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Abstract 49 

 Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal 50 

tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to 51 

investigate the effects of CTS on force coordination and muscle coherence during low-intensity 52 

sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS 53 

patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device 54 

was used to measure the thumb and index finger forces while simultaneously collecting surface 55 

electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous 56 

(FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 57 

15 sec with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. 58 

The force discrepancy and the force coordination angle between the thumb and index finger 59 

forces were calculated, as well as the β-band (15-30 Hz) coherence between APB and FDI. The 60 

index finger applied greater force than the thumb (p < 0.05); this force discrepancy was increased 61 

with wrist flexion (p < 0.05), but was not affected by CTS (p > 0.05). The directional force 62 

coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit 63 

force coordination during precision pinch seems to be sensitive to wrist flexion, but is not 64 

affected by CTS. The β-band muscular coherence was increased by wrist flexion for CTS 65 

patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced 66 

exacerbation of CTS symptoms. In summary, this study observed the effect of wrist posture on 67 

the force discrepancy and the wrist posture × CTS interaction effect on the β-band coherence 68 

during precision pinch. 69 

Keywords: carpal tunnel syndrome; force coordination; muscle coherence; precision pinch70 
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1 Introduction 71 

 Carpal tunnel syndrome (CTS) is a common compression neuropathy of the upper 72 

extremity, with high prevalence in the general population. Due to entrapment of the median 73 

nerve in the carpal tunnel, CTS patients experience symptoms of hand tingling, numbness, and 74 

pain. These symptoms are exacerbated in the extreme wrist flexion position (i.e. Phalen’s 75 

maneuver), which is commonly used as a provocative test for diagnostic purposes [1,2]. The 76 

median nerve supplies sensory input to the palmar side of the thumb, index finger, middle finger, 77 

and the radial half of the ring finger. The motor branch of the median nerve innervates the 78 

opponens pollicis, abductor pollicis brevis (APB) and superficial head of flexor pollicis brevis, 79 

as well as first and second lumbricals. CTS is known to impair sensory functions of the hand as 80 

commonly evaluated by two-point discrimination, Semmes Weinstein monofilament testing, and 81 

sensory latency [3,4]. Motor function of the hand is also shown to be affected by CTS as 82 

demonstrated by weakness of grasp and pinch strength [5-7], although motor capability of the 83 

thumb has been found to be relatively preserved [8,9].   84 

 Precision pinch with the thumb and index finger is a dexterous manual task involving 85 

sensorimotor coordination of the two digits. CTS patients commonly demonstrate lack of 86 

dexterity in activities of daily living, such as inexplicably dropping objects. As a potential 87 

compensatory strategy to overcome sensorimotor deficits and prevent objects from 88 

unintentionally slipping, patients with CTS apply excessive pinch force while lifting objects [10-89 

12]. CTS also impairs digit force accuracy and stability during precision pinch, especially when 90 

the force application lacks accompanying visual feedback [13].  91 

During precision pinch, extrinsic and intrinsic hand muscles work together to ensure 92 

successful manipulation, and therefore, muscle coordination is necessary for successful pinch 93 
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performance. Coherence analysis of electromyographic (EMG) signals has been used to quantify 94 

muscle coordination, which could shed a light on the modulation of the neural inputs to the 95 

coordinated muscles [14] Specifically for pinching tasks, EMG-EMG coherence among hand and 96 

forearm muscles in the 15-30 Hz range (β-band) was shown to be associated with maintaining a 97 

steady force [15,16]. Impaired sensory input by digital nerve anaesthesia and deafferentation was 98 

also shown to modulate hand muscle coherence in the β-band [17,18]. Due to the sensorimotor 99 

deficits of the thumb and index finger associated with CTS, muscular coherence may be 100 

impaired in CTS patients completing precision pinch tasks.  101 

 Although grip and pinch strength have been extensively investigated in CTS patients, 102 

there is limited understanding of precision pinch forces and associated muscle activities. 103 

Therefore, the purpose of this study was to investigate the effects of CTS on force coordination 104 

and muscle coherence during precision pinch. For muscle coordination and coherence, the APB 105 

and the first dorsal interosseous (FDI) were chosen as they are key intrinsic hand muscles 106 

involved in pinching tasks. In addition, force and muscle coordination were examined with the 107 

wrist in different flexion/extension positions to understand the postural effects on hand function. 108 

