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Abstract—Due to its excellent performance in terms of fast implementation, strong generalization capability and 

straightforward solution, extreme learning machine (ELM) has attracted increasingly attentions in pattern recognition such as 

face recognition and hyperspectral image (HSI) classification. However, the performance of ELM for HSI classification remains 

a challenging problem especially in effective extraction of the featured information from the massive volume of data. To this end, 

we propose in this paper a new method to combine convolutional neural network (CNN) with ELM (CNN-ELM) for HSI 

classification. As CNN has been successfully applied for feature extraction in different applications, the combined CNN-ELM 

approach aims to take advantages of these two techniques for improved classification of HSI. By preserving the spatial features 

whilst reconstructing the spectral features of HSI, the proposed CNN-ELM method can significantly improve the accuracy of 

HSI classification without increasing the computational complexity. Comprehensive experiments using three publicly available 

HSI datasets, Pavia University, Pavia center, and Salinas have fully validated the improved performance of the proposed method 

when benchmarking with several state-of-the-art approaches.   

Keywords—Hyperspectral image (HSI) classification, Convolutional neural network (CNN), Extreme learning machine (ELM), 

Pattern recognition. 

1 Introduction 

With spectral information in hundreds of continuous narrow bands and spatial information acquired simultaneously, 

hyperspectral imaging has facilitated a number of applications, such as agricultural, military defense, agriculture, medical 

diagnosis and analyses of crime scene details (Khan et al; 2018, Boldrini et al, 2012), especially in remote sensing earth 

observation. As the spectral profiles can reflect certain physical (i.e. moisture/temperature) or chemical differences of the objects, 

this has been widely used in land mapping for classification of the images (Khan et al, 2018). Although HSI data classification is 

conceptually similar to image labeling in computer vision (Wang et al. 2015), one fundamental challenge here is the curse of 

dimensionality or Hughes phenomenon (Hughes. 1968) caused by limited labeled data samples (in spatial domain) but too many 

spectral bands (feature dimensions) (Yu et al. 2017; Sun et al. 2016). 

To tackle this problem, a number of techniques have been proposed for feature extraction and dimensionality reduction (Yuan 

et al. 2017; Du et al. 2016, such as principal component analysis (PCA) (Zabalza et al. 2014), singular spectrum analysis (SSA) 

(Qiao et al. 2017; Zabalza et al. 2015; Qiao et al. 2015), Low-Rank Representation (Lu et al. 2013), and segmented auto-encoder 

(Zabalza et al. 2016). For data classification, typical approaches include support vector machine (SVM) (Melgani and Bruzzone 

2004), multi-kernel classification (Fang et al. 2015), k-nearest-neighbors (k-NN) (Ma et al. 2010) and multinomial logistic 

regression (MLR) (Li et al. 2012, 2010) et al. Among these approaches, spatial-spectral analysis becomes a trend as it extracts 

information in both spatial domain and spectral domain. Whilst spectral information measures the physical/chemical 

characteristics, it is the spatial structuring information that groups pixels into objects. Therefore, fusion of these two modalities 

of information is essential for classification of HSI data.  

For effective spatial-spectral analysis of HSI, convolutional neural network (CNN) based deep learning is employed for its 
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success in feature extraction and extraction of the hidden structures of the data (Hinto and Salakhutdinov 2006). As one of the 

most popularly used model in deep learning, CNN can exploit spatially local correlation by enforcing a local connectivity pattern 

between neurons of adjacent layers (Hu et al. 2015; Fukushima 1988; Lecun et al. 1998; Ciresan et al. 2011; Simard et al. 2003). 

Although CNN has already been successfully applied for HSI classification (Slavkovikj et al. 2015; Yue et al. 2015; Makantasis 

2015), the training process is over complicated due to the lengthy iterations over the high data volume. For practical applications 

especially with airborne or satellite based systems, the computational cost needs be cut down to the meet the requirement for 

real-time data analysis. 

In this paper, a convolutional neural network extreme learning machine (CNN-ELM) approach is proposed for hyperspectral 

image classification. Inspired by the reference (Khan et al. 2017), we get the idea of the complete architecture and the purpose of 

each layer and training parameters of CNN. Rather using a lengthy process for iterative feature extraction, we apply CNN for 

only one iteration in training, followed by ELM for data classification under significantly reduced time for feature extraction. 

