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Mechanical signals are ubiquitous in our everyday
life and the process of converting these mechanical
signals into a biological signalling response is
known as mechanotransduction. Our understanding
of mechanotransduction, and its contribution to
vital cellular responses, is a rapidly expanding field
of research involving complex processes that are
still not clearly understood. The use of mechanical
vibration as a stimulus of mechanotransduction,
including variation of frequency and amplitude,
allows an alternative method to control specific
cell behaviour without chemical stimulation (e.g.
growth factors). Chemical-independent control of
cell behaviour could be highly advantageous for
fields including drug discovery and clinical tissue
engineering. In this review, a novel technique is
described based on nanoscale sinusoidal vibration.
Using finite-element analysis in conjunction with
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laser interferometry, techniques that are used within the field of gravitational wave
detection, optimization of apparatus design and calibration of vibration application
have been performed. We further discuss the application of nanovibrational stimulation,
or ‘nanokicking’, to eukaryotic and prokaryotic cells including the differentiation of
mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms
are discussed including mediation through the Rho-A kinase signalling pathway. Optimization
of this technique was first performed in two-dimensional culture using a simple vibration
platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was
developed to scale up cell production, with recent research demonstrating that mesenchymal
stem cell differentiation can be efficiently triggered in soft gel constructs. This important step
provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can
be produced for the purpose of bone grafting, without complex scaffolds and/or chemical
induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm
formation in a number of clinically relevant bacteria. This demonstrates additional utility of the
bioreactor to investigate mechanotransduction in other fields of research.

This article is part of a discussion meeting issue ‘The promises of gravitational-wave
astronomy’.

1. Introduction
The ability for cells to sense and respond to their environment is vital for correct function and
ultimately cell survival. The classical view of this process is rooted in terms of chemical signalling,
as exploited through biological assays and molecular methods to elucidate signalling pathways.
There has been an underappreciation of the importance that mechanical cues play in how cells
sense their local environment and trigger signalling (termed mechanotransduction) [1]. This has
been a focus of research in recent decades and it is now known that eukaryotic cells have evolved
to respond to a plethora of mechanical stimuli (both internal and external to the cell) and physical
cues experienced in daily life [2].

The ability to convert mechanical signals into a biological response is recognized as an
important mechanism in many species; in humans, it provides the abilities of proprioception,
touch, hearing and balance [3,4]. Classically, the view was held that signalling events were
primarily controlled through biochemical processes, e.g. enzyme activity and reaction rates.
However, there is growing evidence that the physical micro- and nano-environment is critical
for the correct functioning and survival of many eukaryotic cells. This is best demonstrated
in the absence of mechanical stimuli or through alterations of mechanosensitive genes and
proteins. Such mutations have been implicated in the pathology of a number of disease states
such as atherosclerosis [5], deafness [6], pathobiology of bones [7], muscular dystrophy [8] and
tumours [9]. For example, tumour tissue can be partially diagnosed by assessing increased tissue
stiffness, and evidence of changed mechanotransduction response at the single-cell level. The
mechanotransductive response of cancer cells is type-dependent, with both reduction of the
mechanotransduction response [10,11] and activation of mechanotransduction pathways that
promote tumour progression [12]. Changes in tissue stiffness are also implicated in fibrotic lung
disease and the inability to respond to the local microenvironment [13].

An underpinning example of the mechanotransductive mechanism is the ability of the
mammalian cell cytoskeleton to respond to local physical cues, such as the rigidity of the
microenvironment. Exogenous forces are transmitted to cells via the local environment stiffness.
The elastic modulus of a material gives an indication of its stiffness, with stiff materials having
a high elastic modulus. The human body has a distinct range of elastic moduli from fat at
0.5–1 kPa (soft) through to bone (hard) at 15–20 GPa [14]. Mammalian cells can also sense the
force generated by fluid shear stress as demonstrated in flow-cell models [15–17] and force
exerted due to gravity [18]. These brief examples illustrate the diverse nature of forces both
internal and external that cells sense and respond to. Unravelling the complex mechanisms of
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mechanotransduction has been aided by the invention of instrumentation and methods able to
deliver external mechanical stimuli to individual or multiple cells in culture, for example atomic
force microscopy [19] and optical tweezers [20].

This review article provides an overview of mechanotransductive mechanisms based
on current experimental studies. Nanoscale vibration is taken as an example to illustrate
mechanotransductive pathways along with the associated impact on mesenchymal stem
cell (MSC) osteogenesis and bacterial biofilm formation. The key importance of precision
measurement and computer-aided design optimization is highlighted in the development of the
bespoke nanovibrational bioreactor system used by these studies. Consistency of vibration, being
critical to biological reproducibility, is achieved through use of these techniques.