We hypothesized that the CTS patients would present less effective force coordination and 109 

stronger coupling between the APB and FDI muscles than the controls. 110 

 111 

2 Materials and Methods 112 

2.1 Participants 113 

 A total of 20 right-hand dominant participants were recruited for this study, including 10 114 

CTS patients (50.8 ± 9.6 years old; 8 females and 2 males) and 10 asymptomatic controls (47.9 ± 115 
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13.3 years old; 8 females and 2 males). All participants provided informed consent prior to study 116 

participation in accordance with the Institutional Review Board at Cleveland Clinic. 117 

 The inclusion criteria for the CTS group included satisfying at least three of the following 118 

criteria: (1) history of pain and/or numbness in the median-innervated territory of the right hand 119 

for at least 3 months; (2) positive provocative maneuvers with Tinel’s sign, Phalen’s maneuver, 120 

and/or median nerve compression test; (3) abnormal electrodiagnostic test results demonstrating 121 

median nerve neuropathy in the right hand; (4) an overall Boston Carpal Tunnel Syndrome 122 

Questionnaire score greater than 1.5 [19]; and (5) confirmation of CTS according to clinical 123 

discretion [20]. For the control group, the inclusion criteria included absence of CTS-like 124 

symptoms. The exclusion criteria for the CTS and control groups were: (1) left-hand dominance; 125 

(2) existence of any central nervous system disease; (3) diabetes; (4) pregnancy; (5) arthritis in 126 

the right hand or wrist; (6) steroid injection to the right hand within three months of study 127 

participation; and (7) history of musculoskeletal injury or surgery to the right hand or wrist.  128 

  129 

2.2 Experimental Set-up 130 

 A pinch apparatus consisting of two six-component force/torque transducers (Mini40, 131 

ATI Industrial Automation, Inc., Apex, NC, USA) was used to measure the thumb and index 132 

finger forces. Each transducer was attached to an aluminum mounting support which was rigidly 133 

fixed to a stainless steel plate. The pinch contact surfaces were covered with 100-grit sandpaper 134 

and the pinch span was 1.8 cm. The force/torque signals were amplified and multiplexed using a 135 

custom interface box (ATI Industrial Automation, Inc., Apex, NC, USA) and converged to an 136 

18-bit analog digital converter (PXI-6289, National Instruments, Austin, TX, USA). A surface 137 

EMG system (MyoSystem 1400, Noraxon USA, Inc., Scottsdale, AZ, USA) was used to record 138 
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the activity of the APB and FDI muscles. The system had a 12-bit resolution and a hardware 139 

band pass filter of 10-500 Hz. In addition, a 22-inch computer monitor was positioned 50 cm in 140 

front of the participant to graphically provide real-time force information. 141 

 142 

2.3 Experimental Protocol 143 

 Participants washed their hands with soap and water prior to the experiment. In addition, 144 

the skin on the right hand was prepared using sandpaper and an alcohol swab before the 145 

application of EMG electrodes. A dual Ag/AgCl electrode with a center-to-center distance of 146 

2.75 cm (Noraxon U.S.A., Inc., Scottsdale, AZ) was attached to the skin surface above both the 147 

APB and FDI muscles according to literature recommendations [21]. A ground electrode was 148 

also attached to the styloid process of radius. Then, each participant was seated comfortably on a 149 

height-adjustable chair by the testing table with their right arm abducted 30° in the frontal plane 150 

and flexed 30° in the sagittal plane. The forearm was rested on the table with the elbow flexed 151 

90°. Customized splints were worn by the subject to stabilize the wrist in postures of 30° 152 

extension, anatomical neutral (0°), and 30° flexion. The pinch apparatus was fixed to the testing 153 

table at predetermined orientations so that the angle between the palm and pinch contact surfaces 154 

were 60°, allowing participants to perform pinching comfortably at each wrist posture (Fig. 1). 155 

The participants were instructed not to place the long, ring and little fingers against the pinch 156 

device nor the index finger. 157 

[Figure 1] 158 

Fig. 1 Experimental setup for measuring digit forces and muscle activities during precision 159 

pinch at various wrist postures 160 
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 161 

 The study consisted of two tasks. First, the participants were instructed to pinch the 162 

apparatus using the thumb and index finger with their maximum effort. Verbal encouragement 163 

was given, guiding participants to reach their maximum pinch force within 5 sec. Three 164 

maximum pinch trials were performed for each wrist posture. For each trial, the maximum pinch 165 

force was defined as the maximum value of the averaged thumb and index finger normal forces. 166 