CNN has been combined with other methods for classification. For example, CNN and SVM has been combined and 

successfully applied for HSI classification, where CNN was used for feature extraction followed by SVM for classification (Leng 

et al 2016). However, compared with SVM, ELM has more efficient computation and comparable classification accuracy (Li et 

al, 2015). As a single-hidden layer feedforward neural network, ELM has been successfully applied in a number of application 

areas for merits in terms of fast implementation, straightforward solution and strong generalization capability (Huang et al. 2004; 

Bai et al. 2014; Huang et al. 2012). As a result, the combination of these two methods is expected to produce much improved 

data classification results in our proposed CNN-ELM approach. Furthermore, as can be seen from the references (Khan et al, 

2018; Boldrini et al, 2012), HSI classification methods can be applied for many applications. Hence, the proposed methods can 

also be applied for many applications, such as land map classification, medical diagnosis, etc. 

The main contributions of the proposed CNN-ELM approach can be highlighted as follows. First, the combination itself is rare, 

especially for HSI classification with CNN used for feature extraction and ELM for data classification. Second, the proposed 

method can not only reconstructs the spectral features but also preserve the spatial information. Third, applying CNN only for 

one iteration has significantly reduced the computational cost whilst still improved the classification accuracy. The experiment 

results on three well-known publicly available HSI datasets, Pavia University, Pavia center, and Salinas, have validated the 

efficacy of the proposed approach when benchmarking with several the-state-of-art techniques.  

The remainder of this paper is organized as follows. Section 2 introduces briefly the background knowledge of ELM and CNN. 

Section 3 discusses in detail the proposed CNN-ELM approach in three steps, i.e. normalization, CNN based spectral feature 

reconstruction and ELM based classification. Experimental results and analysis are presented in Section 4, followed by some 

concluding remarks drawn in Section 5. 

2 Reviews of ELM and CNN for Data Classification in HSI 

In this section, the background knowledge of CNN and ELM is presented. Discussions are followed to show how they can be 

applied in HSIs for data classification. 

2.1 Background introduction of ELM 

Let 𝐱 = (x1, x2, …  , xN) ∈ RN×d denote training samples of a HSI, which has N samples of spatial pixels and each sample 

is a d-dimension vector, we also define 𝐲 = (y1, y2, … , yN) ∈ RN×M as the desired output of M different labels for the N samples. 

As shown in Fig. 1, ELM is a single-hidden layer feedforward neural network, and an ELM with L hidden nodes can be modeled 

as (Huang et al. 2011): 

∑ 𝛽𝑗𝐺(𝑤𝑒𝑗
𝑇𝑥𝑖 + 𝑏𝑖𝑗

𝐿
𝑗=1 ) = 𝑦𝑖                                     (1) 

where T is the transpose operation, 𝑤𝑒𝑖 = (𝑤𝑒𝑖1, 𝑤𝑒𝑖2, … , 𝑤𝑒𝑖𝑑) and bii are respectively the weight vector and the bias 
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connecting the input layer and hidden layer of the i-th sample of his. In addition, β
j
 is the ouput weight vector of i-th sample of 

his, and g is the activation function. 

For data classification, there are three key steps in ELM as detailed below.  

Step1: Assign random inputs for the weight vector wei and the bias bii, where i = 1, 2, … , 𝐿. 

   Step2: Using (1) to calculate the output matrix of the hidden layer G 

where                   𝐺(𝑤𝑒1, 𝑤𝑒2, … , 𝑤𝑒𝐿; 𝑥1, 𝑥2, … , 𝑥𝑁; 𝑏𝑖1, 𝑏𝑖2, … , 𝑏𝑖𝐿) 

= [
𝑔11(𝑤𝑒1

𝑇𝑥1 + 𝑏1) … 𝑔1𝐿(𝑤𝑒𝐿
𝑇𝑥1 + 𝑏𝑖𝐿)

… … …
𝑔𝑁1(𝑤𝑒1

𝑇𝑥𝑁 + 𝑏1) … 𝑔𝑁𝐿(𝑤𝑒𝐿
𝑇𝑥𝑁 + 𝑏𝑖𝐿)

]                                (2) 

 

Step 3: Calculate the output weight matrix 𝛽 = [𝛽1, … , 𝛽𝐿]𝐿×𝑀 by 

                              𝛽 = 𝐺†𝑦.                                             (3) 

where G† denotes Moore-Penrose generalized inverse of matrix G (Huang et al. 2004）, and y represents the desired output in 

(1).     

Any piecewise continual function can be used as the hidden layer activation function (Huang et al. 2004). The input weight 

and bias of ELM are randomly generated and The output weight matrix can be computed as β = G† ∗ y, so the time-consuming 

can be greatly reduce. 

 

 

 

 

 

 

                      

      

 

 

Fig. 1. The architecture of an ELM. 

