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Abstract

Modelling dependence probabilistically is crucial for many applications in risk assessment

and decision making under uncertainty. Neglecting dependence between multivariate uncertain-

ties can distort model output and prevent a proper understanding of the overall risk. Whenever

relevant data for quantifying and modelling dependence between uncertain variables is lacking,

expert judgement might be sought to assess a joint distribution. Key challenges for the use

of expert judgement for dependence modelling are over- and underspecification. An expert

can sometimes provide assessments which are not consistent with any probability distribution

(overspecification), and on the other hand, without making very restrictive parametric assump-

tions an expert cannot fully define a full probability distribution (underspecification). The

Sequential Refined Partitioning method addresses over- and underspecification whilst allowing

for flexibility about which part of a joint distribution is assessed and its level of detail. Potential

overspecification is avoided by ensuring low cognitive complexity for experts through eliciting

single conditioning sets and by offering feasible assessment ranges. The feasible range of any

(sequential) assessment can be derived by solving a linear programming problem. Underspec-

ification is addressed by modelling the density of directly and indirectly assessed distribution

parts as minimally informative given their constraints. Hence, our method allows for modelling

the whole distribution feasibly and in accordance with experts’ information. A non-parametric

way of assessing and modelling dependence flexibly in such detail has not been presented in the

expert judgement literature for probabilistic dependence models so far. We provide an example

of assessing terrorism risk in insurance underwriting.

Keywords: Structured Expert Judgement, Dependence Modelling, Minimum Information, Terror-

ism Risk, Uncertainty Modelling, Risk Analysis

1

Page 2 of 36Risk Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

1 INTRODUCTION

In many risk and decision analysis problems, we need to quantify uncertainties and their dependence1

as otherwise a model for risk assessment and decision making might not be fit for purpose. Indeed,2

quantifying dependence for probabilistic modelling is listed repeatedly among the most significant3

topics which decision and risk analysis research faces [1, 2]. Therefore, modelling joint distributions4

in various ways and for several problem types is an active research area (e.g. Durante and Sempi5

[3], Hanea et al. [4], McNeil et al. [5], Joe [6], Genest et al. [7], Kurowicka and Cooke [8], Embrechts6

et al. [9]). A common challenge is a lack of relevant data for quantifying dependence models. In such7

cases, this information should be assessed through expert judgements. A structured expert judge-8

ment (SEJ) elicitation is the most sensible solution to missing historical data whenever a simplifying9

assumption, such as independence, is not applicable. Werner et al. [10] and Werner et al. [11] discuss10

expert judgement methods for dependence in more detail. The former outlines how it is used for11

several dependence models and reviews commonly elicited forms together with their implication on12

experts’ cognitive burden. The latter presents the main steps of structured dependence elicitations13

and reviews the most prevalent cognitive fallacies for assessing dependence as their mitigation is a14

main aim of structured processes. Most applications discussed in these reviews are based on Cooke15

and Goossens [12, 13] which are among the first guides on SEJ procedures for dependence. Both16

guides are of further relevance for this paper as they consider in particular the elicitation of condi-17

tional exceedance probabilities, an elicited form we will address in more detail later. In this paper,18

we focus mainly on the process for quantitative elicitation, though we do discuss an approach to19

structuring experts’ knowledge prior to elicitation in the illustrative example of section 4.20

For us, dependence means that multiple uncertainties are present and obtaining information about21

one changes the uncertainty assessment of the other(s). More specifically, we consider the bivariate22

dependence between two random variables X and Y with joint distribution function FX,Y (x, y) and23

marginal distributions FX(x) and FY (y). The variables are independent if the assessment of Y does24

not change when given information about X. Dependence is simply the absence of independence. It25

is a property of experts’ knowledge (and beliefs) and its definition falls therefore into the subjective26

probability context as in line with De Finetti [14],Savage [15] and Ramsey [16].27

We address the problem that experts can only ever assess certain aspects of a joint distribution28

whereas a decision-maker might desire these assessments to be made at a detailed level. The former29

implies that we have a partially unknown distribution for which various alternatives fit the given30

information. This is known as model underspecification. More specifically, we are only ever given the31

probability mass (or density) within some distribution parts, either through their direct assessment32

or (in parts which are never assessed) through the indirect result of these parts together with re-33
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lated assessed parts having to comply with the marginals. However, we can model these probability34

masses in various forms which all have the right amount (i.e. are feasible). Of course, we might elicit35

additional information from experts to distinguish between distributions, yet we need to acknowl-36

edge the impossibility of ever eliciting enough information to single out a unique distribution. This37

is unless adopting a low-dimensional parametric model early on in the modelling process1. Such38

parametric assumptions nevertheless restrict the obtained knowledge on dependencies and we might39

miss potentially important model aspects, such as random variables’ behaviour in the extreme parts40

(tails) of a joint distribution. Hence, it is often desirable to avoid distributional assumptions which41

might exclude phenomena that the expert thinks are important.42

Within a non-parametric setting, an elicitation should capture detailed distribution features, e.g.43

the probability mass within narrowly defined parts of the distribution, such as the tails to determine44

tail dependence, as they result in a more specific distribution, thus making the model more valuable45

for a decision-maker. Nevertheless, while detailed assessments might be desired by decision-makers,46

they increase the experts’ cognitive burden, potentially resulting in inconsistent and infeasible as-47

sessments. This is termed overspecification, the second modelling challenge that we encounter2.48

As a non-parametric approach, addressing under- and overspecification, we present the sequential49

refined partitioning (SRP) method for assessments that can be made to any level of detail for any50

part of a joint distribution. In the SRP method, we address overspecification through an elicitation51

procedure which never increases the conditioning set to more than one condition and thus main-52

tains a low cognitive complexity. Further, the procedure ensures consistent and feasible assessments53

through explicit guidance on assessments’ feasibility ranges. Underspecifcation is dealt with by al-54

lowing the expert to specify as much detail as is desired and by then determining the density form55

of directly and indirectly assessed parts of the distribution through the unique copula distribution56

that is minimally informative with respect to the independent copula and that corresponds to the57

elicited information. This makes only the weak assumption that in the absence of any specific guid-58

ance from the expert we should make the copula as close as possible to the independent copula (in59

the sense of minimizing information). This ensures that the whole distribution is in agreement with60

the experts beliefs.61

We note that there may be other situations where a joint distribution is to be defined but data is62

incomplete. For example there may be few data, and/or there may be few or no data in the tails.63

In these cases, we can apply SRP as part of a hybrid method for dependence assessment, so that it64

can also be applied for copula model selection more generally, i.e. in the research area of empirical65

1Under low-dimensional parametric assumptions, it suffices to assess a chosen form’s main parameters. E.g.
eliciting the mean vector and the covariance matrix quantifies a multivariate Gaussian distribution sufficiently.