Then, the three maximum pinch force values for each posture were averaged and 10% of the 167 

average value was set as the target force for the subsequent submaximal pinch trials. During the 168 

submaximal pinch task, graphical information of the real-time pinch force, including a target line, 169 

was provided on the computer monitor. Participants were asked to match their pinch force to the 170 

target line as accurately as possible. Each submaximal pinch trial was 15 sec in duration and the 171 

participants were encouraged to match the target as soon as possible. A total of 10 trials were 172 

performed for each wrist posture. The three wrist postures were randomized, and a 1-minute rest 173 

was given between consecutive trials. A customized LabVIEW (National Instruments, Austin, 174 

TX, USA) program collected the force and EMG data at a sampling rate of 1000 Hz. 175 

 176 

2.4 Data Processing 177 

 For the submaximal task, the force and EMG data in the first 5 sec of each trial were 178 

excluded from analyses to avoid the effects of non-stationarity. The remaining 10 sec of data for 179 

each trial were analyzed using customized MATLAB (The MathWorks, Natick, MA, USA) 180 

programs. 181 

 To quantify the force matching accuracy, the root mean square error (RMSE) between the 182 

measured force and the target force [13] was calculated as: 183 
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where n is the number of force samples, ݔ௜ is the instant mean of the thumb and index finger 184 

normal forces, and ݔ௧ is the target force (i.e. 10% of the averaged maximum pinch force). The 185 

force discrepancy between the two digits was calculated as the percentage difference between the 186 

resultant force magnitudes of the index finger and the thumb normalized by the force magnitude 187 

of the thumb. The 3D force vectors of the thumb and index finger were transformed to a common 188 

coordinate system [22,23], and then the angle between the two force vectors was calculated using 189 

the following equation: 190 

ߠ ൌ cosିଵ
റଵܨ ∙ റଶܨ

หܨറଵห ∙ หܨറଶห
																																					ሺ2ሻ 

where ܨറଵ and ܨറଶ are the force vectors of the thumb and index finger, respectively. The angle 191 

between the thumb and index finger was defined as the force coordination angle, which ranges 192 

from 0 to 180°, where 0° means the two force vectors are in phase and 180° means that they are 193 

in opposite directions The coordination angle between the digits was averaged over the 10-sec 194 

period. 195 

 To calculate the coherence within the β-band between APB and FDI, first the EMG data 196 

were filtered and rectified using a 4th order band-pass (5-100 Hz) Butterworth filter. Then, the 197 

signals were further processed using a bivariate autoregressive model and a boxcar window to 198 

generate coefficients for coherence estimation [24]. The coherence between two EMG signals 199 

was calculated as: 200 

௫௬ሺ݂ሻܥ ൌ
ܵ௫௬ሺ݂ሻ

ඥܵ௫௫ሺ݂ሻܵ௬௬ሺ݂ሻ
																															ሺ3ሻ 
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where f is a given frequency, ܵ௫௬ is the cross spectrum of associated signals, and ܵ௫௫ and ܵ௬௬ are 201 

the auto spectra of the associated signals. The estimated coherence was then transformed using a 202 

Fisher Z-transformation. The mean coherence between APB and FDI in the β-band was 203 

calculated. The coherence value ranges from 0 to 1, where higher value means greater coupling 204 

between the muscles. 205 

2.5 Statistical Analysis 206 

 Two-way repeated measures ANOVAs, with one factor repeated, were performed to test 207 

the main effects of group (CTS and control) and posture (extension, neutral, and flexion), as well 208 

as the interaction effect of group and posture. The effects on the maximum pinch force, force 209 

matching accuracy, force discrepancy, force coordination angle, and mean β-band coherence 210 

were examined. Post hoc Tukey's tests were completed for pairwise comparisons. Statistical 211 

analyses were performed using SigmaStat 3.5 (Systat Software, San Jose, CA) and the 212 

significance level of α = 0.05. 213 

 214 

3 Results 215 

 The demographic data of the 10 participants in the CTS group are shown in Table 1. 216 

Their CTS symptom duration ranged from 10 months to 21 years. The Boston CTS 217 

Questionnaire scores of the patients ranged from 1.58 to 3.58. Eight of them received the 218 

provocative maneuver tests, and they presented positive results with Tinel’s sign or Phalen’s Test. 219 

 220 

Table 1 The age, gender, symptom duration, Boston CTS Questionnaire score, and the 221 

result of the provocative maneuver tests of 10 participants in the CTS group 222 
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Subject # Age 