2. Cellular response to mechanical stimulus
The sensitivity of cells to their mechanical environment relies on three processes. Firstly, there
must be a source of applied force, either externally applied (e.g. hydrostatic pressure, shear flow,
gravity) or applied by the cell itself through cytoskeletal contractility. This force must then impose
on specific, mechanically sensitive proteins such as extracellular matrix (ECM)-binding proteins,
and stretch-sensitive ion channels (e.g. through deformation of the membrane) or the cytoskeleton
as a whole. Many proteins are capable of conformational changes or protein folding in response
to typical forces imposed by the cellular environment [2]. Conformational change allows new
phosphorylation reactions to occur or ion/protein influx in the case of channel proteins, leading
to initiation of intracellular signalling [21,22]. Finally, altered signalling can yield changes in cell
behaviour following signal transmission to the nucleus. Signal propagation methods include
molecular translocation, diffusion and even stress wave propagation directly to the nucleus
through the cytoskeletal network [23]. Of these three mechanisms, stress wave propagation can
occur rapidly, within timescales of around 1 ms [23], via protein transducers such as membrane-
spanning focal adhesion complexes connected to integrins [24]. Studies comparing chemical and
mechanical stimulation have demonstrated that the latter can yield significantly faster activation
of specific kinases (greater than 12 s versus less than 300 ms, respectively) and this co-localized
with areas of cytoskeleton deformation [25].

Focal adhesions demonstrate a key example of tension-based conformational change, with
each complex made of multiple subunits forming the overall mechanotransducer. Actin-linking
and polymerizing proteins include proteins such as vinculin and talin which connect the
cytoskeleton to ECM-bound integrins; however, it is the signalling subunit within the focal
adhesion complex that provides force-based modulation of actin polymerization and the
actin/myosin contractility process [26]. Proteins such as focal adhesion kinase mediate this
signalling by allowing additional phosphorylation to occur following mechanical conformational
change leading to downstream signalling [27].

Integrins provide the anchorage which is key to producing increased cytoskeletal tension.
Mechanical manipulation of integrins using microbeads demonstrates the entire system in action
with axial rearrangement of the cytoskeleton and deformation of the nucleus [28], both effects
not seen when manipulating other membrane-bound proteins [29]. Of course, there is a family of
integrins with a high degree of specificity in their connection to the cytoskeleton. For example,
studies have linked integrin α3β1 with actin filaments and integrin α6β4 with intermediate
filaments [30].

Another example of force-based protein manipulation is stretch-activated ion channels, with
a number of channels being gated specifically by mechanical force [31]. Opening of these
channels creates an ion gradient flow [32,33] which causes diffusion into the cytoplasm and
thus possible interaction with various biochemical pathways. In Escherichia coli mini, small and
large mechanically gated channels play a role adaption to osmosis [33,34]. There are numerous
examples of this in eukaryotic cells, including sensory neurons converting the sense of touch to
action potentials [35] and in aortic endothelial cells transient receptor potential (TRP) channels
are involved with modulation of Ca2+ influx when cells are under tension [36]. The specific
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Figure 1. Simplified schematics of switch-like and dynamic elements of mechanotransduction. (a) Schematic representation
of a common mechanism of mechanotransduction. Conformational change due to tension exerted on a membrane results in
the opening of ion channels. This allows a flow of ions across the membrane which triggers specific signalling pathways. The
mechanotransduction response is dynamicwith factors such as frequency, static versus cyclic stretch and duration of application
influencing dynamic mechanotransduction. (b) Transmission of force can be directed through the cellular cytoskeleton by a
combinationoffluidization (stop transmission) or reinforcement (enhance transmission) [44]. (c) Themagnitudeof force applied
to a protein filament has been shown to dictate the rate of conformational change. Forces and rates shownwere experimentally
derived by del Rio et al. [45]. (d) Reinforced structures are more resistant to breaking; reinforcement of the actin structures, for
example, can increase the breaking force by a factor of up to 10 000 [46,47]. The transmission of a force along the structure can
also aid in the reinforcement of the structure in a positive feedback loop. (Online version in colour.)

mechanism of this has been probed through techniques such as patch clamping; however, there
is still debate if the gating process is reliant on membrane tension from underlying cytoskeletal
proteins (e.g. spectrin) [37] or whether lipid bilayer tension alone is sufficient to activate these
channels [38].

Completing the structural picture, it is also important to consider the direct mechanical
integration of the ECM to the nucleus via linker of nucleoskeleton and cytoskeleton (LINC)
complexes [39]. In a similar manner to the cellular membrane, stress can be directly transmitted
to the nuclear envelope, resident ion channels [40] and even the chromatin itself with force-based
changes in conformation being possible [41,42]. This was analytically calculated for nanoscale
vibration by Curtis et al. [43].

