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Abstract— High operation and maintenance (O&M) costs 

may affect the profitability and growth of wind turbine 

industries in long term, especially where offshore wind 

farms are concerned. With the increase in age of wind 

turbines and the expansion of offshore wind, the operation 

and maintenance (O&M) cost is expected to grow 

significantly which reinforces the drive towards condition 

based maintenance.  Wind turbine power curves play a 

central role in the assessment of turbine operational health. 

Gaussian process theory is finding increasing application in 

this current emerging research area. This paper investigates 

the potential of Gaussian process models to improve the 

representation of wind turbine power curves and in 

particular the importance of confidence intervals as 

determined by such modeling. 
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I.  INTRODUCTION 

Because of the increasing demand for clean energy to 

combat climate change, wind energy is now playing a 

very important role worldwide. Recently installed wind 

turbines generally require less repair, and thus operation 

and maintenance (O&M) costs are lower.  But in long 

term, as turbines get older and less reliable, condition 

monitoring can play a vital role in limiting O&M costs. 

These older wind turbines now require more maintenance 

than those more recently installed. O&M costs constitute 

a significant percentage of the total annual costs of a 

wind turbine, as shown in Figure 2, taken from [2]. 

Because of the difficulties of access O&M costs are much 

higher for offshore wind turbines; in particular, those 

located far from the shore and exposed to more extreme 

winds and sea states. It is found that O&M costs make up 

20-25% of the total lifetime costs of an offshore wind 

farm making this a target for research to reduce costs in 

the coming years, [2]. 

Condition monitoring is not a new concept but its 

application to wind turbine technology remains relatively 

unexplored. Different kinds of machine learning approach 

are presently gaining popularity in data analysis for the 

condition monitoring of wind turbines [3, 4]. There are 

two distinct types of approach to O&M; scheduled 

maintenance and unscheduled maintenance. Unscheduled 

maintenance due to unexpected failures of wind turbine 

components is considered to be a major reason for high 

maintenance costs and low availability. Scheduled 

maintenance traditionally comprises routine maintenance 

at fixed time intervals, but condition based maintenance 

has the potential to remove unnecessary site visits, reduce 

down time and by avoiding catastrophic failure, reduce 

repair costs by anticipating faults. 

 

 
 

Fig 1: UK offshore wind O&M cost over the year’s [5] 

 

 
 

Fig 2: Operation & maintenance cost forecasting [16] 

 

An essential tool when planning maintenance strategies is 

information about the probabilities of component failures 

and Gaussian process (GP) models can be an effective in 

this regard. GP analysis is a non-parametric machine 
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learning approach, [6], that is relatively simple 

conceptually and for this reason is finding favor in a 

number of application areas including wind farm O&M, 

see for example [7] and [8]. 

 

This paper is focused on modeling wind turbine power 

curves using a Gaussian process where the confidence 

interval identified by the GP can play a key role in 

turbine fault identification. Extensive wind farm 

operational data, as described below, has been used for 

model identification and exploration. 

 

II. WIND FARM DESCRIPTION 

 

Whitelee Wind Farm is large onshore wind farm situated 

on upland about 15 kms south of Glasgow, Scotland, and 

comprises 215 Siemens and Alstom wind turbines with a 

total capacity of 539 megawatts (MW), [9]. This wind 

farm is owned and operated by Scottish Power 

Renewables.  The data used in this paper correspond to a 

full year of operation. All the SCADA data consists of 10 

minute averages with maximum, minimum, standard 

deviation over the 10 minutes also being recorded. In 

addition, two met masts are located at the wind farm with 

instruments at a range of heights. 
 

III. DATA PRE-PROCESSING 

 

The wind turbine industry uses supervisory control and 

data acquisition (SCADA) data to monitor wind farm 

operation. As well assisting operators to spot severe 

performance deterioration resulting in shut-down it also 

has the potential to identify early indications of failure 

through subtler changes in performance, [10]. Using 

SCADA data for condition monitoring system can be 

very cost-effective as no additional hardware is required, 

but it must be used carefully as it is not immune from 

sensor error or possible malfunction of the data 

management system.  There will inevitably be incidences 

of out of range values, missing data, unmatched 

timestamp values etc.  For this reason, SCADA data must 

be carefully filtered to remove such problems; practical 

issues also include negative power measurements, turbine 

curtailment, and data affected by switching transitions 

within the 10 minute periods. 