2.2 Background introduction of CNN 

CNN is considered to be one of the relatively successful machine learning methods because of its good performance. As 

shown in Fig. 2, a typical CNN consists of several layers (Hu et al. 2015; Sainath et al. 2013). The first layer is the input layer, 

while the second and third layers are the convolution layer and the max pooling layer, respectively. The convolution layer 

convolutes the input data to form the feature map to reduce the training parameters. That is to say, each hidden activation 

function of CNN is computed by multiplying a small local input with the weights W. The neurons belonging to the same layer 

share the same weights, which can be describe as follows: 

                         ℎ𝑖 = 𝑊 ∗ (𝑥𝑖 + 𝑥𝑖+1 + 𝑥𝑖+2) + 𝑏𝑖                                   (4) 

where 𝑏𝑖 is the bias of the convolutional layer. The max pooling layer partitions the feature map from convolutional layer into a 

set of non-overlapping windows and outputs the maximum value. The final layer is a fully connected layer which outputs the 

classification results. 

2.3 Adapting CNN and ELM in HSI 
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Comparing with SVM and other state-of-the-art data classification algorithms, ELM is considered as a promising method with 

the following advantages (Samat et al. 2014). Firstly, it has a simpler structure and higher generalization performance than SVM 

and most others. Secondly, it has a very high computational efficiency for greatly shortened training time. Thirdly, it needs no 

tuning of additional parameters when the network structure is set. Fourthly, there are many available piecewise continual 

functions which can be used as the activation function, such as sine function, radial basis function and sigmoid function, etc. As a 

result, ELM has been successfully applied in many applications (Samat et al. 2014). However, the classification results are not 

high when applying ELM directly to HSI. The reason of low recognition rate mainly is that the ELM cannot catch the depth 

features of HSI. For example, as reported in (Lv et al. 2016), the overall classification accuracy of ELM for Pavia University 

datasets is only 79.58%. Therefore it is a critical problem how to maintain fast speed of ELM and improve the accuracy for HSI 

classification. 

As mentioned above, CNN can extract the spectral features of depth of HSI data very well. So we use CNN to extract the 

depth feature of HSI, then the reconstructed pixels of HSI are used as the input of ELM. The combination of these two methods 

is expected to obtain good classification results and maintain the fast speed for HIS classification.  

 

 

 

 

 

 

 

 

 

 

Fig. 2. A typical architecture of CNN consists of input layer, convolutional layer, max pooling layer and fully connected layer. 

3 The Proposed CNN-ELM Approach 

The proposed method can be divided into three parts: normalization, spectral feature reconstruction using CNN, and 

classification using ELM. 

3.1 Normalization  

Let x ≡ (𝑥1, 𝑥2, …  , 𝑥𝑁) ∈ 𝑅𝑁×𝐿 be a HSI data that has N samples and L feature. Normalization is a preprocessing process 

that it makes the HSI data remain in the range of [0, 1]. Since the normalization is an important preprocessing step for HSI 

classification, many normalization approaches have been proposed. Here we choose the following widely used normalization 

method (Li et. al. 2015), which can be described as follows: 

                        𝑥𝑖𝑗 =
𝑥𝑖𝑗

max (𝑋)
  i = 1, 2, … , N; j = 1, 2, … , L                             (5) 

where 𝑥𝑖𝑗  is any pixel of the HSI data, and max() gets the largest one of all the data. 

3.2 Spectral feature reconstruction using CNN 

In order to maintain the high speed of the algorithm, we let CNN iterate only one time to reduce the consuming time. The 

hierarchical structure of CNN has been shown to be the most successful and efficient method to learn visual features. HSI data 
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have hundreds of spectral bands so that we can think of the spectral feature of pixels as a two-dimensional curve. We use CNN to 

extract the spectral feature of the depth of the pixel to reconstruct the spectral feature, and then improve the classification 

accuracy of ELM with little consuming time.  

Table 1 The architecture of CNN we used.  

 

 

 

 

 

 

 

 

As show in Table 1, CNN consists of eight layers. The first layer is the input layer which represents the spectral vector of one 

pixel of HSI dataset. The second and third layers are the convolution layer and the max pooling layer, respectively. The fourth 

layer and the fifth layer are also convolution and max pooling layer. The data from convolutional layer after max pooling 

operation is a series of feature map, but the input received by the multi-layer perceptron is a vector. So the elements in these 

feature maps should be arranged in a vector. The sixth layer is the rasterization layer which is a fully connected layer, followed 

by another fully connected layer, and then the final layer is the output layer. Table 1 shows an example of the number of 

maps/filters and the kernel sizes in each layer, where K1, K2, K3 and K4 are the kernel size in the corresponding layer, which 

will be given the exact sizes for different datasets in the experimental section. The output layer of CNN is just used for training. 