These processes can be summarized using two models: the switch-like model and the dynamic
model [21]. The switch-like model is a basic system which describes the progression of a
mechanical signal and how the cell senses and responds to it. This system is summarized in
figure 1a and shows the process of transmission (mechanotransmission) of the mechanical cue,
followed by the sensing of this cue by the cell (mechanosensing) resulting in a biological response
(mechanoresponse). Mechanotransmission describes the transmission of the force from adhesion
proteins through the cytoskeleton structures, e.g. actin [48], microfilaments [49], microtubules
[50] and intermediate filaments [51]. These structures allow forces to travel away from the initial
exertion point and propagate along the cell cytoskeleton. As a consequence of the propagation of
the force, mechanosensing occurs due to protein conformational changes. It is also important
to note that mechanoresponse can describe rapid downstream molecular pathways but may
also play a role in long-term response, e.g. arterial wall thickening and bone remodelling [5].
Microgravity is a prime example of altered bone remodelling which has been shown to induce
osteopenia [52,53], a loss of bone density.
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The switch-like model of mechanotransduction adequately describes the basic molecular
diffusion processes in mechanotransduction; however, a dynamic model is required to describe
the mechanosensation in force wave propagation as the switch-like model is not appropriate
as it fails to account for time-dependent application of force, e.g. continuous stretch versus
cyclic stretch [54,55], and the frequency of the stimulus [56]. Specific frequencies have also been
observed to elicit different cellular responses. The hierarchical mechanotransduction response of
switch-like models forms a basis to understanding the process, but it is apparent that dynamic
elements need to be accounted for.

Dynamic mechanotransmission details the transmission of force through the cytoskeleton of
the cell, taking into consideration the constant remodelling of the load-bearing structures and
the interactions between those different components, e.g. actin–myosin bonds. These adaptive
properties of the cytoskeleton can alter local viscoelasticity due to reinforcement of certain
structures or fluidization of others (figure 1b) [57]. Reinforcement of the cytoskeleton is classically
noted in MSC-derived osteoblasts with increased actin stiffening and contractility of the cell
when cultured on nanotopographies [58], in response to stiff materials [59], and if spreading is
induced through increased cell-adhesion ligation. By contrast, fluidization results in a disruption
of the cytoskeletal structures in specific areas. The combination of reinforcement and fluidization
thereby allows continued transmission of these forces in a directed manner, where transmission
will occur along the reinforced network, but, upon reaching regions where fluidization has
occurred, will be dampened [44].

There is strong evidence to suggest that the cytoskeleton can act as a bandgap filter, meaning
that the cell is only responsive to certain frequencies [60]. The cytoskeleton is composed of
linker molecules that have different elastic constants; altering the cellular ratio of these linkers
may allow the ‘filter’ to be tuneable [61]. This is further evidenced by force propagation over
longer intracellular distances being controlled by the contractile prestress of the cytoskeleton
and the loading frequency [62]. Experimental evidence also suggests that these frequencies are
species-specific as shown in the auditory transduction of mammals (rat) occurring faster than
that of reptiles (turtle) due to the larger auditory frequency range of mammals [63]. This suggests
that dynamic mechanosensing is strongly interlinked with dynamic mechanotransmission when
considering the transmission of the mechanical force along the load-bearing structures. As
noted, these load-bearing structures are governed by the ratio of the bonds between them
and these bonds are also susceptible to being broken when transmitting a mechanical force.
Experimental data suggest that forces in the order of hundreds of piconewtons can break single
actin fibres, with fibre bundles requiring much larger breaking forces of 300–600 nanonewtons
[46,47] (figure 1c). Once a bond is broken, transmission of the mechanical force through these
two previously bonded structures halts. Dynamic mechanotransduction can also be influenced
by the downstream mechanoresponse of the biological pathways involved with the regulation
of the cytoskeleton and adhesion structures, effectively acting as a ‘feedback’ loop to enhance or
diminish mechanotransduction (figure 1d).

3. Measurement at the nanoscale
Producing accurate mechanical signals that are transmitted to the cells can be achieved using
piezoelectric materials or piezo actuators. Applying a constant electric field to a piezo ceramic
deforms its shape; therefore, applying a time-varying electric field, such as a sine wave, can create
a source of vibration. In nanovibrational studies, a well-defined sine wave is chosen, allowing the
peak acceleration, and therefore the peak force, experienced by the cells to be estimated [43]. Other
waveforms (e.g. square waves) have not been studied due to uncertainty in the acceleration and
force associated with the corners of the waveform.

Initially, the nanovibrational studies were carried out in small Petri dishes attached to single
piezo actuators [43,64,65]. However, the process was scaled up to apply vibration across standard
multiwell and flask culturewares [66,67]. The bioreactor design currently consists of an array of
piezo actuators sandwiched between a heavy aluminium base and a top plate. The top plate
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Figure 2. Precision measurement of nanoscale displacements. (a) Measurement of nanoscale displacements are performed
using laser interferometry. (b) Calibration of six-well tissue culture plates on the bioreactor shows a linear correlation between
bioreactor input voltage and vibration displacements generated across a range of frequencies. (Online version in colour.)

Table 1. Measurement of vibration displacement produced in a range of commonly used tissue cultureware at 1 kHz.
Measurements were performed for each well of the 6- and 12-well plates and at 9 and 21 points on the bottom surface of the
T75 and T150 flasks, respectively. Data are mean± s.d.

average displacement (nm) s.d. (nm)

6-well 29.6 ±1.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12-well 31.2 ±2.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T75 flask 31.8 ±2.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T150 flask 33.2 ±2.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

comprises an aluminium and a magnetic stainless steel plate, configured such that the aluminium
side is against the array of piezos and the stainless steel plate sits on top allowing cultureware to
be magnetically attached.

