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ABSTRACT: In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have
become popular methods to characterize the structure of membrane proteins, solubilized
by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually
require deuterium-labeled proteins or detergents, which in turn often lead to problems in
their expression or purification. Here, we report an approach whose novelty is the com-
bined analysis of SAXS and SANS data from an unlabeled membrane protein complex in
solution in two complementary ways. First, an explicit atomic analysis, including both
protein and detergent molecules, using the program WAXSiS, which has been adapted to
predict SANS data. Second, the use of MONSA which allows one to discriminate between
detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable
to any detergent-solubilized protein and provides more detailed structural information on
protein−detergent complexes from unlabeled samples than SAXS or SANS alone.

Integral membrane proteins form the entry and exit routes
for nutrients, metabolic waste and drugs in biological cells,

and they are involved in key steps of signaling and energy
transduction. They thus play a central role in a variety of bio-
logical processes with exceptional medical relevance.1 Struc-
tural information on membrane proteins has traditionally been
obtained by X-ray crystallography aided by detergent mole-
cules that replace the lipids during the purification and crystal-
lization processes. Detergents stabilize membrane proteins by
shielding the hydrophobic domains from the aqueous environ-
ment.2 However, the translocation cycle underpinning mem-
brane transporter activity requires substantial conformational
variability and, in many cases, the static structural insight
achieved by X-ray crystallography has proven insufficient to
capture the essential functional information on these systems.3

For this reason, there is considerable interest in the application
of small angle scattering (SAS) methods to structurally charac-
terize membrane proteins. Recently, efforts have been dedicated
to develop combined in-solution small-angle X-ray/neutron

scattering (SAXS/SANS) approaches to investigate membrane
proteins stabilized by detergents or nanodiscs.4−6 Further
developments in these areas have faced important obstacles.
Crucially, the electron density of the detergent shell encom-
passing the hydrophobic domains of membrane proteins differs
from the electron density of the protein. Hence, it is difficult to
obtain a model of a protein-detergent complex using ab initio
SAXS-based methods, which typically assume a uniform elec-
tron density across the entire complex. To circumvent this
problem, SANS experiments making use of contrast variation
either by using deuterium-labeled proteins and/or detergent
molecules have been employed. However, difficulties are often
encountered in the expression and purification of deuterated
proteins, as well as the limited availability of deuterated deter-
gents.4 To overcome these issues, we report a new methodology
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that combines SAXS and SANS from unlabeled (i.e., non-
deuterated) proteins and/or detergent samples to obtain detailed
structural information on protein−detergent complexes. This
approach is readily applicable to any detergent-solubilized
protein.
We used the ammonium transporter AmtB from Escherichia

coli, a structurally well-studied member of the ubiquitous and
medically important Amt/rhesus family of proteins, to develop
and validate our methodology.7 To stabilize AmtB, the
detergent n-dodecyl-β-D-maltoside (DDM) was used through-
out the purification process (Supporting Information). Size exclu-
sion chromatography in-line with multiangle light scattering
(SEC-MALS) analysis showed that the AmtB-detergent complex
comprises 285 ± 12 DDM molecules (Figure S1 and Table S1).
Independently conducted analytical ultracentrifugation (AUC)
experiments revealed a detergent shell of 321 ± 1 DDM mole-
cules (Figure S2 and Table S1). Taken together, these inde-
pendent findings indicate that the detergent corona around
AmtB is likely to include between 260 and 320 DDM molecules.
We next exploited atomistic molecular dynamics (MD)

simulations of the AmtB-DDM complex and scored the models
against SAXS data to resolve the experimental uncertainty regard-
ing the size of the detergent corona. AmtB in the physiologically
functional trimeric form (PDB ID: 1U7G)8 was simulated
surrounded by DDM coronas of 260, 280, 300, 320, 340, and
360 molecules. A representative model obtained for a deter-
gent corona containing 320 molecules of DDM is shown in
Figure 1.
During the equilibration phase, the DDM molecules adopted

the typical toroidal shape reported for other protein-detergent
complexes,9,10 with their hydrophilic heads facing the aqueous
solution and their hydrophobic tails oriented toward the inside
of the complex (Figure 1). As previously shown, the detergent
corona further adapted to the shape of the transmembrane
surface of the protein.10 Our simulations indicate that the
protein−detergent complexes are stable, and although some
reorientation of DDM was observed, in particular during the first
stages of the simulations, no dissociation of detergent mole-
cules from the protein was detected after 20 ns of simulation
time. We next computed SAS curves for the simulated com-
plexes and compared them with experimental SAS measure-
ments (Figure 2−3).
It has previously been shown that single structures extracted

from MD trajectories do not fully capture the characteristics of
the solution ensemble.9 We therefore calculated the predicted
SAXS curves from conformational ensembles comprising 9000
individual configurations as observed in 70−160 ns simulations
of each differently sized complex. The SAXS curves were
obtained using explicit-solvent calculations as implemented in
the WAXSiS method, thereby taking into account accurate
atomic models for both the hydration layer and the excluded
solvent, and consequently avoiding any solvent-related fitting
parameters (Figure 2).11,12