2Overspecification can also occur with parametric models, e.g. if assessed covariances jointly do not result in a
positive definite matrix.
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copula estimation.66

The minimum information approach offers a recognised approach to incomplete knowledge[17]. Fur-67

ther, it allows us to stop the elicitation process at any time and still derive a unique distribution68

(in contrast to common probabilistic dependence models for which a full conditional probability69

table is required, e.g. Bayesian (Belief) nets (BNs) [18]). In the context of dependence elicita-70

tion, minimum information methods (and related approaches) have been used before, for instance71

in probabilistic inversion (PI) methods [19, 20, 21, 22], vine-copula quantification [23, 24], or as72

well joint distributions more generally within decision analysis contexts [25, 26, 27, 28]. However,73

these previous methods do not consider flexible nor detailed (e.g. tail) dependence assessments and74

their impact on potential overspecification of experts’ judgements and on the minimum information75

solution to underspecification. For example, Bedford et al. [19] explicitly provide guidance on fea-76

sibility constraints. Yet, they consider dependence elicitation at a rather broad level, eliciting only77

a small number of assessments. This restricts the information to be obtained already early on in78

the modelling process and thus neglects focusing on specific parts of a distribution more exclusively.79

The SRP method’s contribution is therefore that we provide an elicitation procedure to assess any80

part of a distribution to any desired level of detail while maintaining low cognitive complexity and81

avoiding infeasible expert judgements. As such, it also contributes to expert judgement methods82

for dependence in which increasing conditioning sets pose a concern (see Werner et al. [10] for a83

discussion). Similarly, the SRP method’s approach to underspecification is more detailed than in84

previous research.85

These contributions emphasise the applicability of our method in higher dimensions more gener-86

ally. While in this paper we focus on assessing bivariate dependence, it should be noted that any87

d -dimensional copula density can be built through d(d − 1)/2 so-called pair (bivariate) copulas88

through a vine structure [24]. This method of modelling dependence, in conjunction with appropri-89

ate simplifying assumptions, can avoid the curse of dimensionality (see Nagler and Czado [29] for90

using this approach in the context of kernel estimation). In that way, our method can be extended91

to higher dimensions of dependence and be used more generally in the area of multivariate density92

estimation. As such, the SRP method can contribute to more traditional methods of copula esti-93

mation for tail dependence assessment through experts when data on extremes are rare.94

Figure 1 illustrates the method’s modelling context schematically.95

In the upper part, we observe that incomplete knowledge leads inevitably to an underspecified96

model. This is solved by a minimum information approach. In order to derive a model that is97

valuable for a decision-maker, the modelling process deviates along the dashed lines to the lower part.98

Here, the constraints of the minimum information problem determined by the experts’ judgements99
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underspecified model
unique, feasible model

with desired

level of detail

incomplete

information

assessed constraints
by expert judgement

potentially

overspecified model

desired level
of assessment detail

(by DM)

sequential

refined
partitioning

minimum information

optimisation

quantile-

based

modelling

challenges

Figure 1: Modelling context of the SRP method.

are assessed as detailed as desired. As these might be overspecified, we the use an elicitation process100

that leads to feasible assessments. In the remainder of this paper, this is presented in section 2,101

introducing the elicitation procedure, and section 3, outlining the optimisation problem. Section102

4 shows how our method has been used in an insurance underwriting risk assessment of political103

violence/terrorism in which a detailed and flexible method is of particular interest for stress-testing104

a model. Finally, section 5 concludes the paper.105

2 ELICITING DETAILED DEPENDENCE INFORMATION

FEASIBLY AND CONSISTENTLY THROUGH SEQUEN-

TIAL REFINED PARTITIONING

In this section, we introduce our sequential elicitation procedure which addresses the potential issue106

of overspecification by providing explicit guidance on making feasible and consistent assessments.107

In the expert judgement literature, several approaches to ensuring feasibility and consistency are108

proposed, each with different implications on the robustness of the final assessment result. As such,109

some methods (always) allow for an assessment within the elicited forms’ standard ranges (for corre-110

lation coefficients ∈ [−1, 1] and for conditional and joint probabilities ∈ [0, 1]). However, this might111

jeopardise experts’ commitment and confidence in the elicitation method if assessments are adjusted112

afterwards (for ensuring feasibility). While other methods do not modify assessments, they might113

increase experts’ cognitive complexity. For instance, by limiting assessment ranges (away from the114

aforementioned standard ones), or by imposing unrealistic assumptions onto experts’ understanding115

of elicited forms, e.g. when eliciting conditional judgements with large conditioning sets. For the116
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latter, we might expect an expert to include and equally consider all the information given by a117

large conditioning set so that common cognitive fallacies, such as the conjunction fallacy and its118

conditional version (see Werner et al. [11] for an overview on heuristic and biases in dependence119

assessment), should be (ideally) avoided and hence feasibility is given. Yet, this might not be guar-120

anteed.121

In our method, we do not impose such unrealistic assumptions on experts’ cognitive capabilities, nor122

do we modify assessments after they have been given. Rather, we only ever elicit single conditioning123

sets and give guidance on possible feasible assessment ranges. This includes not only providing the124

corresponding upper and lower bounds but also explaining their interpretation.125

Mathematically, the feasibility range for any sequential assessment procedure is derived by solving126

a linear programming (LP) problem (see Vanderbei [30] for an introduction to LP). The number127

of constraints is restricted to a maximum of nine, irrespective of the number of elicitations. In the128

remainder of this section, we first present the general set-up together with the relevant proofs before129

we outline some specific elicitation sequences, which we regard as of interest for several practical130

applications.131

2.1 General set-up of sequentially refined partitioning132

We shall start by introducing some definitions. The unit square is here defined as the product of133

(0, 1]× (0, 1]. Given values u0 = 0 < u1 < · · · < un < 1 = un+1, and v0 = 0 < v1 < · · · < vm < 1 =134

vm+1, we define the associated quantile partition of the unit square as the set of rectangles of the135

form (ui, ui+1]× (vi, vi+1]. We call this set of rectangles QP (u, v).136

Given (p, q) with p different to the ui and q different to the vj , the (p, q)-refinement of QP (u, v),137

denoted QP (u, v; p, q), is the quantile partition obtained by including p and q in the values for u138

and v respectively. All rectangles in the old partition are either in the new partition or are a union139

of two or four rectangles of the old partition. Figure 2 shows two partitioned example distributions140

which result from any number of previously elicited quantiles (solid lines) in addition to new ones141

(dashed lines).142

A probability distribution on a quantile partition QP (u, v) simply assigns a probability value143

to each rectangle of the quantile partition. A (p, q)-refinement of such a probability distribution is144

a probability distribution on QP (u, v; p, q) such that the probability of a rectangle in QP (u, v) is145

either the same as it is in the (p, q)-refinement of QP (u, v), or it equals the sum of the probabilities146

of the rectangles that make it up.147

A merging of a quantile partition QP (u; v) is obtained by merging together some of the partition148

rectangles in such a way that we still have a quantile partition. This can also be obtained by taking149
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vj+1 = 1

vj

q

ui+1 = 1ui p

vj+1

vj

q

ui+1ui p

Figure 2: Partition exampleQP (ũ, ṽ; p, q) with solid lines for previously elicited quantiles and dashed
lines for new ones.