Nanoscale displacements produced by the bioreactor are measured using laser interferometry,
which is used in a diverse range of research areas, including gravitational wave astronomy, where
it has been used to make the first direct detection of gravitational waves [68–71]. Gravitational
wave interferometers are able to measure displacements of the order 10−20 m over a distance
of 4 km [68]. In the biological studies reviewed in this paper, a table-top laser interferometer
(Model ST-S 120, SIOS Meßtechnik GmbH, Ilmenau, Germany) is used (figure 2), and is capable of
resolving displacements of 0.1 nm. Displacement amplitudes across different cultureware types
are presented in table 1. Estimation of the accelerative force applied to single cells has previously
been calculated using assumptions of the fluid mass being moved during vibration (the mass
being accelerated) and found to be in the nN range [43].

Finite-element analysis (FEA) modelling has been critical in the design of the bioreactor to
predict and correct for the effect of vibrational resonance in the device and cultureware. A modal
analysis can provide information on exactly how the chosen cultureware will deform at each of its
resonant modes. For example, it was shown in [65] that a 52 mm Petri dish has a resonant mode at
339 Hz when mechanically stimulated by a single piezo at the centre of its base. The saddle shape
of this mode would result in cells near the edge of the dish receiving almost double the vibration
amplitude than the cells at the centre of the dish, leading to inconsistent cell stimulation. This
analysis highlights that all cultureware will have an upper frequency limit for the production of
consistently stimulated cells which could be significant not only for research-based experiments,

 on June 4, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170290

........................................................

30.7 30.2 29.7 29.2 28.7 28.2
displacement (nm)

27.7 27.2 26.7 30.4 30.1 29.8 29.5 29.2 28.9
displacement (nm)

28.6 28.4 28.1

(b)(a)

Figure 3. Harmonic analysis of the bioreactor top plate. Modelling of the harmonic response of the bioreactor top plate can
be performed to better understand the bioreactor behaviour. (a) Harmonic response of the top plate at 1 kHz frequency.
(b) Harmonic response of the top plate at 2 kHz. Initial 30 nmdisplacement applied to the underside of the top plate to simulate
theactionof the 13piezos. To simulategravitational loading, anaccelerationof 9.806 m s−1 was applied in theoppositedirection
of piezo action. (Online version in colour.)

but also for future medical trials where reproducibility and consistency are crucial. Suitable
modification of the cultureware (increasing rigidity) can help increase the first internal resonance
and thus extend the frequency range where the system behaves as a rigid body. In addition,
harmonic analysis can be used to inform the design of the bioreactor and cultureware, e.g.
placement of piezos and material selection, predicting the nanoscale displacements transmitted
to the cultureware and thus cells. An example of the bioreactor top plate is shown in figure 3,
where a subtle difference in the predicted nanoscale displacements is shown when comparing a
1 and 2 kHz frequency.

4. Mesenchymal stem cell differentiation and mechanical stimulation
Bone is the second most transplanted tissue in humans and is commonly grafted from the iliac
crest (donor site) to the recipient site [72]. The volume of autologous bone which can be removed
this way is limited and can often be associated with chronic donor-site pain, post-operative
infection and other donor-site morbidities [73]. Bone undergoes modelling and remodelling in
response to physical external factors to maintain structural strength and mineral homeostasis.
This remodelling is controlled through the actions of osteoblasts and osteoclasts, bone-building
and bone-resorbing cells, respectively. Imbalances in the endosteal resorption of bone and
periosteal apposition may lead to conditions such as osteoporosis [74]. MSCs are multipotent
stromal cells that differentiate into a number of cell types associated with the musculoskeletal
system such as osteoblasts, adipocytes, chondrocytes and fibroblasts [75]. MSCs reside in virtually
all postnatal tissue [76,77] but are commonly isolated from the bone marrow [78]. Adipose (fat)
tissue is also rich in adipose-derived MSCs [79].

Controlling MSC differentiation is, therefore, highly desirable to address the clinical need,
as such experimental techniques have focused on passive (e.g. topographical control and
environmental stiffness) and active methods (e.g. gravity, shear flow and vibration). Passive
techniques focus on the generation of internal tension in the cell by altering the physical
environment the cells attach to. This can be accomplished by altering the material or by
topographical patterns, whereby different levels of stress can be achieved by varying the
parameters [80]. Microscale patterns are a well-researched area, and effects have been shown
to have a marked effect on cell behaviour and ultimately, in the case of MSCs, differentiation.
These effects can also occur through alteration of the surface with specific ECM proteins and/or
polymers [81–83]. Addition of these components to the surface or changing the electrostatic
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potential of the surface can alter the absorbed ECM protein [84]. Microscale features have been
extensively investigated aided by relevant technology, e.g. photolithography, and have been
found to regulate cell functions including but not limited to proliferation, differentiation and
apoptosis [82–84]. With the advance of microfabrication techniques, extensive investigation of
ordered microscale structures, e.g. pillars [85,86], pits [87] and groves [88,89], was achievable
and contributed greatly to the effect these structures have on cellular mechanotransduction.
Microscale features in the context of implants have been noted to alter osteoblast behaviour
[90,91].