The purpose is to update the weights and bias for back propagation, which would allow deeper features to be extracted. We will 

not use the output layer when we test our labeled sample. θ is assumed to represent all training parameters, θ={𝜃𝑖} and 

i=2,3,4,5,6,7,8 where 𝜃𝑖 is the parameters set between the (i-1)-th and the i-th layers. 

Assuming 𝑥𝑖 is the input of the i-th layer and the output of the th (i+1)-th layer, we can compute 𝑥𝑖+1 by the following 

formula: 

                                   𝑥𝑖+1 = 𝑓𝑖(𝑢𝑖)                                        (6) 

where            

                   𝑢𝑖 = 𝑤𝑖
𝑇𝑥𝑖 + 𝑏𝑖                                       (7) 

and 𝑇 is transpose operation, 𝑤𝑖  and 𝑏𝑖is the weight matrix and bias of the ith layer acting on the input data, respectively.  

For the output layer, we use softmax function as the activation function, which is defined as: 

                               y =
1

∑ 𝑒
𝑤𝐿,𝑘

𝑇 𝑥𝐿+𝑏𝐿,𝐾𝑛7
𝑘=1

[
𝑤𝐿,1

𝑇 𝑥𝐿 + 𝑏𝐿,1

…
𝑤𝐿,𝑛7

𝑇 𝑥𝐿 + 𝑏𝐿,𝑛7

].                                (8) 

The back propagation updates the weights until the error is acceptable. The error is the deviation between the actual response 

of the training sample in the forward propagation phase and the target output corresponding to the sample. The training 

parameters are updated by minimizing the loss function which is achieved by gradient descent. The loss function in our work is 

defined as follows:   

Layer Type Number of maps and neurons 

and maps 

Kernel Size Stride 

1 Input 1 map of n1 neurons   

2 Convolutional 10 map of n2 neurons K1 1 

3 Max pooling 10 map of n3 neurons K2 1 

4 Convolutional 20 map of n4 neurons K3 1 

5 Max pooling 20 map of n5 neurons K4 1 

6 Rasterization n6 neurons   

7 Fully-connected n7 neurons   

8 Output n8 neurons   
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                          J(θ) = −
1

𝑃
∑ ∑ 1{𝑗 = 𝑌(𝑖)𝑛7

𝑗=1
𝑝
𝑖=1 }log (𝑦𝑗

(𝑖)
),                           (9) 

where p is the total number of training samples, Y and 𝑦𝑗
(𝑖)

 are the desired output and the actual output of the j-th sample, 

respectively. The probability value of the desired output of the j-th sample is 1, and the probability values of the others are 0. The 

expression 1{𝑗 = 𝑌(𝑖)} = 1 if j is equal to the desired output 𝑌(𝑖) of the i-th training sample, otherwise its value is equal to 0. 

The training parameters are update by the following equation: 

                                  θ = θ − α∇𝜃𝐽(𝜃)                                       (10) 

where α is the learning factor which is set to be 0.05 in our experiment, and 

                                 ∇𝜃𝐽(𝜃) = {
𝜕𝐽

𝜕𝜃1
,

𝜕𝐽

𝜕𝜃2
, … ,

𝜕𝐽

𝜕𝜃𝐿
}                                  (11) 

and                              

        
𝜕𝐽

𝜕𝜃𝑖
= {

𝜕𝐽

𝜕𝑤𝑖
,

𝜕𝐽

𝜕𝑏𝑖
}.                                      (12) 

3.3 Classification using ELM 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 The flowchart of the proposed CNN-ELM. 

As mentioned above, when applying to HSI dataset, ELM can’t extract the spectral feature of depth. This causes low 

recognition rate. To improve the accuracy, we use CNN to reconstruct the spectral features. Then the spectral features of depth 

are used as the input of ELM. Let 𝑥∗ ≡ (𝑥1, 𝑥2, …  , 𝑥𝑁) ∈ 𝑅𝑁×𝑄 be the reconstructed spectral feature datasets, i.e., every 

pixel of HSI is reconstructed to be Q-dimensions, 𝑦 = (𝑦1, 𝑦2, …  , 𝑦𝑁)𝑅𝑁×𝑀 be the corresponding target label, L be the 

hidden neuron numbers and 𝑔∗(𝑤𝑒∗𝑥∗ + 𝑏𝑖∗) be the activation function of hidden layer, then the process of classification by 

ELM can be described as follows: 

Step1: Generate the input weight matrix 𝑤∗and bias vector 𝑏∗ randomly using the uniform distribution function. 