a subsequence of the u’s and v’s and building the corresponding quantile partition. A merged prob-150

ability distribution on the refined quantile partition is obtained by adding together the probabilities151

of the rectangles in each refined rectangle.152

We always work with discrete copula distributions, which are probability distributions on a quantile153

partition that have the additional property that (for any k) the sum of probabilities of rectangles154

(ui, ui+1] × (vi, vi+1] with ui+1 ≤ uk is equal to uk, and similarly, the sum of all probabilities of155

rectangles (ui, ui+1]× (vi, vi+1] with vi+1 ≤ vk is equal to vk. For a general introduction to copula156

theory, see Nelsen [31],Joe [6] and Durante and Sempi [3]. However, note that most theory is on157

continuous copulas with marginals being continuous uniform distributions. For an overview on elic-158

itation methods for copulas, see Werner et al. [10].159

160

Proposition 1. Suppose we are given values u0 = 0 < u1 < · · · < un < 1 = un+1, and v0 =161

0 < v1 < · · · < vm < 1 = vm+1 (where n,m > 0), 0 < p, q < 1, with p different to the ui and q162

different to the vj. Then a copula distribution on QP (u, v) can be refined to a copula distribution163

on QP (u, v; p, q).164

The proof of proposition 1 is found in the Appendix.165

Having shown that we can always refine a copula distribution as above, we now wish to establish166

the possible range of values that can be taken by the rectangle (p, 1]× (q, 1] in a refined copula dis-167

tribution. That is, we depart from the specific copula refinement defined in the Proof of Proposition168

1, and ask what range of values can be allocated as the probability of (p, 1]× (q, 1] in some copula169

refinement.170

Suppose that i and j are chosen such that ui is the largest of the u-quantiles that is smaller than p,171

and vj is the largest of the v-quantiles that is smaller than q (this includes the possibility that ui or172

vj is 0, or that ui+1 or vj+1 is 1). Define ũ1 = ui, ũ2 = ui+1, ṽ1 = vj and ṽ2 = vj+1. The quantile173
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vj+1

vj

ui+1ui

R̃13

R̃12

R̃11

R̃23

R̃22

R̃21

R̃33

R̃32

R̃31

vj+1

vj

q

ui+1ui p

R14

R13

R12

R11

R24

R23

R22

R21

R34

R33

R32

R31

R44

R43

R42

R41

Figure 3: Maximum case of 16 partitions (right) resulting from partitioning 9 rectangles (left).

partition QP (ũ, ṽ) is a merging of QP (u, v), and we can merge the copula distribution on QP (u, v)174

to get one on QP (ũ, ṽ).175

Furthermore QP (ũ, ṽ; p, q) is a merging of QP (u, v; p, q). Note that QP (ũ, ṽ) has at most 9 rectan-176

gles and that QP (ũ, ṽ; p, q) has at most 16 rectangles - see Figure 3.177

For convenience we shall now consider only the case of 16 rectangles, which occurs when ui, vj 6= 0178

and ui+1, vj+1 6= 1, as shown on the right of Figure 3. Other cases are simplifications of the one we179

consider here and can be dealt with in the same way.180

We label the 16 rectangles of QP (ũ, ṽ; p, q) as R11, . . . , R44 as shown in the right hand of Figure 3.181

The 9 rectangles of QP (ũ, ṽ) are labelled as R̃11, . . . , R̃3,3 as shown in the left hand of Figure 3.

Clearly R11, . . . , R4,4 are each unions of rectangles in QP (u, v), and furthermore,

R12 ∪R13 = R̃12

R42 ∪R43 = R̃32

R21 ∪R31 = R̃21

R24 ∪R34 = R̃23

R22 ∪R23 ∪R33 ∪R32 = R̃22.

Suppose we are given a copula distribution on QP (ũ, ṽ), for which p̃st is the probability of R̃st182

(s, t = 1, 2, 3). We wish to assign copula probabilities pst to the rectangles Rst (s, t = 1, 2, 3, 4) so183

that the new distribution merges to p on QP (ũ, ṽ).184

For the merging we simply require,185

• for the corner rectangles of QP (ũ, ṽ): p11 = p̃11, p14 = p̃13, p41 = p̃31, p44 = p̃33,186

8
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• for the central rectangle in QP (ũ, ṽ): p22 + p32 + p23 + p33 = p̃22,187

• for the remaining rectangles

p12 + p13 = p̃12

p42 + p43 = p̃32

p21 + p31 = p̃21

p24 + p34 = p̃23.

To ensure that the new distribution is a copula we also need to impose two constraints corresponding

to a row and a column:

p21 + p22 + p23 + p24 = p− ũ1

p12 + p22 + p32 + p42 = q − ṽ1.

(Note that these constraints correspond to row 2 and column 2 of the right hand of Figure 3. We

could also have specified similar constraints on row 3 and column 3, but it straightforward to see

that these are redundant).

Now define,

f(p11, ..., p44) = p33 + p43 + p34 + p44

to be the total probability in the square (p, 1]× (q, 1]. This in a linear function of the pst and we are188

free to choose it to take any value subject to the constraints listed above. As all these are linear,189

we immediately see that we have the form of a linear programming problem, and so the range of190

allowable values is an interval whose maximum and minimum values can be found be solving 2 LP191

problems. The cases in which QP (ũ, ṽ; p, q) has fewer than 16 rectangles work similarly. The above192

discussion (with minor adaptations to the other cases by removing further redundant constraints)193

can be summarized in the following Proposition:194

Proposition 2. The range of feasible values for the probability of (p, 1] × (q, 1] in any copula

refinement of the copula distribution on QP (ũ, ṽ) is given by the interval:

[min f,max f ] ,

given the corresponding constraint sets.195

We can obtain min f and max f by solving feasible LP problems with at most 12 variables and 9196

constraints.197
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This now allows us to construct an algorithm for assessing copulas with expert judgements for

quantile exceedance probabilities of the form:

P (Y > yq|X > xp)

where xp and yq index the pth and qth quantile for X and Y accordingly. For example, p = 0.5198

and q = 0.5 correspond to the medians of X and Y . Other distribution areas can then be derived.199