(y/o) 

Gender CTS Symptom 

Duration 

Boston CTS 

Questionnaire Score 

Tinel’s Sign / 

Phalen’s Test 

CTS 01 64 Female 5 years 2.21 Positive 

CTS 02 56 Female 16 years 3.11 Positive 

CTS 03 55 Female 1.5 years 2.89 Positive 

CTS 04 46 Female 21 years 2.79 N/A 

CTS 05 28 Male 10 months 2.16 N/A 

CTS 06 58 Male 1 year 2.47 Positive 

CTS 07 50 Female 1 year 2.00 Positive 

CTS 08 50 Female 6 years 3.58 Positive 

CTS 09 53 Female 1.5 years 1.58 Positive 

CTS 10 48 Female 1.5 years 2.63 Positive 

 223 

 The maximum pinch force and force matching accuracy are presented in Table 2. The 224 

maximum pinch force was significantly affected by the factor of wrist posture (p < 0.001), but 225 

not by the group factor (p = 0.514) or the posture × group interaction (p = 0.077). The maximum 226 

pinch force in the flexed wrist posture was significantly less than that at the neutral (p = 0.002) 227 

and extended (p = 0.003) postures. The force matching accuracy for submaximal pinching was 228 

not significantly affected by group (p = 0.436), posture (p = 0.956), or the posture × group 229 

interaction (p = 0.199). 230 

 231 

Table 2 Maximum pinch force and submaximal force accuracy for the control and CTS 232 

groups at different wrist postures (mean ± standard deviation) 233 
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  Control (n = 10) CTS (n = 10) 

  Maximum (N) Accuracy (N) Maximum (N) Accuracy (N) 

Extension  37.9 ± 14.5 0.12 ± 0.06 39.4 ± 11.5 0.13 ± 0.09 

Neutral  37.0 ± 14.1 0.10 ± 0.04 40.7 ± 9.1 0.15 ± 0.11 

Flexion  32.9 ± 13.0 0.11 ± 0.05 38.3 ± 8.1 0.13 ± 0.08 

 234 

For the submaximal pinch task, there existed a force discrepancy between the digits with 235 

the index finger resultant force being greater than that of the thumb for both the control and CTS 236 

groups (p < 0.05). This force discrepancy was significantly affected by posture (p < 0.05), but 237 

not by group (p = 0.916). Wrist flexion led to an increased force discrepancy between the digits.  238 

In the wrist extension posture, the force discrepancies were 19.0 ± 23.5% for the control group 239 

and 20.0 ± 29.5% for the CTS group. At the neutral posture, the discrepancies were 24.4 ± 240 

29.0% and 23.4 ± 34.2% for the control and CTS groups, respectively. As the wrist deviated to a 241 

more flexed posture of 30°, the force discrepancy for the control group was 28.2 ± 32.7% and for 242 

the CTS group was 23.7 ± 36.4%.  243 

The force coordination angle between the digits ranged from 157° to 164° (Fig. 2). The 244 

angle was not significantly affected by group (p = 0.096), posture (p = 0.191), or the group × 245 

posture interaction (p = 0.828). The average coordination angle across the three wrist postures 246 

was 158.2 ± 5.9° for the control group and 163.0 ± 7.3° for the CTS group.  247 

 248 

[Figure 2] 249 

Fig. 2 Force coordination angles (mean ± standard deviation) at difference wrist postures 250 

for the CTS and control groups 251 
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 252 

The coherence in the β-band was not significantly affected by group (p = 0.684) or posture (p = 253 

0.269); however, there was a significant group × posture interaction (p < 0.05). The coherence 254 

values for the control group were 0.153 ± 0.041, 0.158 ± 0.045, and 0.152 ± 0.035 at wrist 255 

extension, neutral, and flexion, respectively. For the CTS group, the coherence values were 256 

0.144 ± 0.018 for extension, 0.144 ± 0.019 for neutral, and 0.158 ± 0.03 for flexion. The 257 

interaction effect was associated with a significant difference of pairwise comparisons within the 258 

CTS group (Fig. 3). 259 

 260 

[Figure 3 here] 261 

Fig. 3 β-band coherence at different wrist postures for CTS and control groups 262 