Step2: Compute the output matrix of the hidden layer, 

𝐺∗(𝑤𝑒1
∗, 𝑤𝑒2

∗, … , 𝑤𝑒𝐿
∗; 𝑥1

∗, 𝑥2
∗, … , 𝑥𝑁

∗ ; 𝑏𝑖1
∗, 𝑏𝑖2

∗, … , 𝑏𝑖𝐿
∗) 

    = [
𝑔11(𝑤𝑒1

∗𝑇𝑥1
∗ + 𝑏𝑖1

∗) … 𝑔1𝐿(𝑤𝑒𝐿
∗𝑇𝑥1

∗ + 𝑏𝑖𝐿
∗)

… … …
𝑔𝑁1(𝑤𝑒1

∗𝑇𝑥𝑁
∗ + 𝑏𝑖1

∗) … 𝑔𝑁𝐿(𝑤𝑒𝐿
∗𝑇𝑥𝑁

∗ + 𝑏𝑖𝐿
∗)

].                                        (13) 

Step3: Calculate the output weights  

                                    𝛽∗ = 𝐺∗†𝑦∗                                     (14) 
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where                                           𝛽∗ = [
𝛽1

∗

…
𝛽𝐿

∗
]

𝐿×𝑀

                                    (15) 

and † is the Moore-Penrose generalized by the inverse of the hidden layer matrix . 

The final classification result can be expressed by the following equation:     

𝑓(𝑥∗) = 𝐺∗𝛽∗.                                      (16) 

We use different numbers of hidden nodes of ELM for different HSI datasets. Better results are achieved by using different 

hidden nodes according to different HSI data. Fig. 3 shows the flow chart of our proposed method. 

4 Experiments and Analysis 

In this section, we apply the proposed method to three well known HSI datasets. We use different architectures of CNN for 

different HSI datasets. The CNN architectures of Pavia University, the CNN architectures of Pavia Center, and the architectures 

of Salinas are shown in Table 2. The architectures of CNN we used are very effective and our experiment results in three well 

known HSI datasets demonstrate the feasibility of the architecture.  

Table 2 The architecture of CNN with Pavia University, Pavia Center, Salinas 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Dataset 

The three HSI datasets and the experiment results are described as follows: 

(1) ROSIS Pavia University HSI: 

The first HSI (Li et al. 2013) dataset was collected in 2001 by the Reflective Optics System Imaging Spectrometer 

(ROSIS) optical sensor which provides 103 bands after removing 12 noisiest bands with a spectral range coverage ranging 

  CNN architecture parameters of 

Pavia University 

CNN architecture parameters 

of Pavia Center 

CNN architecture parameters 

of Salinas 

Lay

er 

Type Numbers of 

maps and 

neurons 

Kernel 

size 

strid

e 

Numbers of 

maps and 

neurons 

Kerne

l size 

strid

e 

Numbers of 

maps and 

neurons 

Kerne

l size 

stride 

1 Input 1 map of 103 

neurons 

  1 map of n1 

neurons 

  1 map of 204 

neurons 

  

2 Convolutional 10 map of 98 

neurons 

6×1 1 10 map of 102 

neurons 

5×1 1 10 map of 196 

neurons 

9×1 1 

3 Max pooling 10 map of 49 

neurons 

2×1 1 10 map of 49 

neurons 

2×1 1 10 map of 98 

neurons 

2×1 1 

4 Convolutional 20 map of 44 

neurons 

6×1 1 20 map of 44 

neurons 

6×1 1 20 map of  90 

neurons 

9×1 1 

5 Max pooling 20 map of 22 

neurons 

2×1 1 20 map of 22 

neurons 

2×1 1 20 map of 45 

neurons 

2×1 1 

6 Rasterization 440   440 neurons   900 neurons   

7 Fully-connected 100   100 neurons   204 neurons   

8 Output 9   9 neurons   16 neurons   
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from 0.43 to 0.86 um. The size of the image in pixels is 610×340 with very high spatial resolution of 1.3 m and 9 ground 

truth classes. The numbers of training samples is 3921 (about 9%) of all labeled data, and all the labeled data are used for 

testing. Table 3 shows the number of train samples and test samples in our experiments.    

(2) ROSIS Pavia Center HSI:  

The second HSI (Sun et al. 2015) dataset was the other urban image collected in 2001 by the ROSIS sensors over the 

center of the Pavia city. The dataset has 1096×715 pixels which each has 102 spectral bands after removing 13 noisy 

bands. There are also nine classes of images, and the number of training and test samples of each class of the HSI in our 

experiments is shown in Table 3. There are about 7456 labeled samples used for training, which accounts for about 5 

percent of the total sample. In order to compare the classification accuracy with other state-of-the-art methods, we use the 

rest of the labeled samples for testing. 