Nanoscale features known as nanotopographies have been shown to have a strong impact
on the morphology and phenotype of MSCs [92,93], and to alter other cell responses such as
proliferation. Dalby et al. [92] used a series of ordered and disordered nanoscale grids formed
from pits with geometry 120 nm diameter and 100 nm deep. While the ordered nanoscale grids
showed minimal osteogenesis, the disordered near-square pattern showed the largest increase
compared to the hexagonal and perfect square patterns. A further study, altering the height
of titania nanopillars, demonstrated an inverse relationship between osteoinductive effect and
feature height (15 nm being optimal) [94]. Reduction of the nanopillars to 8 nm diminished
this effect, suggesting that there was a critical cut-off size for cell filopodia interaction with
nanofeatures. These experiments also revealed fine nanoscale projections, promoted by the 8 nm
features, which are now termed ‘nanopodia’. Additional investigation revealed large changes in
adhesion, nucleus and lamin morphologies, leading to the suggestion that direct (mechanical)
and indirect (biochemical) signalling are critically important in regulating stem cell fate [95]. It
has also been shown that 350 nm gratings affect human MSC adhesion and migration [93]. It
was noted that mature focal adhesions of a smaller size were observed, and zyxin was identified
as being responsible for this due to reduced intracellular tension. It was hypothesized that the
350 nm gratings showed a similar response to compliant surfaces. Thus, how MSCs adhere and
spread on materials is important for subsequent differentiation. Surfaces that stimulate adhesion
drive increased cytoskeletal contraction and enhanced osteogenesis [96,97]. A classical example is
from confinement of MSCs to small adhesive areas (e.g. 1000 µm2), which restricts cell spreading
and thus induces adipogenesis, while larger surface areas (e.g. 10 000 µm2), which facilitates cell
spreading, induces differentiation of MSCs towards an osteoblast lineage. This occurs due to
changes in actin–myosin contraction mediated through Rho-A kinase (ROCK) [44].

In the human body the local environment in which cells reside can cover a diverse stiffness
range from <kPa through to tens of GPa [14]. Mechanotransduction processes can be activated
by prestress in the cytoskeleton in addition to the potential that alteration of the rigidity may also
be sufficient to have an impact on cellular differentiation.

MSCs have been shown to respond to the elasticity of their environment and stiffness
gradients, e.g. between tissue types. Hydrogels are a valuable tool for the investigation of cellular
response within a “3D” matrix. These gels can be synthesized from an array of biological and
synthetic polymers with the ability to modulate the elastic modulus by changing the cross-
linking [98,99]. The ability to tailor stiffness coupled with being highly hydrated has resulted in
hydrogels being useful in mimicking human tissue to study cell behaviour [100,101]. Mimicking
the elasticity of three distinct tissue types, that of brain, muscle and bone, hydrogels seeded
with MSCs showed phenotypic switches towards the cell type of the mimicked tissue type [59].
Another study demonstrated that MSCs are capable of migrating along these gradients (1 to
100 Pa µm−1) to the stiffest regions of these gradients in a process known as durotaxis [102].
In addition, their data suggested that a functional actin cytoskeleton is required to achieve this
migration, and microtubules are required for this migration to be directed.

Active methods such as gravity, compressive loading and shear have also been shown
to be inducers of MSC differentiation. Hypergravity (10 g) has been shown to increase cell
proliferation in addition to upregulation of runt-related transcription factor (RUNX2), which
gives some indication of an increase in osteoblastogenesis [103]. Cyclic compressive loading has
been shown to have the potential to induce chondrogenesis of rabbit bone marrow-derived MSCs
by synthesis of TGF-β1 [104]. Combination of cyclic compressive loading with added TGF-β1
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showed no significant difference when compared with TGF-β1 and cyclic compressive loading
only. Although shear flow is often thought of as influencing endothelial cells due to their periodic
cycling of pressure and flow when exposed to blood flowing in the human body [105], there is
also evidence to suggest that low interstitial shear flow can induce MSCs towards an osteogenic
lineage. Low sheer flow stress induces osteogenesis of MSCs by activating the transcriptional
coactivator with PDZ-binding motif (TAZ), which activates the TAZ target genes CTGF and Cyr61
[106].