 263 

4 Discussion 264 

 Our finding of decreased maximal pinch force at a flexed wrist posture is consistent with 265 

previous reports that pinch/grip strength is sensitive to wrist posture, particularly in the direction 266 

of flexion/extension with weak strength in flexion [25-29]. The weakness can be explained by 267 

the length-tension relationship of the extrinsic flexors of the digits. The muscular compartments 268 

are at an optimal length for maximum active force production at the slightly extended, functional 269 

wrist position. As the wrist joint flexes, the associated muscular compartment becomes less 270 

optimal, leading to an impairment of pinch force production. The result that CTS patients had 271 

similar maximal pinch force to healthy controls corroborates with previous findings that motor 272 

capability is relatively preserved in the CTS patient population [8,9].  273 
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For the sustained submaximal pinch, the CTS-associated sensory and motor deficits were 274 

expected to increase the force matching error. However, no statistical difference in the force 275 

matching accuracy was observed between the two groups or among wrist postures. In the current 276 

study, the precision pinch was performed on a stabilized object and visual feedback of force 277 

application was provided. It is possible that the sensorimotor deficits associated with CTS were 278 

compensated by the visual information to generate accurate pinch force [13]. In addition, 10% of 279 

the maximum pinch force was set as the target force in this study, which could be too low to see 280 

the effects of CTS or wrist posture. However, higher pinch force may induce muscle fatigue and 281 

affect the results of force matching. 282 

 The result that the index finger generated more force than the thumb during submaximal 283 

precision pinch is consistent with a previous study [13]. Force discrepancy has been postulated 284 

as a consequence of anatomical structure and neural control. In the current study, no group effect 285 

was found on the inter-digit force difference, but there was a wrist posture effect. Wrist flexion 286 

caused increased force discrepancy between the thumb and index finger. The increase in the 287 

index finger contribution may be due to the more diminished thumb flexor function in a flexed 288 

wrist position [30].  289 

The directional coordination of the precision pinch forces was not influenced by CTS or 290 

wrist posture. Biomechanically, the thenar muscles tend to abduct the thumb and generate shear 291 

force, making the thumb force vector deviated from the opposing direction perpendicular to the 292 

pinching surface. Alteration of thenar muscle function implicated by median nerve dysfunction 293 

could change directional force coordination. The fact that coordination angle was not changed by 294 

CTS might be explained by (a) the task required relatively low exertion effort and (b) the 295 

preservation of motor capability in the patient group. It is possible that pinch force 296 
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dyscoordination will be more salient in patients with more severe CTS, especially during 297 

maximal pinching force production. The coordination angle, regardless of wrist posture and 298 

subject group, deviated about 20° from perfect opposition of 180°, which is consistent with 299 

previous findings [23,22]. The individual digits did not apply forces perpendicular to the pinch 300 

surface, nor did they orient their forces parallel in space. For pinching on a stabilized object 301 

without the requirement of force equilibrium, each digit may apply a force that favors its own 302 

anatomical structure and independent neural control.  303 

 We found that CTS patients demonstrated different β-band coherence of the APB and 304 

FDI muscles in flexion from that in extension. Coherence of hand muscles was shown in the β-305 

band while maintaining steady pinch force [16], and increased coherence was observed when 306 

manipulating more compliant objects because of the increased sensorimotor integration required 307 

to adjust digit force and position for compliant object control [15]. It has also been shown that 308 

muscle coherence is affected by impaired sensory inputs due to deafferentation [18] and digital 309 

nerve anaesthesia [17]. In addition to sensory loss, the changes in somatosensory feedback due to 310 

varied wrist posture impacts muscle coherence across intrinsic and extrinsic muscles [31]. 311 

Furthermore, extrinsic muscles were found to have a stronger coherence than the intrinsic 312 

muscles [32,33]. The lower coherence has been interpreted as a benefit for intrinsic muscle 313 

function [34]. Intrinsic muscles are specifically important for fine modulation of digit forces, for 314 

this reason, a less degree of coupling might be better for individual muscle control. In the current 315 

study, participants performed an isometric pinch on a stabilized object, thus the independence of 316 

muscle activation may not be required for this task. Although varied wrist posture does not 317 

change the length of the APB and FDI muscles, wrist flexion may exacerbate the symptoms of 318 

CTS. In contrast to the reduced coherence after digital nerve block [17], we observed that the 319 
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CTS patients had increased coherence in wrist flexion. Compared to the acute sensory loss after 320 

digital nerve anaesthesia, patients with CTS experience altered sensation in a longer process. 321 

Different modulations in the muscle coherence may reflect the different natures of sensory 322 

modifications. It could be postulated that the increase in β-band coherence in CTS patients with 323 

flexed wrists is a compensatory mechanism for the flexion-induced exacerbation of symptoms. 324 