SAS experiments are very demanding in terms of require-
ments of sample quality,13,14 therefore, before recording SAS
data, we ascertained that our samples were monodisperse and
that AmtB was pure, stable, and critically active in detergent
(Supporting Information, Figure S1−S3). We subsequently
collected experimental SAXS data following size-exclusion
chromatography of the AmtB−DDM complex. The radius of
gyration (Rg) was found to be constant across the elution peak
(Figure S1), indicating the monodispersity of the complex and
good data quality. Importantly, the scattering curves predicted

for the models containing 260, 280, 300, 340, and 360 DDM
molecules deviate slightly from the experimental data (Figures 2
and S4). By contrast, the curve computed for the MD model
containing 320 DDM molecules was nearly indistinguishable
from the experimental SAXS data (Figure 2 and S4). Further-
more, the values for Rg obtained by the Guinier approximation
from the experimental data and from for the MD model
containing 320 DDM molecules were in quantitative agree-
ment (Table S3 and Figure S5). This suggests that the overall
dimension of the simulated protein−detergent complex con-
taining 320 molecules of DDM is identical to that in solution.
It is important to note that the overall information content of
SAXS is relatively low, and thus agreement between experi-
mental and back-calculated curves may be insufficient to serve
as unambiguous evidence for a structural model.15 Specifically,
in the context of a protein−detergent complex, SAXS data
reports on the overall shape of the complex, whereas they do
not provide independent information on the individual contri-
butions from the protein and the detergent corona. Therefore,
we employed SANS together with contrast variation to more
firmly validate our computational model.
We collected SANS data at four contrast points (0%, 22%,

42% and 60% (v/v) D2O) to differentiate between the individ-
ual components of the protein−detergent complex. To ensure
that the samples were stable over the course of the SANS
experiment, the hydrodynamic behavior of the proteins were
analyzed before and after the SANS measurements by ana-
lytical size exclusion chromatography. No differences were
observed in the elution profile, confirming the stability of the

Figure 1. Atomistic model of the AmtB-DDM complex containing
320 DDM molecules. The model displays an equilibrated complex.
In the trimer, each AmtB monomer is shown in a different shade of
green, and the DDM carbon and oxygen atoms are shown in gray and
red, respectively. The upper panel shows the complex seen from the
top; the lower panel is a side-view of the complex where the DDM
molecules outside of the box highlighted in the top panel are omitted,
to illustrate the interior of the micelle.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b01598
J. Phys. Chem. Lett. 2018, 9, 3910−3914

3911

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01598/suppl_file/jz8b01598_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b01598


protein during the SANS experiment (Figure S6). To ascertain
the reproducibility and the quality of our measurements, two
independent sets of SANS data were acquired, using two
batches of AmtB purified independently. The two data sets
were found to be identical within the limits of the observed
experimental noise (Figure S7). It has previously been shown
that in the absence of D2O in the buffer, neutron scattering
from DDM micelles originates primarily from the hydrophilic
head groups.16 We calculated (Supporting Information) the
overall contrast match point of DDM to be at 22% D2O, while
the contrast match point for typical proteins is around 42%
D2O.

4,17 Consequently, the scattering contribution is domi-
nated by the protein and the DDM hydrophilic headgroup in a

buffer containing 0% D2O, by the protein at 22% D2O and by
the complete detergent corona at 42% D2O. To compare the
experimental neutron scattering data with the MD-generated
models, SANS curves were calculated using WAXSiS for 9000
individual configurations observed during 70−160 ns MD
trajectories of each of the complexes. To this end, we extended
the WAXSiS method, originally developed for SAXS predic-
tions, to also allow SANS predictions with explicit-solvent
models at various D2O concentrations (Supporting Information).
The experimental curves were fitted to the calculated curves
following Ifit = f·Iexp + c, thereby accounting for scattering
contributions from the incoherent background with the fitting
parameter c. However, neither the hydration layer nor the
excluded volume were adjusted. Congruent with the analysis of
the SAXS data, all SANS data sets were best fitted by the
curves calculated for the model incorporating 320 molecules of
DDM (Figure 3 and S8). Hence, the SANS and SAXS data
consistently validate our MD model with 320 DDM molecules.
Second, the excellent agreement we observe between the
experimental and calculated SAXS curves shows that the
overall organization of the complex is accurately reflected by
the atomistic model. Finally, the good agreement between
experimental and computed SANS curves indicates that the
MD model describes accurately the hydrophobic and hydro-
philic phase of the detergent ring as well as the position of
AmtB inside the corona.
Importantly, the crystal structure of AmtB was used to pro-

duce our MD trajectories, which precludes the possibility of
applying this combined MD/SAXS/SANS approach to mem-
brane proteins of unknown structure. We therefore applied, in
the final step, an independent “MD-free” approach to obtain a
full ab initio model that captures detailed structural information
on the complex without using the crystal structure of AmtB.
To achieve this, we merged our complete SAXS and SANS
data and conducted a multiphase volumetric analysis of
the complex using MONSA18,19 (Figure 4). Importantly, we

introduced two separate phases to describe the head and tail
groups of the DDM detergent corona.
Assuming the volume of a DDM molecule to be 690 Å3

(350 Å3 and 340 Å3 for the head and the tail, respectively),4 we
imposed a volume of 112 000 Å3 and 108 800 Å3 for the

Figure 2. (A) Comparison of the experimental (symbols) and
computed (red line) SAXS curves for the AmtB-DDM complex
containing between 260 and 360 DDM molecules. For all plots, the
maximum and minimum values for the y-axis are 1011 and 105.
(B) Residual error plot expressed as the experimental minus com-
puted scattering intensity. For all plots, the maximum and minimum
values for the y-axis are 40 and −40. Q = (4π sin(θ)/λ), where 2θ is
the scattering angle.