 

IV. INFLUENCE OF AIR DENSITY CORRECTION 
 

Power curves are influenced by air density, since as is 

clear from Equation 1, from [11], power is proportional to 

air density.     

                                   

           𝑃 = 0.5 . 𝜌 . 𝑣3 . 𝐴 . 𝐶𝑝                                      (1) 

 

where,       P = Power output (W) 

                  𝜌 =  air density  (kg/𝑚3) 

                  𝑣 = wind speed (m/𝑠𝑒𝑐2) 

                  A = swept area  (𝑚2) 

                 𝐶𝑝 = aerodynamic efficiency of a wind turbine. 

 

Air density varies with wind turbine location and altitude 

and in particular with the air temperature. According to 

IEC Standard 61400-12-1, [12], an air density correction 

should be applied for modern variable speed turbines 

following Equation (2), 

 

VC =  VM [ 
ρ

1.225
 ]

1

3
                              (2) 

 

Here VC and VM are the corrected and measured wind 

speed respectively and the ambient air density, 𝜌 can be 

obtain by equation (3), 

 

ρ = 1.225 [
288.15

T
] [

B

1013.3
]                 (3) 

 

where T is temperature in Kelvin and B is the barometric 

pressure in mbar. 

 

V. WIND TURBINE PERFORMANCE CURVE 

 

The power curve of the wind turbine gives the 10-minute 

averaged power generation as a function of 10-minute 

averaged wind speed measured at a suitable position 

upstream of the turbine rotor and at the hub height, and 

corrected for air density as explained.  It is an effective 

indicator of the performance of a wind turbine. With the 

help of power curve any performance deterioration of 

individual wind turbines can be identified. Figure 3 

shows a power curve based on raw unfiltered and 

uncorrected data, while Figure 4 shows a curve after air 

density correction, and more importantly after unwanted 

and potentially misleading data has been removed.  In 

this work all such unwanted data has been removed at the 

outset, i.e. before plotting.  If the IEC Standard is 

followed the scatter of data is reduced to a single line 

using a data reduction process known as binning.  This 

approach will not be followed here; rather a GP will be 

used to fit a very general non-linear function to the data. 

 

 
 

 Fig 3: Monthly Power without data filtration 

 
 

 

 
 



 

 

 

 
 

Fig 4:  Monthly Power after data filtration 

 

VI. BRIEF OUTLINE OF GAUSSIAN PROCESS 

THEORY AND APPLICATION TO POWER CURVES 

 
A Gaussian process (GP) is a non–parametric machine 

learning approach for generating a function based on 

assigning probabilities that follow a multi-dimensional 

Gaussian probability distribution to individual data 

points.  It has gained popularity because of its flexible  

non-parametric behavior, the use of a minimum number 

of assumptions and its conceptual simplicity.  It is not 

only useful for point estimation but also provides 

valuable information about uncertainty which is 

informative for covariance function analysis of nonlinear 

training datasets, [6].  It is however computationally 

demanding as it involves the inversion of very large 

matrices. 

 

As mentioned, all data points are treated as samples for 

random variables that individually have a Gaussian 

distribution.  In the limit the function can be continuous 

with respect to time or space, [13]. The GP approach uses 

a so called lazy learning approach from machine learning, 

like the k nearest neighbor (kNN) approach. The quality 

and quantity of training datasets seriously affects the 

performance of the Gaussian process algorithm. From [9, 

10], it is found that a GP may not give a good result when 

data sets are too small or too large. Theoretically, a GP 

model comprise a mean function and a covariance 

function as follows, 
 

X ~ GP(m, K)                       (4) 

 

Where, m is the mean function; K the covariance 

function; and X a random function. 

 

A GP assumes that the covariance between any set of 

data points relates to a multivariate Gaussian distribution. 