Given a number of such coherent elicitations at quantile pairs (u1, v1), . . . , (un, vn) we can calculate200

the copula distribution on the copula partition QP (u, v).201

For a new quantile pair (p, q), we then solve the LP problem to obtain the exact feasible range for202

the probability of (p, 1]× (q, 1]. Note that this does not fully specify the distribution on all elements203

of the refined partition QP (u, v; p, q). To achieve this, either204

(a) we can carry out further elicitations at corner points in QP (u, v; p, q) using proposition 2205

repeatedly for obtaining feasible ranges from the expert; or206

(b) we can make assumptions, such as minimally informative probabilities to restrict the number207

of elicitations required.208

In the next section, we give a simple example of making assessments in the tail of the distribution209

along the lines of (a) but carried out in a slightly different order as there are few constraints in this210

case.211

2.2 Commonly assessed quantile partition sequences212

After having presented the mathematical set-up of refined partitioning generally, we now discuss213

some partitions that might be commonly assessed in practice.214

One recurrent way of refining a joint distribution’s assessments is by sequentially choosing a quantile215

for p and/or q that is always either higher or lower than any previously assessed value. Then, we216

elicit the corresponding area above a previously elicited quantile for a new maximum or below it for217

a new minimum. Such sequences assess in particular the distribution tails more explicitly.218

Alternatively, it is (also) possible in our method to elicit probabilities of specific values, e.g. for219

1, 10, . . . , 100 (units of elicited variable) rather than common quantiles, such as the median, if this220

can increase intuitiveness in particular for more extreme parts in the distribution tails. This relates221

to the choice of whether to frame the elicitation question in terms of quantiles or values. Both have222

been suggested (as P- and V-methods) since the pioneering probability elicitations by the Stanford223

Research Institute in the 1970s [32]. While a more recent discussion on this choice is given in [33],224

we consider in the following the elicitation of quantiles.225
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Y

yq

xp

(i)

X

Y

xp

yq

(ii)

X

Y

yq

xp

(iii)

X

Y

yq

xp

(iv)

Figure 4: Example of a quantile partition for assessing the upper tail.

Figure 4 illustrates a sequence of quantile partitions on the upper tail constructed through setting226

new quantile maxima in (ii) to (iv) following an initial assessment (i) (note that this carries out the227

option (a) described in the previous section). We consider the procedure of Figure 4, i.e. further228

partitioning that probability mass which has been assessed directly in step (i) as most intuitive and229

practically useful. Nevertheless, the initial assessment also determines the probability mass in areas230

of the joint distribution which are not assessed further, P (Y > yq|X ≤ xp), P (Y ≤ yq|X > xp) and231

P (Y ≤ yq|X ≤ xp), meaning we can also use a similar procedure to refine these.232

First (in (i)), we elicit an overall probability mass and then subsequently refine the assessment.233

Suppose we first elicit P (Y > y0.5|X > x0.5).234

Following (i), we elicit a refined quantile partition as determined by a new xp in (ii). A common235

choice here might be the 90th or 95th quantile in order to assess the probability mass in the joint236
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p̃12 p̃22

p̃21p̃11

q

vj+1 = 1

vj = 0

p ui+1 = 1ui = 0

p̃12 p̃22

p̃21p̃11

p13 p23 p33

p32p22p12

p31p21

q

vj

vj+1 = 1

pui ui+1 = 1

Figure 5: Quantile partition of the joint distribution from (i) to (iv).

distribution’s extreme (tail) region. Thus, we elicit for instance P (Y > y0.5|X > x0.95). In the237

illustrative case-study of Section 4, we use a scenario mapping method [34] prior to the elicitations238

in order to gauge experts’ familiarity with such tail judgements and decide on a quantile for which239

experts are comfortable to make assessments.240

In (iii), we condition on Y and the new yq is chosen to assess the tail region. With xp being241

the median, we thus elicit P (X > x0.5|Y > y0.95). Depending on the underlying meaning of the242

variables and knowledge about causal or probabilistic relationships (see e.g. Rottman and Hastie243

[35], Werner et al. [11]), the expert might find it easier to condition on one variable rather than the244

other. Our method is flexible enough to allow for this.245

In the last step of this quantile partition sequence, experts assess either P (Y > y0.95|X > x0.95) or246

P (X > x0.95|Y > y0.95), depending on case-specific interest, whereas p and q are the ones from the247

previous two rounds. Thus we further explore the joint tail region. Figure 5 displays the refinement248

in the quantile partition from the first to the latest assessment.249

The assessments’ feasibility ranges are as follows. The assessment in (i) is unrestricted, meaning

experts can assess any value between [0, 1]. If the expert believes the variables are independent, the

assessment is equal to P (Y > yq), that is learning about X does not change experts’ belief. For

negative dependence, the assessment is between [0, P (Y > yq)) and for positive dependence, it is

within (P (Y > yq), 1].

All following assessments on the other hand are restricted and only feasible if the assessed value falls

within the range which is determined by solving the LP problem of minimising and maximising the

possible values of the assessed area subject to the constraints that any new partition simply adds

up to their previous assessments (see medium and dark grey areas P̃k in Figure 2) while areas which
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have not been newly partitioned do not change (see light grey areas P̃k in Figure 2). Consider for

example the assessment in (iv). It is only feasible within the range that is determined by solving

the following LP problem (with regards to Figure 4 on the right):

min

max











p33 (2.1.1)

subject to250

p13 + p12 = p̃12 (2.1.2)

p23 + p22 + p33 + p32 = p̃22 (2.1.3)

p11 = p̃11 (2.1.4)

and251

p21 + p31 = p̃21 (2.1.5)

Experts express negative dependence again through a judgement close or equal to the lower252

bound, positive dependence is expressed by judgements close or equal to the upper bound and inde-253

pendence is assessed as before. As the upper and/or lower bounds deviate from the standard range254

of [0, 1], it is necessary to communicate these restricted feasibility bounds to an expert and explain255

their interpretation.256

The procedure for assessments (ii) to (iv) is repeated as often as necessary (with appropriate mod-257

ifications) to obtain a desired level of detail (see assessments (v) to (vii) in Figure 6 for the next258

round of three assessments). Having assessed previously the 90th or the 95th quantile of X and Y ,259

we now might consider the 99th quantile. This allows for ”zooming in” on the joint distribution’s260

tail even further.261

The resulting quantile partitions are illustrated in Figure 7.262

While this section presents an example with a focus on refining the upper distribution tail,263

remember that the generality of the method (as introduced in Section 2.1) allows for any further264

refinement of the distribution, such as for instance shown in Figure 2 (on the right).265
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X
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(v)
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X

Y

yq
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Figure 6: Further refining the assessment on the joint upper distribution tail.