5. Controlling mesenchymal stem cell behaviour using nanovibrational
stimulation

Vibration is classed as an active technique and is viewed as being a cyclically compressive force.
Owing to the dynamic nature of the cellular cytoskeleton and its adaptive nature to external
stimuli, vibration has been used to investigate mechanotransduction at the cellular level. The
experimental apparatus used has ranged from cultureware attached to speakers [107], horizontal
vibration [108] and culture plate shakers [109]. A study of periodontal ligament stem cells using
low-magnitude, high-frequency vibration (LMHF) over a frequency range of 10–180 Hz observed
promotion of osteogenic differentiation with the optimal frequency being 50 Hz [109]. A study
of MSCs combining shear flow (range 0.04 to 5 Pa) and a vibration of magnitudes 0.15, 1 and
2 g with frequencies of 30 and 100 Hz demonstrated a commitment to an osteogenic lineage
[110]. Furthermore, this commitment was due to an upregulation of the actin-remodelling genes
including the Wiskott–Aldrich syndrome (WAS). This mechanism was found to be independent
of shear flow. Intermittent vibrational loading of hASCs over a 3 day period using a square wave
of 50 Hz and 100 Hz with a maximum acceleration magnitude of 3 g resulted in an increase of
some osteogenic markers but failed to approach that of the osteogenic media [107]. In contrast,
stimulation of adipose-derived stem cells (AT-MSCs) using subsonic vibration at a frequency
range of 10–40 Hz resulted in differentiation of AT-MSCs towards a neural lineage [111]. Owing
to the diverse range of apparatus used in vibrational experiments, it is difficult to compare and
contrast studies. In addition, it becomes difficult to determine the factor(s) responsible for the
observed biological responses when amplitudes are not measured or stated in studies. It may
also suggest that differentiation is sensitive to acceleration or that specific frequencies and/or
amplitudes play an important role in differentiation driven by mechanotransduction.

It is also of interest that vibration has potential clinical applications, in particular the
application of low-magnitude, high-frequency (LMHF) vibration, also known as whole-body
vibration (WBV). These signals have been found to elicit an anabolic effect in murine bone models
[112,113]. WBV has been implicated clinically as being effective in intervention in lower back pain
and potential therapeutic effectiveness for sarcopenia and osteoporosis [114]. Safe exposure to
WBV is important as long-term WBV has been shown to negatively affect certain individuals in
industrial settings with lower back pain and sciatica [115].

As a cell interacts with surfaces, nanoscale membrane undulations occur that influence
cell-surface interaction [116]. These vibrations produced by the cell have specific amplitudes,
frequencies and timescales depending on the cell type [116–122]. Given that cell membranes
naturally vibrate at the nanoscale, Curtis and colleagues investigated the application of
nanovibrational stimulation using piezo actuators [43]. Osteogenic stimulation of MSCs was
noted through activation of the Rho-kinase (ROCK) pathway (figure 4), where significant
upregulation of osterix and alkaline phosphatase was measured at day 7 [65]. Osterix is an
osteoblast-specific transcription factor and a major effector in bone formation [123]. In vitro
induction of alkaline phosphate (ALP) has previously been shown as a robust predictor of bone-
forming capacity in vivo; however, this only occurred when alkaline phosphatase, ALP mRNA
levels and ALP activity were observed during in vitro osteogenic differentiation [124]. MSCs have
demonstrated a strong morphological change in response to nanovibrational stimulation when
grown on Petri dishes as monolayer, two-dimensional (2D) cultures (figure 5). This occurs due
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Figure 5. Enhanced adhesion and cytoskeletal remodelling in response to nanovibrational stimulation. Nanovibrational
stimulation was applied to MSCs (1 kHz, 22 nm displacement). Fluorescence labelling of actin cytoskeleton (red), vinculin
(green) and cell nucleus (blue)was performed. Representative images of (a) control and (b) nanovibrational stimulation applied
toMSCs, showing induced remodelling of cell cytoskeleton and increased focal adhesion formation of the stimulated cells. Scale
bar, 100 µm. (c) Integrated density measurements of vinculin expression. Increased vinculin expression in NK (1 kHz) samples
in comparison to non-stimulated controls. Data are mean± s.d., Student t-test, p< 0.001. n= 6. (Online version in colour.)

to increased contractility of the cytoskeleton and actin reorganization. An increase in vinculin, a
focal adhesion protein linking integrins to F-actin, is also observed in response to nanovibrational
stimulation [125].