 Some limitations in this study should be considered. First, moderate changes in wrist 325 

posture were applied. Slight wrist extension (10-30°) has been widely used for functional 326 

positioning [35,36] and no significant change was found in the carpal tunnel pressure between 327 

the neutral wrist position and 30° extension [37]. These may explain the findings in the current 328 

study that the hand has similar functionality at the neutral position and 30° extension. Although 329 

hand function is more sensitive to wrist flexion, the 30° wrist flexion posture employed in the 330 

current study was relatively moderate in comparison to the clinically used wrist flexion for 331 

Phalen’s maneuver. Perhaps a more flexed wrist position would reveal greater differences 332 

between CTS patients and controls. Second, this study had a relatively small sample size and the 333 

CTS patients were not classified by severity of symptoms. Though most CTS patients have 334 

sufficient thenar muscle function, the wasting or weakness of thenar muscles could be 335 

demonstrated in patients with more severe symptoms [38]. The force coordination between digits 336 

and the muscle coherence between APB and FDI could be more affected in CTS cases with 337 

thenar muscle atrophy. At last, a stabilized, non-deformable pinch device was used in the current 338 

study for the investigation of force coordination and muscle coherence. However, translating and 339 

manipulating movable objects are the skills often required in daily life. As greater muscle 340 

coherence was found in handling a more complaint object [15], neuromuscular coordination 341 

could be affected by the compliance of objects. Also, the disturbance of gravity when holding 342 
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objects in the air could be another factor to influence force and muscle coordination. Therefore, 343 

different task designs and object materials may lead to varied force coordination and muscle 344 

coherence. In addition, muscle fatigue may also affect force coordination and muscle coherence. 345 

However, the target was set as 10% of the maximum pinch force and a 1-minute rest was given 346 

between trials, the effect of muscle fatigue was assumed to be limited in this study. 347 

 In conclusion, this study observed the wrist posture effect on the force discrepancy that 348 

the index finger generated significantly higher force than the thumb when the wrist was flexed. 349 

Also, the wrist posture × group interaction effect was observed that, within the CTS group, the β-350 

band coherence was significantly higher in the wrist flexion condition than in the wrist extension 351 

condition. 352 

5 Acknowledgments 353 

This publication was made possible by Grant R01AR056964 from NIAMS/NIH. Its contents are 354 

solely the responsibility of the authors and do not necessarily represent the official views of the 355 

NIAMS or NIH. 356 

 357 

6 References 358 

1. MacDermid, J. C., & Wessel, J. (2004). Clinical diagnosis of carpal tunnel syndrome: a 359 
systematic review. J Hand Ther, 17(2), 309-319, doi:10.1197/j.jht.2004.02.015. 360 

2. Wiesman, I. M., Novak, C. B., Mackinnon, S. E., & Winograd, J. M. (2003). Sensitivity and 361 
specificity of clinical testing for carpal tunnel syndrome. Can J Plast Surg, 11(2), 70-72. 362 

3. Havton, L. A., Hotson, J. R., & Kellerth, J. O. (2007). Correlation of median forearm 363 
conduction velocity with carpal tunnel syndrome severity. Clin Neurophysiol, 118(4), 364 
781-785, doi:10.1016/j.clinph.2006.12.011. 365 

4. Szabo, R. M., Gelberman, R. H., & Dimick, M. P. (1984). Sensibility testing in patients with 366 
carpal tunnel syndrome. J Bone Joint Surg Am, 66(1), 60-64. 367 

5. Baker, N. A., Moehling, K. K., Desai, A. R., & Gustafson, N. P. (2013). Effect of carpal 368 
tunnel syndrome on grip and pinch strength compared with sex- and age-matched 369 
normative data. Arthritis Care Res (Hoboken), 65(12), 2041-2045, doi:10.1002/acr.22089. 370 



17 

6. Gehrmann, S., Tang, J., Kaufmann, R. A., Goitz, R. J., Windolf, J., & Li, Z. M. (2008). 371 
Variability of precision pinch movements caused by carpal tunnel syndrome. J Hand 372 
Surg Am, 33(7), 1069-1075, doi:10.1016/j.jhsa.2008.02.030. 373 

7. Tamburin, S., Cacciatori, C., Marani, S., & Zanette, G. (2008). Pain and motor function in 374 
carpal tunnel syndrome: a clinical, neurophysiological and psychophysical study. J 375 
Neurol, 255(11), 1636-1643, doi:10.1007/s00415-008-0895-6. 376 