(3) AVIRIS Salinas HSI: 

The third HSI (Zhang et al. 2016) dataset was collected by the AVIRIS sensor over Salinas Valley, California. The 

image has 214 pixels and every pixel has 224 bands. After removing 20 water absorption bands of spectral, only 204 

bands in each pixel. There are 16 classes in the ground truth image and the number of training and test is shown in Table 3. 

In order to compare with other state-of-the-art method, we also use rest labeled samples for testing. 

Table 3 The number of training sample and test sample of Pavia University, Pavia Center and Salinas. 

Pavia University Pavia Center Salinas 

Class Train Test Class Train Test Class Train Test Class Train Test 

Asphalt 548 6631 Water 824 65147 Brocoli_green_weed_1 200 1809 Soil_vinyard_develop 620 5583 

Meadows 540 18649 Trees 820 6778 Brocoli_green_weed_2 372 3354 
Corn_sensced_green_wee

ds 
327 2951 

Gravel 392 2099 
Meadow

s 
824 2266 Fallow 197 1779 Lettuce_romaine_4wk 106 962 

Trees 524 3064 Bricks 808 1891 Fallow_rough_plow 139 1255 Lettuce_romaine_5wk 192 1735 

Metal 

sheets 
265 1345 Soil 820 5764 Fallow_smooth 267 2411 Lettuce_romaine_6wk 91 825 

Bare soil 532 5029 Asphalt 816 8432 Stubble 395 3564 Lettuce_romaine_7wk 107 963 

Bitumen 375 1330 Bitumen 808 6479 Celery 357 3222 Vinyard_untrained 726 6542 

Bricks 514 3682 Tiles 1260 41566 Grapes_untrained 1127 10144 Vinyard_vertical_treils 180 1627 

Shadows 231 947 Shadows 476 2387       

 

It is worth noting that in our experiments, the final output layer of the CNN architectures is only used during training. 

It facilitates the update of the weights and bias in the back propagation process, so that it can extract spectral feature of depth. 

We do not need to use the final output layer in the test process. We directly use the reconstructed spectral feature of the seventh 

layer as input of ELM. In order to maintain the high speed of the algorithm, we let CNN iteration for only one time to reduce the 

consuming time in the experiment. It is found that it can obtain high classification accuracy with little consuming time. For the 

three HSI datasets, all the training samples are randomly selected, and all the experiment results were averaged by ten times in 

Monte Carlo runs. The number of hidden neuron of ELM in each HSI dataset is shown in Table 4. 

4.2 The experiments results and analysis of Pavia University dataset 

In this subsection, we evaluate the proposed method by comparing with other state-of-the-art methods of HSI classification 
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using the University of Pavia dataset. Fig. 4 (a) and (b) show the training sample and the classification results with 3921 training 

samples and all the labeled samples, respectively. Table 5 shows the OA (overall accuracy), AA (average accuracy), k (kappa 

coefficient) and individual class accuracies of the proposed method and other state-of-the-art methods. In contrast to other 

methods, our proposed method obtains the best results with the same training samples (about 9% of available samples). Table 3 

shows the number of training samples and test samples of Pavia University dataset in this experiment. 

Table 4 The hidden nodes of ELM after CNN reconstruct pixel of HSI. 

 

 

 

 

 

Compared with ELM (Lv et al. 2016), our proposed method is superior to ELM for the classification accuracy of each class. 

In Table 5, we can see that for each class, we improve all the classification accuracy, and for the OA, AA, k, we improve 13.72%, 

9.85%, 17.95%, respectively. It shows that our method improves the classification accuracy a lot. 

 

 

 

 

 

 

 

 

 

 

 

                        

(a)                         (b) 

Fig. 4. Pavia University dataset: (a) Training samples; (b) Testing classification results. 

Table 5 PAVIA University: Overall, Average, and individual class accuracy (in percent) and k statistic of different classification methods with 9% 

training samples. The best accuracy in each row is show bold. 