P̃11 P̃21 P̃22
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Figure 7: Resulting quantile partitions after further refining the previous assessments.
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3 MODELLING THE FORM OF DIRECTLY AND INDI-

RECTLY ASSESSED PROBABILITY MASSES THROUGH

MINIMUM INFORMATION

After having presented the elicitation procedure, which allows for feasibly assessing the probability266

mass within any part of the joint distribution, in this section we outline how we model the form of267

directly and indirectly assessed parts as minimally informative.268

The reason for a minimum information approach is to address the modelling issue of underspec-269

ification. We do not have enough information for choosing a distribution that fits the experts’270

assessments uniquely but we wish to find the simplest distribution that matches them. This ap-271

proach allows us to derive a unique distribution regardless the quantile partition’s level of detail.272

As such, it does not restrict the flexibility of the assessment procedure from section 2.273

Formally, we aim for modelling dependence through that copula which is chosen to have minimum274

information (also called Kullback-Leibler divergence [36]) with respect to the uniform copula given275

the quantile constraints. The resulting distribution is considered the most independent copula sat-276

isfying the constraints.277

Consider the joint distribution g(x, y) with marginal densities g1(x) and g2(y). Whenever g1 and278

g2 are not independent, i.e. g(x, y) 6= g1(x)g2(y), we need to model the dependence between them.279

To do so, we introduce the concept of relative information I(g;h) which is a measure of similarity280

between the two distributions and it is defined for g(x) with respect to h(x) as:281

I(g;h) =

∫

g(x) log

(

g(x)

h(x)

)

dx

Whenever g(x) = h(x), it follows that I(g;h) = 0. A higher value of I(g1; g2) corresponds to less282

similarity. We consider h(x) a background distribution, commonly chosen as uniform or log-uniform.283

Alternatively, we use sensitivity analysis for selecting an appropriate form [19]. Together with the284

constraints, this choice determines the form of g(x) in absence of further information [23].285

Information is invariant under monotone transformations. Therefore, if cg and ch are copula den-286

sities associated with the previous densities g and h, we have I(cg; ch) = I(g;h). In particular if h287

is the joint independent distribution with the same marginals as g (g1 and g2), so that h = g1g2288

then I(g; g1g2) = I(c;uniform) where h is the uniform copula. This gives the interpretation of our289

minimum information copula as the most independent copula given the constraints.290

See Bedford and Wilson [37] for a detailed derivation on how a minimum information distribution291
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can be approximated by the equivalent distribution of maximum entropy3 [39].292

For an extensive discussion on obtaining a minimum information copula through the convex optimi-293

sation problem, we refer to [23, 37, 19]. Here, it suffices to say that the conditional density within294

each rectangle is uniform. As discussed in Section 2, when we stop eliciting information from ex-295

perts, some rectangles’ density has been directly assessed by an expert while for other rectangles the296

mass is given indirectly through related assessment and the marginals. In order to obtain a unique297

solution for the whole distribution, we hence need to solve the minimisation problem of equation298

for directly and indirectly assessed parts.299

We refer to Bedford and Wilson [37] and Meeuwissen and Bedford [21] for the corresponding proofs300

that such a minimum information distribution exists and is unique. Furthermore, Bedford et al. [19]301

and Bickel and Smith [28] discuss and apply a Lagrangian dual for a minimum information problem302

to show a way for obtaining more insight on the optimal solution.303

4 AN ILLUSTRATIVE CASE-STUDY: ASSESSING SPA-

TIAL DEPENDENCE OF POLITICAL VIOLENCE/ TER-

RORISM RISK IN INSURANCE UNDERWRITING

Given the flexibility and detail that the SRP method allows for when modelling dependence, we304

regard it as of particular interest for application areas in which common simplifying assumptions,305

such as bivariate normality, are not justified. Rather, different kinds of tail dependencies which306

potentially induce extreme impact scenarios are prevalent. For these, we often assess and model307

upper and lower tail dependence exclusively (similarly to testing the goodness of fit for asymmetric,308

Archimedean copulas to historical data when available) given that e.g. joint large losses are typically309

not observed together with joint large gains[40, 41].310

As such, we consider (re-)insurance as an industry in which rigorous dependence modelling ap-311

proaches are of particular interest. Due to the increasing complexity of (re-)insurance products,312

new (holistic) modelling approaches, such as dynamic financial analysis (DFA) (a Monte Carlo313

simulation-based method to model risks jointly), have become popular among actuaries to better314

understand the risks an insurer underwrites [9]. For these new approaches, flexible and detailed315

assessments of dependencies under a specific probability model are required. Exemplary for a DFA316

application, Eling and Toplek [42] present how various parametric copulas can be used for stress-317

testing an insurer’s risk management strategies together with the implication on stakeholders, such318

3In the context of expert judgement, an invariance approach to encoding information probabilistically is considered
a main justification for maximum entropy methods North [38].
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as regulators and rating agencies. The DFA model inputs, the perils (or risks) covered by an in-319

surer, are informed by a catastrophe model. The components of catastrophe models are a hazard,320

inventory, vulnerability and loss estimation module. The loss estimation output is usually an ex-321

ceedance probability curve specifying probabilistically the severity levels of a certain hazard in a322

region. Capturing relevant dependencies between severity levels is crucial for a more robust output.323

See Grossi and Kunreuther [43] for an introduction to catastrophe models.324

We have already established that a common challenge is lacking relevant historical data for quantify-325

ing dependence relationships serving as model input. In actuarial risk assessment, non-life insurance326

underwriting is particularly challenged. So called low frequency-high severity perils, natural and327

man-made, are by definition not frequently observed but cannot be ignored. Therefore, we require328

structured expert judgement to model their uncertainty. In this illustrative case-study, we apply329

the SRP method to elicit and model the spatial dependence of the man-made peril of terrorism.330

Terrorism attacks are not only often low frequency-high severity catastrophes but pose an additional331

challenge due to intelligent adversaries which further inhibit the use of historical data. Better un-332

derstanding the dependence between terrorism attacks’ frequencies in different regions globally is333

nevertheless key for an insurer to quantify and price this peril’s risk when managing a portfolio of334

(global) clients4.335

4.1 Pricing terrorism risk in insurance336

Traditionally, pricing of terrorism risk in insurance has not been evaluated from actuarial principles,337

but rather covered by the balance of supply and demand in the insurance market together with some338

less formal risk selection from site surveys [44]. Terrorism coverage (e.g. in the United States) had339

been included in standard commercial insurance policies as an unnamed peril on all-risk commercial340

and home owners coverages for property and contents [45]. More recent loss developments though341

have highlighted the necessity of treating its risk assessment more rigorously. A major turning342

point for dealing with terrorism risk in insurance was the attacks of September 11th, 2001 (9/11)343

on the United States. The attacks incurred an estimated monetary loss up to 60 billion US dol-344

lars, distributed among various lines of business, such as property insurance, business interruption345

insurance and workers’ compensation [46]. Globally, the worst 15 terrorist attacks in terms of casu-346

alty numbers have occurred since 1982 with many more near-miss events [45]. Mathematically, the347

relationship between the frequency of more recent attacks and their severity can be described by a348

power law, i.e. attack severities that are orders of magnitude larger than the mean can be common349

4As Woo [44] emphasises, we must not confuse quantifying terrorism risk with predicting a next attack. This is
similar to natural catastrophes, such as earthquakes, for which we cannot determine the time, location and severity
of the next event, but the aim is rather to evaluate the annual exceedance probability of loss, for instance to inform
a property insurance portfolio.
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[47]. The changing nature of its risk through an increasing number of frequencies and severities in350

multiple regions globally underlines the urgent need for improved assessment.351

4.2 Expert judgement for adversarial risk352

A specific aspect of assessing terrorism risk is the role of intelligent adversaries. Their impact is thus353

included in recent discussions on risk definitions [48, 49, 50, 51]. In fact, 9/11 led many researchers354

to propose modified risk definitions [52]. For instance, the triplet definition by Kaplan and Garrick355