The covariance function (or Kernel) of a GP measures the 

similarity between nearby points.  In this work the widely 

used squared exponential (SE) form of covariance 

function has been adopted, which is mathematically 

defined following [10], as: 

 

𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)
2

2𝑙2  )          (5) 

 

The datasets generally contain noise and measurement 

errors so it is advisable to add a noise term to the 

covariance function in order to make covariance more 

representative.  Hence equation (5) can be modified to 

become: 

 

𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)
2

2𝑙2  ) +   𝜎𝑛
2𝛿(𝑥, 𝑥′)   (6) 

 

where 𝜎𝑓
2 and 𝑙 are known as the hyper-parameters. 𝜎𝑓

2 

signifies the signal variance and 𝑙 is a characteristic 

length scale which describes how quickly the covariance 

decreases with distance between points. One of the 

unique features of a GP is that it is determined solely by 

its mean and covariance functions and this property 

facilitates model fitting as only the first- and second-

order moments of the process require specification. An 

example monthly power curve based on a GP is shown in 

figure 5 calculated from a single month of filtered 

SCADA data. In this paper, GP Matlab toolbox being 

used for modelling and analysis of power curve 

prediction [17]. Gaussian process estimation works well 

for power curve estimation as seen in figure 6 where the 

estimated power curve is compared with the filtered 10-

minute data.  The GP power curve has been used to 

estimate a time series of power values and these are 

compared with the measured data used to fit the GP in 

figure 7. 

 

 
 

Fig 5: Predicted GP power curve 



 

 
 

Fig 6: Predicted PC & measured PC 

 
Fig 7: measured power and predicted power 

 
 

Fig 8: Gaussian process Residual 

 
     

   Fig 9: Residual Histogram with distribution fit 
 

GP is a nonlinear, non –parametric regression model 

hence residual analysis is important, [14].  Residuals are 

defined as the difference between observed value and 

predicted values as given below: 

 

e = y − y′                               (7) 

 

where, e is the residual,  y the observed value and  𝑦′ the 

value predicted by the model. The measured and 

predicted power shown in figure 7 and in good agreement 

as indicated by the generally small residuals, plotted in 

figure 8.  The frequency distribution of the residuals is 

shown in figure 9 together with a fitted Gaussian 

distribution.  As hoped for the distribution of residuals is 

close to being Gaussian.  This provides further 

justification of the GP model. 
 

VII. CONFIDENCE INTERVAL ESTIMATION FOR A 

GAUSSIAN PROCESS 

 

Another parameter which plays vital role in interpretation 

of wind turbine power curves is the ‘confidence interval’. 

Mathematically, the confidence interval gives valuable 

information about the uncertainty surrounding an 

estimate, [15]. The confidence interval itself is an 

estimate. Confidence intervals are intended to reflect the 

unknown sample population. They can also provide a 

threshold beyond which data is likely to reflect a mal-

function and thus assist in wind turbine anomaly 

detection.  GPs, by representing both model errors, and 

input measurement noise, allow straightforward 

estimation of confidence limits. 

Figure 10 shows the calculated Gaussian process power 

curve together with the estimated 95% confidence limits 

based solely on model errors (but not measurement 

noise). These confidence limits can be used to identify 

unexpected data that are most likely to be the result of 

operational faults.  



 

 

 
 

Fig 10: Predicated PC with confidence interval 

 
 

Fig 11:  PC with modified confidence limit 

 

 

In a Gaussian process, the incoming data can be 

considered as noisy due to measurement error.  The GP’s 

intrinsic estimates of confidence do not include this 

additional uncertainty, but the model does separately 

estimate the magnitude of the associated uncertainty, in 

this case treated as constant across the wind speed range. 

It is desirable to modify the confidence intervals to deal 

with incoming data measurement noise so that the fault 

identification process is at its most effective, [6,15]. The 

modified confidence limits relate to a higher overall 

standard deviation of the GP model. The modified 

confidence interval together with the GP power curve 

shown in figure 11. 

 

 

 

 

 

VIII. CONCLUSION AND DISCUSSION 

 

Wind turbine power curves are useful for monitoring the 

power production and performance of wind turbines and 

important in their condition monitoring. Because of its 

flexibility and the limited number of model parameters 

required, GP models are attractive and straightforward to 

implement. The application of GPs to power curve 

modelling has been shown to be effective in fitting the 

curve and in the identification of confidence limits These 

results will be used in future work on anomaly detection 

for condition monitoring purposes, and their efficiency 

compared with other available methods. 
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