Class  𝐒𝐕𝐌

− 𝐂𝐊† 

𝐄𝐌𝐏

/𝐒𝐕𝐌‡ 

𝐋𝐎𝐑𝐒𝐀𝐋

− 𝐂𝐊† 

𝐖𝐚𝐭𝐞𝐫𝐬𝐡𝐞𝐝# 𝐋𝐎𝐑𝐒𝐀𝐋

− 𝐌𝐋𝐋† 

𝐌𝐏𝐌

− 𝐋𝐁𝐏⨂ 

𝑺𝑴𝑳𝑹

− 𝑺𝒑𝑨𝑻𝑽† 

𝐄𝐋𝐌∆ CNN-ELM 

Asphalt 79.85 95.36 77.17 93.64 88.48 95.70 94.57 77.27 89.54 

Meadows 84.68 63.72 81.61 97.35 76.22 73.27 82.56 77.53 94.14 

Gravel 81.87 98.87 82.42 96.23 73.56 74.18 81.13 80.14 86.51 

Trees 96.36 95.41 95.46 97.92 98.76 97.85 95.01 95.69 97.17 

Metal sheets 99.37 87.61 99.03 66.12 99.70 99.85 100.0 99.69 98.94 

Bare soil 93.55 80.33 96.94 75.09 97.47 98.55 100.0 80.47 94.02 

Bitumen 90.21 99.48 93.83 99.91 94.74 97.97 99.17 82.97 95.17 

HSI dataset The numbers of hidden nodes 

Pavia University 900 

Pavia Center 900 

Salinas 1100 

1 Asphalt 

2 Meadows 

3 Gravel 

4 Trees 

5 Metal sheets 

6 Bare soil 

7 Bitumen 

8 Bricks 

9 Shadows 
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Bricks 92.81 97.68 94.65 96.98 96.66 98.89 98.45 70.27 91.16 

shadows 95.35 98.37 97.47 98.56 99.37 93.56 95.45 93.49 99.49 

OA 87.18 85.22 86.16 85.42 85.69 85.78 90.01 79.58 93.30 

AA 90.47 90.76 90.95 91.31 91.66 92.20 94.04 84.17 94.02 

k 83.3 80.86 82.40 81.30 81.90 82.05 87.2 73.26 91.21 

 

Notes:  

The results of  SVM − CK†  (SVM combined with CK (composite kernel)), LORSAL − CK† , LORSAL − MLL† (LORSAL 

combined with multilevel logistic spatial prior) and SMLR − SpATV† (sparse multinomial logistic regression combined with 

Markov random field) are directly taken from (Sun et al. 2015).  

The results of EMP/SVM‡ (EMPs combined with SVM) are directly taken from (Plaza et al. 2009). 

The results of Watershed# are directly taken from (Tarabalka et al. 2010).  

The results of MPM − LBP⨂ are directly taken from (Li et al. 2013). The results of ELM∆ are taken from (Lv et al. 2016).  

CNN-ELM is the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                           (b) 

Fig. 5. Pavia Center dataset: (a) Training samples; (b) Testing classification results. 

4.3 The experiments results and analysis of Pavia Center dataset  

In this experiment of HSI datasets, we evaluate the classification accuracy of the proposed method by comparing with other 

state-of-the-art methods of HSI classification. Fig. 5 (a) and (b) show the training sample and the classification results of the 

proposed method with 7456 training samples and remaining samples, respectively. Table 6 shows the OA (overall accuracy), AA 

(average accuracy), k (kappa coefficient), and each class’ accuracy. In contrast to other methods, the experiment results 

demonstrate our proposed method yields the best results with the same training samples (about 5% of available samples) and test 

samples. The number of training samples and test samples of this experiment is shown in Table 3. The experiment results 

demonstrate our proposed method achieves higher accuracies than other method. 

  Compared with ELM (Li et al. 2017) in the Table 6, we can see that our proposed method not only improve the classification 

accuracies of each class, but also improve the OA, AA, and k. For the OA, AA, and k, we improve 4.33%, 12.98% and 8.23%, 

respectively. The experiment results demonstrate the feasibility of the proposed method again.  

Table 6 PAVIA Center: Overall, Average, and individual class accuracy (in percent) and k statistic of different classification methods with 5% 

1 Water 

2 Trees 

3 Meadow 

4 Bricks 

5 Soil 

6 Asphalt 

7 Bitumen 

8 Tile 

9 Shadows 
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training samples. The best accuracy in each row is shown in bold. 