[53] is extended to include adversaries in Garrick et al. [54] and Garrick [55] by considering the356

likelihood of a hazard as the conditional probability of a successful attack given that an attack is357

planned.358

Models addressing adversarial risk are typically of game-theoretic nature [56, 57, 58] whereas the359

area of adversarial risk analysis comprises decision-analytic approaches combining traditional prob-360

abilistic risk analysis (PRA) methods with game theory [59, 60, 61, 62]. Nevertheless, there is some361

debate on (traditional) PRA’s effectiveness for adversarial problems (see Ezell et al. [56] defending362

its usefulness and Brown and Cox Jr [63] and Cox Jr [64] arguing against it). A main argument363

against PRA approaches for adversaries is the dynamic attacker’s decision rule for choosing a target364

as this choice might be based on the anticipated defender’s assessment of targets’ likelihoods. In365

other words, a defender’s PRA might inform the attacker’s choice and hence override its purpose366

as the previously most likely target has now zero probability of being attacked (closely related in367

terrorism risk analysis are decision on allocating defensive resources Bier [65]). Experts quantifying368

adversarial risk should therefore decompose their judgement in accordance with adversarial risk defi-369

nitions, so that we understand experts’ beliefs about attackers’ choices. When doing so, assessments370

of an attack choice might be based on attackers’ motivations, resources and capabilities together371

with defenders’ vulnerabilities. In that way, expert judgement is used in the Probabilistic Terrorism372

Model by Risk Management Solutions Inc. (RMS5) for assessing likelihoods on target selection, ca-373

pabilities of attack modes and an attack’s overall likelihood. However, dependence between targets374

is neglected [66]. In other approaches, event trees are used to reason from an attacker’s capabili-375

ties through a defender’s countermeasures [67, 68]. In addition, several qualitative approaches for376

structuring the available knowledge on terrorists’ objectives and motivations exist in the risk and377

decision analysis literature [69, 70, 54].378

5RMS, founded at Stanford University in 1989, provides services in the area of catastrophe modelling for (re-
)insurers.
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4.3 Expert judgement for spatial dependence of terrorism attacks379

Knowledge and beliefs on terrorists’ motivations, resources and capabilities together with defender’s380

vulnerabilities inform experts directly about the spatial dependence between attack frequencies.381

Terrorist groups, such as the Irish Republican Army (IRA), Basque Separatist Group (ETA) or as382

well Hamas and the Palestine Liberation Organization (PLO), had and have specific geographical383

foci with a politically motivated attack purpose. Their goals are formulated and self-proclaimed as384

separatism or liberation. The attacks’ geographical impact is identified straightforwardly. Based385

on the number of active terrorist groups per region plus their resources and capabilities relative to386

counter-measures, an expert assesses either positive or negative dependence. While positive depen-387

dence might not seem intuitive at first due to different local foci and typically a lack of collaboration388

between these groups, learning and encouragement by another groups’ successes can still occur.389

Woo [71] regards learning of optimal behaviours beyond the own organisation as a main strength of390

some well-known terrorist groups. Other scenarios for positive dependence can be due to defenders’391

collaboration, joint counter-terrorism activities and sharing of intelligence resources.392

In contrast to terrorists motivated by self-proclaimed liberatism and separatism, other groups de-393

rive their goals from religious ideology. These groups are often globally active. Their members are394

organised as multiple independent hubs with satellite cells. Al-Qaeda and the Islamic State of Iraq395

and Syria/the Levant (ISIS/ISIL) are typical examples of such network-based organisations [44, 72].396

Models from swarm intelligence and statistical network analyses are used to evaluate the effective-397

ness of counter-terrorism measures and understand the attackers’ capabilities. It is understood that398

organisations like Al-Qaeda and ISIS/ISIL are more resilient and capable of more severe attacks399

than (hierarchical) army-like structured groups [71]. For dependence assessments, understanding400

the global presence of members and sympathisers (potentially future recruits) together with the401

functioning of the network structure is crucial. For instance, scenarios of positive dependence can402

occur when a terrorist group obtains more power and resources to extend globally or when new403

attack types are used for which little intelligence or counter-measures exists. Scenarios of negative404

dependence might describe attackers’ scarce resources, e.g. lacking financial support for regional405

hubs, so the target focus shifts towards a certain region. The latter also depends on vulnerabilities406

of target countries, desired attention through media or as well a planned revenge, e.g. for a country’s407

military actions.408

While these are only brief considerations for scenarios that can influence the assessment of depen-409

dence between the number of terrorist attacks in different regions (see Woo [71] for a more extensive410

discussion on regional and global terrorism), it shows the complexity of factors to be thought of. In411

this illustrative case-study, we focus on the geographical regions of Central Asia (CA) and Western412
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Figure 8: Regions of interest for dependence assessment.

Europe (WE) which are shown in Figure 8 (see the Appendix for a full list of the countries included413

per region).414

4.4 Eliciting the marginal probabilities415

Before eliciting dependence assessments from experts, we need to specify the marginal distributions416

for the variables of interest. Otherwise, the experts condition their judgements on different marginal417

probabilities and their assessments cannot be sensibly aggregated. The specification is done either418

through historical data (if available) or another, prior elicitation with a structured expert judgement419

method for univariate uncertainty, such as Quigley et al. [73], Gosling [74], Hanea et al. [75]. A420

structured elicitation for the marginal distributions is also encouraged when eliciting dependence421

only from one expert, i.e. without aggregation, as this mitigates potential biases of the marginals422

and ensures transparency[11].423

In our case-study, the marginal distributions have been assessed by 16 experts6. The experts are424

involved in analysing and pricing the peril of terrorism and other armed conflict categories. They425

work for different (re-)insurers, catastrophe modellers and related service providers. The elicitation426

session was organised as part of the European Cooperation in Science and Technology, COST Action427

IS1304 - Expert Judgement Network, which aims at stimulating the emergence and spread of high428

quality evidence-based decision support approaches through structured expert judgement methods.429

The marginal distributions FX(x) and FY (y) are defined as the number of terrorist attacks in Central430

Asia (x) and in Western Europe (y), both in 2017. We define a terrorist attack in accordance with431

common global data-bases on the topic (see START [76]). Thus, for an attack to be recorded as432

6The 16 experts are from a first elicitation round from a currently ongoing study that aims to include more experts.