Nanovibrational stimulation at 500 and 1000 Hz was also shown to influence the size of
the nucleus of the cell. The peak force experienced per cell was estimated to be nanonewtons
in magnitude [64]. A combination of nanovibrational stimulation with nanotopographies has
also been investigated and showed some benefit of having both environmental and mechanical
stimulation; however, nanovibrational stimulation was found to provide a stronger osteoblastic
cue [126].
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Figure 6. Nanovibrational stimulation induces osteogenesis. (a) qRT-PCR analysis of osteogenic markers over time relative to
no vibration. The expression of BMP2, ALP, OPN and OCNwas significantly higher in 3D nanovibratedMSCs compared to control.
Donors (D)= 1, replicates per donor (r)= 6, technical replicates per replicate (t)= 2; results are mean± s.d., statistics by
Mann–Whitney U-test where *p< 0.05, **p< 0.01 and ***p< 0.001. (b) Osteogenesis measurement by Von Kossa staining.
Staining was performed after 6 weeks of stimulation at 1 kHz in 3D. Representative gels shown (on the left) were removed from
a six-well plate prior to staining. A significantly increased level of stainingwas observed for the nanostimulated samples relative
to the unstimulated controls after 4 weeks (D= 3 (D= 1 for OSM), r= 4), and for nanostimulated samples and osteospecific
media (OSM). OSM-treated cells after 6 weeks (D= 1, r= 5). Results are mean± s.d., *p< 0.05 by ANOVA and the Kruskal–
Wallis test. (c) Temporal qRT-PCR data for Piezo1, Piezo2, TRPV1 and KCNK2 transcripts in MSCs after 3, 5, 7, 14 and 21 days of
3D nanovibrational stimulation displayed as the mean fold change with respect to no-vibration control cultures. A trend can
be observed: high to low expression, followed by recovery, and by another phase of high to low expression, with significant
downregulation of all the receptor transcripts at day 21. Donors (D)= 1, replicates per donor (r)= 6 (3 for days 3 and 5),
technical replicates per replicate (t)= 2; results are mean± s.d., statistics by Mann–Whitney U-test, *p< 0.05, **p< 0.01
and ***p< 0.001. Values are displayed in log scale. Adapted from Tsimbouri et al. [67]. (Online version in colour.)

In vitro, cells are routinely cultured in two dimensions; however, this has been found to
be a poor representation of the cellular response in vivo, where interactions occur in three
dimensions with the ECM alongside a host of bioactive factors [127]. The ECM is composed of
macromolecules, glycosaminoglycans and fibrous proteins, of which collagen and fibronectin are
components [128]. A study was performed to investigate if nanovibrational stimulation could be
applied to a 3D hydrogel structure using the bioreactor discussed in §3 [67]. A low elastic modulus
scaffold (collagen) was used because high elastic modulus scaffolds alone have been shown
to induce osteogenesis of MSCs. FEA modelling and interferometry confirmed transmission of
vibration from the nanovibrational bioreactor to the scaffold at the desired 1 kHz frequency.
Significant upregulation of BMP2, ALP, OPN and OCN at day 7 and significant upregulation of
ALP and collagen I at day 14 was observed (figure 6a). The upregulation of these genes, relative
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[67]. (Online version in colour.)

to the control, is strongly indicative of osteogenesis. At day 21, downregulation of RUNX2, ALP,
OCN and OPN was observed, which indicated that the transcriptional component of osteogenesis
had completed. OCN protein expression at day 21 further confirmed the completion of the
transcriptional component of osteogenesis. Mineralization was confirmed using a combination of
von Kossa staining for phosphate, Raman spectroscopy and X-ray micro-computed tomography.
Mineralization was higher than the control and, at 4 weeks of culture, was higher than that
observed in osteoinductive media (figure 6b). Collectively, these results provide strong evidence
that nanovibrational stimulation provides a strong osteogenic cue in a non-osteogenic 3D
environment. To further elucidate the mechanotransduction mechanisms by which osteogenesis
was induced, ion channel sensitivity was tested with the mechanoreceptors: Piezo, TRPV1
and KCNK being differentially expressed in a temporal manner (figure 6c). The involvement
of these mechanoreceptors supports a role of intracellular tension in osteogenesis-induced
mechanotransduction.

Metabolomics analysis further revealed that TRPV1 is the major contributor to Wnt-
mediated osteogenesis, being involved in the activation of protein kinase C and ERK-mediated
β-catenin activity. A hypothesis for the proposed mechanisms involved in nanovibrational
mechanotransduction is summarized schematically (figure 7).

6. Applying nanovibrational stimulation to prokaryotic cells
Mechanotransduction is deemed essential to the normal function of many mammalian cells, while
in contrast this mechanism is rarely considered for bacteria where chemical signals are often
regarded as dominant [129–131]. Bacteria, however, routinely experience mechanical forces in
flow systems, cell-to-cell interaction, cell-to-surface interaction, twitching motility and the change
from planktonic to sessile (biofilm) growth mode. Vibration has been observed in Gram-positive
bacteria in a species-dependent manner with ranges from 21 nm (Staphylococcus epidermidis
ATCC35984) up to 145 nm (Streptococcus salivarius HB7) [132]. The switch-like model can be
applied to bacteria but may suffer the same limitations as found with mammalian cells as bacteria
experience a diverse range of mechanical forces. Bacteria have been found experimentally to
have mechanosensitive channels, specifically E. coli which has three classes of mechanosensitive
channels in varying size (mscL, mscM, mscS) [133]. There is, however, no direct evidence that
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Figure 8. Reduction of bacterial biomass under nanovibrational stimulation. A selection of clinically relevant bacteria were
stimulated (1 kHz, 30 nm) for 24 h, using a set-up nominally identical to that used in the initial MSC nanovibrational studies
[65]. Crystal violet staining to quantify total biomass was performed at the end point. (C)= Control, (N)= nanovibrational
stimulation. Data normalized to control=mean± s.d., Student t-test, * p< 0.05, *** p< 0.001 *** p< 0.0001. n= 3.

