller under various operating conditions. An experimental prototype also substantiates the results achieved.
-
-
Item type: Article ID code: 64670 Dates: DateEvent30 June 2019Published1 August 2018Published Online3 July 2018AcceptedNotes: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 04 Jul 2018 10:02 Last modified: 08 Sep 2024 13:38 URI: https://strathprints.strath.ac.uk/id/eprint/64670