8. Agabegi, S. S., Freiberg, R. A., Plunkett, J. M., & Stern, P. J. (2007). Thumb abduction 377 
strength measurement in carpal tunnel syndrome. J Hand Surg Am, 32(6), 859-866, 378 
doi:10.1016/j.jhsa.2007.04.007. 379 

9. Li, Z. M., Harkness, D. A., & Goitz, R. J. (2005). Thumb strength affected by carpal tunnel 380 
syndrome. Clin Orthop Relat Res, 441, 320-326. 381 

10. Hsu, H. Y., Kuo, L. C., Kuo, Y. L., Chiu, H. Y., Jou, I. M., Wu, P. T., et al. (2013). 382 
Feasibility of a novel functional sensibility test as an assisted examination for 383 
determining precision pinch performance in patients with carpal tunnel syndrome. PLoS 384 
One, 8(8), e72064, doi:10.1371/journal.pone.0072064. 385 

11. Lowe, B. D., & Freivalds, A. (1999). Effect of carpal tunnel syndrome on grip force 386 
coordination on hand tools. Ergonomics, 42(4), 550-564, doi:10.1080/001401399185469. 387 

12. Yen, W. J., Kuo, Y. L., Kuo, L. C., Chen, S. M., Kuan, T. S., & Hsu, H. Y. (2014). Precision 388 
pinch performance in patients with sensory deficits of the median nerve at the carpal 389 
tunnel. Motor Control, 18(1), 29-43, doi:10.1123/mc.2013-0004. 390 

13. Li, K., Evans, P. J., Seitz, W. H., Jr., & Li, Z. M. (2015). Carpal tunnel syndrome impairs 391 
sustained precision pinch performance. Clin Neurophysiol, 126(1), 194-201, 392 
doi:10.1016/j.clinph.2014.05.004. 393 

14. Baker, S. N., Olivier, E., & Lemon, R. N. (1997). Coherent oscillations in monkey motor 394 
cortex and hand muscle EMG show task-dependent modulation. J Physiol, 501 ( Pt 1), 395 
225-241. 396 

15. Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., & Lemon, R. N. (2000). Human cortical 397 
muscle coherence is directly related to specific motor parameters. J Neurosci, 20(23), 398 
8838-8845. 399 

16. Kilner, J. M., Baker, S. N., Salenius, S., Jousmaki, V., Hari, R., & Lemon, R. N. (1999). 400 
Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human 401 
hand and forearm muscles. J Physiol, 516 ( Pt 2), 559-570. 402 

17. Fisher, R. J., Galea, M. P., Brown, P., & Lemon, R. N. (2002). Digital nerve anaesthesia 403 
decreases EMG-EMG coherence in a human precision grip task. Exp Brain Res, 145(2), 404 
207-214, doi:10.1007/s00221-002-1113-x. 405 

18. Kilner, J. M., Fisher, R. J., & Lemon, R. N. (2004). Coupling of oscillatory activity between 406 
muscles is strikingly reduced in a deafferented subject compared with normal controls. J 407 
Neurophysiol, 92(2), 790-796, doi:10.1152/jn.01247.2003. 408 

19. Levine, D. W., Simmons, B. P., Koris, M. J., Daltroy, L. H., Hohl, G. G., Fossel, A. H., et al. 409 
(1993). A self-administered questionnaire for the assessment of severity of symptoms and 410 
functional status in carpal tunnel syndrome. J Bone Joint Surg Am, 75(11), 1585-1592. 411 

20. Keith, M. W., Masear, V., Chung, K. C., Maupin, K., Andary, M., Amadio, P. C., et al. 412 
(2009). American Academy of Orthopaedic Surgeons Clinical Practice Guideline on 413 
diagnosis of carpal tunnel syndrome. J Bone Joint Surg Am, 91(10), 2478-2479, 414 
doi:10.2106/jbjs.i.00643. 415 



18 

21. Basmajian, J. V., & Blumenstein, R. (1980). Electrode placement in EMG biofeedback: 416 
Williams & Wilkins. 417 

22. Marquardt, T. L., & Li, Z. M. (2013). Quantifying Digit Force Vector Coordination during 418 
Precision Pinch. J Mech Med Biol, 13(2), 1350047, doi:10.1142/s0219519413500474. 419 