Figure 3. Comparison of the experimental (symbols) and computed
(red line) SAXS/SANS curves for the model containing 320 DDM
molecules. Residual error plot expressed as the experimental minus
computed scattering intensity. The maximum and minimum values
for the y-axis are 40 and −40, respectively.

Figure 4. (A) MONSA multiphase modeling using experimental
SAXS and SANS data. The phase corresponding to the protein is
represented in red mesh, while the hydrophilic and hydrophobic
detergent densities are represented in green and blue, respectively.
(B) Molecular-dynamics generated model of the detergent corona
(320 molecules) surrounding AmtB.
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hydrophilic and hydrophobic phases of the 320 DDM mole-
cules. The volume of AmtB (166 864 Å3) was calculated based
on its amino acid sequence alone (Supporting Information).
Moreover, since the trimeric nature of AmtB in solution was
confirmed by our SEC-MALS and AUC data (Figure S1−S2
and Table S1), we imposed a P3 symmetry on the complex.
Crucially, all this information can be readily obtained for any
membrane protein solubilized in detergent, using widely acces-
sible and complementary biophysical techniques (e.g., SEC-
MALS/AUC in this study). Ten MONSA runs (Figure S9)
were performed yielding similar ab initio envelopes for AmtB.
A representative MONSA model is shown in Figure 4, which
faithfully reflects both the size and shape of the MD-generated
model. The protein envelope is a good representation of the
crystallographic structure of AmtB and is, furthermore, con-
fined inside the detergent corona. Importantly, the joint use of
both SAXS and multiple SANS data sets allowed us to distin-
guish the head- and tail-groups of the detergent corona and
place them correctly with respect to the protein surface and
solvent. Such detailed insight is usually not achieved with
ab initiomodels unless additional contact restraints are applied:20

the detergent ring fits the contours of the protein and the
positions of the two detergent phases (head- and tail-groups)
are particularly clear. The hydrophobic phase is strictly con-
tained between AmtB and the hydrophilic ring, with only the
tails of DDM being in contact with the hydrophobic surface of
the transmembrane domain. Hence, without using deuterated
protein or detergent, and without information about the 3D
structure of AmtB, the combination of SAXS and SANS data
capture the essential structural details contained in membrane−
protein detergent complexes in solution.
In summary, there is considerable interest in developing SAS

methodology further to allow routine investigation of mem-
brane proteins. We have adapted WAXSiS to account for
SANS data and therefore open up this software package for
future projects including both types of scattering data. Using
our methodology, based upon a combination of SAXS/SANS
measurements and MD simulations, we have been able to
propose an atomic model of a protein-detergent complex. Our
integrative approach demonstrates that combining SAXS,
SANS, and iterative simulations provides much more detailed
structural information than each of the methods alone.
It is widely recognized that cryo-electron microscopy (cryo-EM)

will revolutionize the structural analysis of membrane proteins
in the near future.21,22 It is our belief that a hybrid approach,
combining in solution SAS techniques, in silico modeling, and
cryo-EM will allow for better tracking and description of
conformational changes of membrane proteins in solution,
induced by ligand or cofactor binding. In this context, it was
important to account accurately for the bound detergent
molecules, which is greatly improved by combining SAXS and
SANS data at various contrasts. Second, our multiphase anal-
ysis, which merges SAXS and SANS data, without using deuter-
ated protein or detergent, allowed us to obtain unprecedented
structural information on the phase density of the detergent, in
particular to distinguish head- and tail-groups in the assembled
membrane protein−detergent complexes. This is particularly
relevant as deuterated media/detergents are often expensive
and/or toxic for bacteria, leading to decreased protein yields.23

Crucially, the multiphase analysis does not require information
on the 3D structure of the protein, which opens up the possi-
bility of applying this methodology to a wide range of impor-
tant membrane proteins that have so far remained inaccessible

to high resolution structural analysis. While SAS has become a
popular technique among structural biologists, combinations of
SANS, SAXS and MD simulations have remained underexploited
by the community. In this context, our work represents a sig-
nificant advancement in data acquisition, model validation,
development of new software, and multiphase volumetric anal-
ysis to firmly establish SAS technology as a standard method
for membrane protein structural biology.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpclett.8b01598.

Computational and methodological details, as well as
three supporting tables and nine supporting figures
(DOCX)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: arnaud.javelle@strath.ac.uk.
*E-mail: frank.gabel@ibs.fr.
*E-mail: jochen.hub@physik.uni-saarland.de.
ORCID
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