Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Quantum local-field corrections and spontaneous decay

Scheel, Stefan and Knöll, Ludwig and Welsch, Dirk-Gunnar and Barnett, Stephen M. (1999) Quantum local-field corrections and spontaneous decay. Physical Review A, 60 (2). 1590 -1597. ISSN 1094-1622

[img]
Preview
Text (strathprints006453)
strathprints006453.pdf
Accepted Author Manuscript

Download (157kB) | Preview

Abstract

A recently developed scheme [S. Scheel, L. Knöll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)] for quantizing the macroscopic electromagnetic field in linear dispersive and absorbing dielectrics satisfying the Kramers-Kronig relations is used to derive the quantum local-field correction for the standard virtual-sphere-cavity model. The electric and magnetic local-field operators are shown to become approximately consistent with QED only if the polarization noise is fully taken into account. It is shown that the polarization fluctuations in the local field can dramatically change the spontaneous decay rate, compared with the familiar result obtained from the classical local-field correction. In particular, the spontaneous emission rate strongly depends on the radius of the local-field virtual cavity.