these channels respond to external mechanical force due to the limited number of studies of
mechanotransduction in bacteria. Evidence of mechanotransduction in bacteria has been shown
in Pseudomonas aeruginosa (P. aeruginosa) where type IV pili (tfp) have been identified as part of
a mechanotransduction system, implicated in modulating surface attachment [134]. Retraction of
the pilus directly induces signal transduction of a chemotaxis sensory system known as Chp. The
Chp system in turn regulates cyclic adenosine monophosphate production and genes associated
with virulence. Neisseria gonorrhoeae (N. gonorrhoeae) tfp have also been demonstrated to play a
significant role during infection, stimulating microcolony formation and cytoprotection [135,136].
During infection, N. gonorrhoeae tfp and epithelial cells have also been observed to be involved
in physical cross-talk and hijacking of the epithelial cell’s mechanotransduction mechanism [137].

Other mechanical forces have been demonstrated to influence bacterial phenotype,
particularly shear flow. The production of extracellular polymeric substances has been shown
to increase biofilm cohesion under shear flow [138]. High-velocity conditions (tending to
and reaching turbulent flow) resulted in thinner biofilms with a greater total amount of
polysaccharides and proteins, in addition to decreased attachment compared to biofilms grown
under low-velocity conditions. External application of force via vibration to a surface has been
performed using low-energy surface acoustic waves (SAWs) to induce displacements [139]. SAWs
were shown to significantly reduce microbial biofilm formation of Candia albicans, E. coli, Proteus
mirabilis and Escherichia faecalis in Foley catheters. The actuators typically generated vibrations
that were in the 100 to 300 kHz range with amplitudes of 300 to 800 nm at source, resulting in
SAWs between the 0.2 and 2 nm displacement. Another study has shown that vibration produced
by an acoustic method (speaker with Petri dish attached to the speaker surface) enhanced biofilm
formation of P. aeruginosa and Staphylococcus aureus (S. aureus), using frequencies of 800 and 1600
Hz with displacements of roughly 100 nm [140]. Non-uniform displacement was evidenced by
the presence of standing waves in the media, clustering of latex beads and biofilm striation in
concentric rings out from the centre of the Petri dish, indicators of multiple force vectors.

It is apparent that mechanotransduction is vitally important for microbes to sense and respond
to their external environment. Our understanding of microbial mechanotransduction is relatively
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poor in comparison to that of mammalian cells, yet understanding these mechanisms will
provide insight and potential of modulating or controlling bacterial behaviour. Nanovibrational
stimulation, due to the precision and ability to produce uniform displacements, may prove
useful in bacterial mechanotransduction studies. Preliminary studies of the biofilm formation
capacity of a number of clinically relevant bacterial species have been performed using the
same apparatus used in the initial MSC nanokicking study [65]. Vibration with a frequency of
1 kHz and displacement of 30 nm was applied immediately upon inoculation of bacteria over
a period of 24 h. Significant reduction in the overall biofilm formation was observed with P.
aeruginosa PA14, P. aeruginosa UWS01, E. coli ATCC 35218, E. coli JM109 and S. aureus NCTC
8178 compared to the control (figure 8) using a total biomass crystal violet staining method.
This gives tentative first evidence that nanovibrational stimulation may find application in the
control of bacterial biofilm formation of both Gram-positive and Gram-negative bacterial species.
It is as yet unknown how bacteria respond at a molecular level to this nanoscale stimulation;
research is ongoing to evaluate this response. It may also be of interest to compare the molecular
mechanisms involved in bacterial response with those involved with eukaryotic cellular response,
to determine whether there is a conserved evolutionary mechanism in the response to mechanical
forces.

7. Conclusion
Nanovibrational stimulation of cell cultures can be applied using the novel bioreactor platform
described within this paper. This system has been developed through computer simulations
(FEA) and validated using laser interferometry, both exploited within the field of gravitational
wave astronomy. The bioreactor described in this work has significant advantages compared to
previous systems, particularly in relation to the compatibility with standard cultureware, and
in the supply of mineralizing osteoblasts in a 3D matrix. In addition, as the bioreactor does not
come into contact with the mineralizing matrix, adaption towards a good manufacturing practice
process is straightforward and regulatory approval for ancillary reagents is not required.

The role of mechanotransduction and how mechanical signals influence cell behaviour are
receiving increased attention by researchers and clinicians. The use of nanoscale vibration
(nanokicking) has been successfully exploited in promoting osteogenesis from mesenchymal stem
cells, both in 2D and 3D constructs. This paves a novel route to fabricate tissue-engineered bone
graft for regenerative medicine, for use in the repair of non-union bone fractures. As noted, other
cell types, including two clinically relevant forms of bacteria, have been reported to respond
to nanoscale vibration, suggesting that the scope of this technique is significantly broader than
simply controlling MSC differentiation.

The exploitation of this technique to date has arisen from multidisciplinary research between
gravitational wave physicists and biologists. This combination of expertise continues to explore
the wider biological potential of this technique in a research and clinical environment as well as
developing new technologies.
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