20

Page 21 of 36 Risk Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

such there must be evidence of an intention to coerce, intimidate, or convey some other message to433

a larger audience (or audiences) than the immediate victims. In this regard, any perpetrator group,434

any weapon type (e.g. biological, chemical, explosive, firearms etc.), any attack type (e.g. armed435

assault, bombing, facility/infrastructure attack, hostage taking etc.), any target apart from private436

persons (i.e. business, infrastructure, military, educational/religious institutions etc.) is included.437

We elicited FX(x) and FY (y) through the so called Classical Model [73, 77]. Experts provide438

various quantile assessments for a continuous quantity rather than point estimates. Usually (and439

in our case), we elicit the 5th, 50th and 95th quantile. The experts answer two types of questions.440

The first questions are about so called seed or calibration variables. For these, the true value is441

known to the analyst but not the experts at the time of the elicitation (or they will be known later442

and within the time frame of the study). The second question type is about the actual target value443

or variable of interest, i.e. the uncertainties we intend to include in the model. Based on each444

expert’s assessments of the seed variables, the experts are aggregated. For that, two performance445

measures are derived, the calibration and information score. Loosely, the calibration score measures446

the statistical accuracy of the experts whose assessments are treated as statistical hypotheses. The447

information score measures the assessments’ concentrations relative to a background distribution.448

Good expertise is shown by a high calibration and information score (see Cooke [77] for a more449

detailed introduction). Figure 9 shows each experts’ individual assessment for the target variables’450

marginal distributions together with the aggregated assessments of equal weighting (EW) and the451

classical method (DM global).452

We observe in Figure 9 that the marginal distribution assessments are similar for both regions453

whereas most of the experts provide narrow uncertainty bounds. The experts who are more uncertain454

are so for both assessments. Hence, the performance-based and the equally weighted combination455

show no major difference for either region. As commonly observed with the classical method, the456

performance-based aggregation is more informative even if both combinations lead to similar median457

assessments. The full documentation, the elicitation protocol together with results and raw data for458

the above elicitation can be found in Werner [78].459

4.5 Applying the SRP method for quantifying spatial dependence of ter-460

rorism risk461

Once the marginal distributions had been elicited, we proceeded with eliciting and modelling depen-462

dence through the SRP method. This elicitation was done with a single expert who is a professional463

in the area of terrorism catastrophe modelling within (re-)insurance (as well) and who subscribed to464

the aggregated results for the marginal distributions. In total, we elicited six dependence judgements465
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Figure 9: Outcome of eliciting the marginal distribution for each region.
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Table I: Overview of dependence elicitation procedure and results.

Framing ”Given that we observe [. . . ]” Conditional Probability Assessment

(i)
”[. . . ] more than 73 terrorist attacks in CA, what is your prob-
ability that we observe more than 62 terrorist attacks in WE?” P (Y > y0.5|X > x0.5) 0.5

(ii)
”[. . . ] more than 199 terrorist attacks in CA, what is your prob-
ability that we observe more than 62 terrorist attacks in WE?” P (Y > y0.5|X > x0.95) 0.03

(iii)
”[. . . ] more than 197 terrorist attacks in WE, what is your prob-
ability that we observe more than 73 terrorist attacks in CA?” P (X > x0.5|Y > y0.95) 0.045

(iv)
”[. . . ] more than 199 terrorist attacks in CA, what is your prob-
ability that we observe more than 197 terrorist attacks in WE?” P (Y > y0.95|X > x0.95) 0.025

(v)
”[. . . ] more than 199 terrorist attacks in CA, what is your prob-
ability that we observe more than 225 terrorist attacks in WE?” P (Y > y0.99|X > x0.95) 0.04

(vi)
”[. . . ] more than 225 terrorist attacks in WE, what is your prob-
ability that we observe more than 199 terrorist attacks in CA?” P (X > x0.95|Y > y0.99) 0.01

Figure 10: The experts joint distribution: overall (left) and assessed upper quadrant (right).

in addition to one further marginal assessment. The latter was required as we had not considered466

the 99th quantiles previously. As outlined in the initial exemplary procedure of section 2.2, we467

started by first eliciting an overall probability mass which was later partitioned to further explore468

the joint upper distribution tail. The first elicitation is therefore on the probability of the terrorist469

attack frequency in Western Europe (y) being above its 50th quantile, 62 attacks, given that we470

observe more than 73 attacks in Central Asia (x) (again the corresponding 50th quantile), both471

in the year 2017. All judgements were conditional probabilities given the expert’s familiarity with472

its interpretation. Table I summarises the dependence assessments by showing the results together473

with the framing of the questions.474

As second part of the SRP method, we then modelled the overall joint distribution for the spatial475

dependence through solving the minimum information minimisation problem (section 3) based on476

the above assessments. The result can be seen in Figure 10.477

We see that the expert’s distribution indicates a slight negative dependence relationship be-478
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tween the spatial terrorism risk of both regions which is however close to independence. This is479

particularly driven by the first assessment being equal to 0.5 which indicates independence for a480

broad area of the joint distribution. In more detail, the difference between assessment ii.) and iii.)481

shows that in the joint tail, the expert assesses that an extreme year in terms of number of attacks482

for WE affects CA more than vice versa. The slight negative dependence (close to independence)483

corresponds to the expert’s rationale which has been formally facilitated in order to support the484

expert with structuring his/her knowledge about the spatial dependence between both regions. For485

that, we used a conditional scenario mapping method [34]. In addition to mitigating some prevalent486

cognitive fallacies of assessing dependence, such as the confusion of the inverse or confusing joint487

and conditional probabilities(see also Werner et al. [11] for an overview), this method allows for488

considering and reflecting explicitly which scenarios affect the probability spaces of both regions (in489

a conditional sense). Scenarios are defined as ”sequences that link triggering events to specified con-490

sequences (or final states) through intermediate conditions” [34]. For the example shown in Figure491

11, the expert first reasoned through backwards logic, i.e. starting from the specified consequence,492

about observing more than 199 in Central Asia until the end of 2017 (α5). Then, based on the493

initiating events that might cause Central Asia to experience more than 199 attacks and which are494

(at least partly) observable today, the expert reasoned (in forward logic) how these same initiating495

events affect the development of the number of terrorist attacks in Western Europe until the end of496

2017. Based on the the number and plausibility of these conditional scenarios causing more than 255497

attacks (again α5), the expert could then make a dependence assessment in a more informed and498

confident manner. Werner et al. [34] presents the structured process of generating such conditional499

scenarios in more detail.500

As can be seen in Figure 11, the expert considers both regions to be slightly negatively dependent501

(close to independence) due to the consideration that the active terrorist groups in both regions are502

different. In Central Asia, local separatists have political and regional motivations while in Western503

Europe mainly islamist groups are prevalent despite e.g. Russia’s military involvement in the Middle504

East. Furthermore, the expert considers both regions to be different with regards to their vulnera-505

bility given not only the types of active terrorist groups but also the varying counter-terrorism and506

intelligence capabilities which drive the negative dependence relationship.507

Before concluding this illustrative example, a first remark is that for quantifying the spatial depen-508

dence of terrorism attacks the definition used in this example is rather broad by including all attack509

types. Thus, the consideration of specific attack types might have very particular effects on the510

geographical interdependencies. As such, of growing interest in the adversarial risk literature have511

been biological attacks [56] and cyber attacks [79]. For these, it can be informative to assess the512
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dependence between variables of interest, such as casualties or monetary losses.513