23. Li, K., Nataraj, R., Marquardt, T. L., & Li, Z. M. (2013). Directional coordination of thumb 420 
and finger forces during precision pinch. PLoS One, 8(11), e79400, 421 
doi:10.1371/journal.pone.0079400. 422 

24. Pasluosta, C. F., Domalain, M. M., Fang, Y., Yue, G. H., & Li, Z. M. (2013). Influence of 423 
nerve supply on hand electromyography coherence during a three-digit task. J 424 
Electromyogr Kinesiol, 23(3), 594-599, doi:10.1016/j.jelekin.2013.01.006. 425 

25. Imrhan, S. N. (1991). The influence of wrist position on different types of pinch strength. 426 
Appl Ergon, 22(6), 379-384. 427 

26. Lamoreaux, L., & Hoffer, M. M. (1995). The effect of wrist deviation on grip and pinch 428 
strength. Clin Orthop Relat Res(314), 152-155. 429 

27. Mathur, K., Pynsent, P. B., Vohra, S. B., Thomas, B., & Deshmukh, S. C. (2004). Effect of 430 
wrist position on power grip and key pinch strength following carpal tunnel 431 
decompression. Journal of hand surgery, 29(4), 390-392, doi:10.1016/j.jhsb.2004.02.012. 432 

28. O'Driscoll, S. W., Horii, E., Ness, R., Cahalan, T. D., Richards, R. R., & An, K. N. (1992). 433 
The relationship between wrist position, grasp size, and grip strength. J Hand Surg Am, 434 
17(1), 169-177. 435 

29. Li, Z. M. (2002). The influence of wrist position on individual finger forces during forceful 436 
grip. J Hand Surg Am, 27(5), 886-896. 437 

30. Harvey, L., Herbert, R. D., & Stadler, M. (2010). Effect of wrist position on thumb flexor 438 
and adductor torques in paralysed hands of people with tetraplegia. Clin Biomech (Bristol, 439 
Avon), 25(3), 194-198, doi:10.1016/j.clinbiomech.2009.11.010. 440 

31. Jesunathadas, M., Laitano, J., Hamm, T. M., & Santello, M. (2013). Across-muscle 441 
coherence is modulated as a function of wrist posture during two-digit grasping. Neurosci 442 
Lett, 553, 68-71, doi:10.1016/j.neulet.2013.08.014. 443 

32. Johnston, J. A., Winges, S. A., & Santello, M. (2009). Neural control of hand muscles during 444 
prehension. Adv Exp Med Biol, 629, 577-596, doi:10.1007/978-0-387-77064-2_31. 445 

33. Poston, B., Danna-Dos Santos, A., Jesunathadas, M., Hamm, T. M., & Santello, M. (2010). 446 
Force-independent distribution of correlated neural inputs to hand muscles during three-447 
digit grasping. J Neurophysiol, 104(2), 1141-1154, doi:10.1152/jn.00185.2010. 448 

34. Winges, S. A., Kornatz, K. W., & Santello, M. (2008). Common input to motor units of 449 
intrinsic and extrinsic hand muscles during two-digit object hold. J Neurophysiol, 99(3), 450 
1119-1126, doi:10.1152/jn.01059.2007. 451 

35. Lannin, N. A., Horsley, S. A., Herbert, R., McCluskey, A., & Cusick, A. (2003). Splinting 452 
the hand in the functional position after brain impairment: a randomized, controlled trial. 453 
Arch Phys Med Rehabil, 84(2), 297-302, doi:10.1053/apmr.2003.50031. 454 

36. Pizzi, A., Carlucci, G., Falsini, C., Verdesca, S., & Grippo, A. (2005). Application of a volar 455 
static splint in poststroke spasticity of the upper limb. Arch Phys Med Rehabil, 86(9), 456 
1855-1859, doi:10.1016/j.apmr.2005.03.032. 457 

37. Coppieters, M. W., Schmid, A. B., Kubler, P. A., & Hodges, P. W. (2012). Description, 458 
reliability and validity of a novel method to measure carpal tunnel pressure in patients 459 
with carpal tunnel syndrome. Man Ther, 17(6), 589-592, doi:10.1016/j.math.2012.03.005. 460 



19 

38. Ebata, T., Imai, K., Tokunaga, S., Takahasi, Y., & Abe, Y. (2014). Thumb opposition in 461 
severe carpal tunnel syndrome with undetectable APB-CMAP. Hand Surg, 19(2), 199-462 
204, doi:10.1142/s0218810414500208. 463 

 464 

 465 