Further, we understand that an elicitation considering more explicitly the geographical interdepen-514

dencies of critical infrastructure can be informative for insurers, for instance when offering business515

interruption coverage. Our method could hence build upon some modelling approaches that have516

ranked the susceptibility of critical infrastructures targeted by attacks [80].517

Lastly, we acknowledge the inherent difficulties particular when considering attacks, such as 9/11,518

which some might title ”black swans”. For dependencies, the term ”perfect storms” appeared (see519

Paté-Cornell [81] for a discussion on the use of these terms in risk analysis and management).520

However, even for such events, structured assessment through experts can be informative and it is521

interesting that e.g. Zelikow (as director of the 9/11 Commission) called the misreading of precur-522

sors to these events as ”failure of imagination” given that air-planes had been used before as weapon523

and the World Trade Center in New York had been targeted already in 1993 [81].524

5 DISCUSSION AND CONCLUSIONS

When using expert judgement for assessing dependence, there is a trade-off between easing the525

assessment burden for experts and sufficiently capturing a real-world phenomenon of interest in our526

model [10]. Therefore, we have presented an elicitation method that aims to satisfy a decision-527

maker’s desired level of detail for a model whereas the procedure for eliciting dependence from528

experts provides an intuitive way of assessing even detailed dependence information (such as extreme529

parts of a joint distribution) while avoiding infeasible and inconsistent assessments. We argued that530

for the decision-maker a non-parametric setting of modelling multivariate uncertainties is more531

desirable and therefore we addressed the potential assessment issues of under- and overspecification.532

Concluding on the application shown in this paper, we note that in future research more applications533

are desirable to explore how the SRP method performs and obtain insights on potential modifications534

like alternative ways of framing the judgements, the implication of restricted feasibility ranges, or the535

elicitation of different forms (other than conditional probabilities). For example, as an alternative536

to eliciting quantile-based assessments, we can elicit conditional expectations. This follows from the537

discussion of Werner et al. [10] on modelling and elicitation strategies that are determined by the538

choice of considering influencing factors of dependence relationships explicitly or implicitly. The539

latter is similar to PI methods which aim at satisfying reasonable conditions of a model output due540

to its easier understanding and quantification. This is of particular interest when we cannot observe541

(and hence elicit) our variables of interest directly. Bedford et al. [19] show an elicitation procedure542

and minimum information modelling method for expectations on the whole joint distribution. Hence,543

considering its elaboration based on our method could allow for a more detailed specification of544
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multivariate uncertainty for non-observable model input parameters. In the actuarial context of545

section 4, we might ask experts to assess the conditional expectation for a risk measure, such as546

probable maximum loss (see Grossi and Kunreuther [43]), which can be used (partly) as model547

output, whereas we assess dependence through PI on the function generating it. Similarly, our548

method can be used, either through quantile-based assessments or modifications, in other sectors549

in which understanding and quantifying tail risk is becoming of growing interest, such as financial550

decision-making on asset allocation [82].551
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APPENDIX

Proof for Proposition 1:552

Suppose we are given values u0 = 0 < u1 < · · · < un < 1 = un+1, and v0 = 0 < v1 < · · · < vm <553

1 = vm+1 (where n,m > 0), 0 < p, q < 1, with p different to the ui and q different to the vj . Then554

a copula distribution on QP (u, v) can be refined to a copula distribution on QP (u, v; p, q).555

Proof. In order to prove proposition 1, we divide the set QP (u, v) into four subsets:556

557

1. A(p, q) has a single element which is the rectangle of QP (u, v) containing the point (p, q).558

2. U(p, q) is the set of rectangles in QP (u, v) that overlap the line v = q, except the one in559

A(p, q).560

3. V (p, q) is the set of rectangles in QP (u, v) that overlap the line u = p, except the one in561

A(p, q).562

4. B(p, q) is the set of all rectangles in QP (u, v) that are not in A(p, q), B(p, q), or V (p, q).563

Define also A∗(p, q) to be the rectangles in QP (u, v; p, q) which are sub-rectangles of A(p, q), and564

define U∗, V ∗ and B∗ similarly.565

Note that B∗(p, q) = B(p, q), that is, the rectangles in B(u, v) do not get subdivided by the lines566

u = p, v = q. Rectangles in U∗ are obtained by dividing rectangles in U by the line v = q, and567

rectangles in V ∗ are obtained by dividing rectangles in V by the line u = p.568

We now define the refined copula distribution on QP (u, v; p, q).569

Let α = (p − ui)/(ui+1 − ui), and β = (q − vj)/(vj+1 − vj). We specify how to define the refined570

copula distribution as follows:571
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vj+1

vj

q

ui+1ui p

X

Y

=elements of B(p, q)

=elements of V (p, q)

=elements of U(p, q)

=elements of A(p, q)

Figure 12: Different set of rectangles in QP (u, v).

1. For the rectangles in A∗ , the lower left sub-rectangle is allocated αβ of the mass of A, the572

lower right one gets proportion (1−α)β, the upper left one gets proportion α(1− β), and the573

upper right one gets proportion (1− α)(1− β).574

2. Each rectangle in U is subdivided into two sub-rectangles in U∗ by the line v = q, and the lower575

sub-rectangle is allocated proportion β of its mass and the upper sub-rectangle is allocated576

proportion (1− β) of the mass.577

3. Each rectangle in V is subdivided into two sub-rectangles in V ∗ by the line u = p, whereas the578

left sub-rectangle is allocated proportion α of its mass and the upper sub-rectangle is allocated579

proportion (1− α) of its mass.580

4. Any rectangle in B∗(p, q) = B(p, q) is assigned the same probability as it was in in the copula581

distribution on QP (u, v).582

This allocation of probabilities to the rectangles of QP (u, v; p, q) adds to 1, while it is straightforward583

to check that it is a copula distribution.584

Regions of interest in illustrative case-study (section 4):585

• Central Asia: Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Russia, Tajik-586

istan, Turkmenistan, Ukraine, Uzbekistan.587

• Western Europe: Austria, Belgium, Denmark, Finland, France, Germany, Iceland, Ireland,588

Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United589

Kingdom.590

28

Page 29 of 36 Risk Analysis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

REFERENCES

[1] James E Smith and Detlof Von Winterfeldt. Anniversary article: decision analysis in manage-591

ment science. Management Science, 50(5):561–574, 2004.592

[2] Robert L Winkler. State of the art: research directions in decision making under uncertainty.593

Decision Sciences, 13(4):517–533, 1982.594

[3] Fabrizio Durante and Carlo Sempi. Principles of copula theory. CRC Press, Boca Raton, 2015.595

[4] Anca Hanea, Oswaldo Morales Napoles, and Dan Ababei. Non-parametric bayesian networks:596

Improving theory and reviewing applications. Reliability Engineering & System Safety, 144:597

265–284, 2015.598
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