Class DAFE† DBFE† OMP‡ SOMP‡ FOMP‡ ELM‡ CNN-ELM 

Water 98.9 96.9 99.21 99.87 99.97 98.54 99.86 

Trees 88.3 91.2 87.70 87.93 87.70 88.35 95.45 

Meadow 96.3 95.9 95.92 97.68 97.15 92.31 96.93 

Bricks 99.6 98.8 81.27 73.60 83.38 76.31 97.18 

Soil 98.5 98.4 94.08 96.67 95.51 89.51 96.52 

Asphalt 99.2 98.6 80.15 77.44 78.66 94.09 97.88 

Bitumen 99.4 99.1 91.09 94.75 92.98 84.32 94.68 

Tile 99.7 99.7 97.79 98.48 98.62 95.27 99.12 

shadows 63.6 100 74.72 83.20 95.53 46.85 99.90 

OA 98.05 97.83 95.45 96.20 96.56 94.52 98.85 

AA 93.71 97.66 89.10 89.96 92.17 84.52 97.50 

k 97.17 96.88 91.74 93.07 93.73 90.11 98.34 

Notes: 

The results of DAFE† (Use the mean vector and the covariance matrix of each class for classification) and DBFE†(Features are 

extracted from the decision boundary between two classes) are taken from (Ghamisi et al. 2014).  

The results of OMP‡  (Orthogonal Matching Pursuit), SOMP‡ (Simultaneous Orthogonal Matching Pursuit), FOMP‡ 

(First-order neighborhood system weighted constraint OMP), ELM‡ are directly taken from (Li et al. 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

          (a)                                (b) 

Fig. 6 Salinas dataset: (a) Training samples; (b) Testing classification results. 

4.4 The experiments results and analysis of AVIRIS Salinas dataset 

In this HSI set of experiment, we evaluate our proposed method using the Salinas datasets. Table 7 shows the OA, AA and k 

statistic of our methods and the other methods using 10% training samples. Fig. 6 (a) and (b) show the training sample and the 

classification results of the proposed method with 5403 training samples and remaining samples, respectively. Table 3 shows the 

number of training samples and the test samples of each class. It can be seen that our proposed method achieved better 

performance than other state-of-the-art HSI classification method. From Table 7, we can see that the proposed method achieves 

better performance than ELM (Li et al. 2017). For the OA, AA, k, the proposed method is higher than ELM with 6.22%, 4.98%, 

6.94%, respectively. 

1 Brocoli_green_weed_1   9 Soil_vinyard_develop 

2 Brocoli_green_weed_2 10 Corn_sensced_green_weeds 

3 Fallow 11 Lettuce_romaine_4wk 

4 Fallow_rough_plow 12 Lettuce_romaine_5wk 

5 Fallow_smooth 13 Lettuce_romaine_6wk 

6 Stubble 14 Lettuce_romaine_7wk 

7 Celery 15 Vinyard_untrained 

8 Grapes_untrained 16 Vinyard_vertical_treils 
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Table 7. SALINAS: overall, average, and individual class accuracy (in percent) and k statistic of different classification methods with 10% 

training samples. The best accuracy in each row is shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 

The results of SR†(Sparse Representation) and KSR†(Kernel Sparse Representation) are taken from (Zhang et al. 2016).  

The results of SVM‡, OMP‡, SOMP‡ and ELM‡ are directly taken from (Li et al. 2017).  

The CNN-ELM is the proposed method. 

4.5 Impact of hidden neurons of ELM 

 In this experiment, we conduct an evaluation of the impact of the numbers of hidden neurons of ELM using Pavia University, 

Pavia Center and Salinas. The number of hidden neurons of ELM is an important parameter for HSI classification, so it is worthy 

to discuss. 

Fig. 7 (a), (b) and (c) plot the OA, AA, and kappa statistic results as a function of variable l (the numbers of hidden neurons of 

ELM) with 3921, 7456 and 5403 training samples for the three datasets, respectively. From Fig. 7(a), (b) and (c), we can see that 

l is an important parameter for HSI classification. For Pavia University and Pavia Center datasets, we should choose 900 hidden 

neurons. But for the Salinas dataset, we should choose 1100 hidden neurons. By choosing appropriate hidden layer nodes, we 

obtain the best classification accuracy for ELM. For the training samples, we choose them randomly of each class in the all 

labeled samples. 

From Fig. 7 (a) and Fig. 8, we can see that the classification results are different with different l. The classification results of 

OA, AA, kappa statistic of Pavia University is 93.30%, 94.02%, 91.21%, respectively when the hidden neurons of ELM is set to 

900, and the classification result with 900 hidden neurons of ELM outperforms other classification results with 300, 600, 1200 

and 1500 hidden neurons. 

Class SR† KSR† SVM‡ OMP‡ SOMP‡ ELM‡ CNN-ELM 

Brocoli_green_weed_1 99.72 99.61 99.5 99.50 99.78 99.61 99.83 

Brocoli_green_weed_2 99.34 99.28 100 99.43 99.52 97.17 99.70 

Fallow 97.58 97.47 98.99 96.68 97.81 91.57 99.78 

Fallow_rough_plow 99.52 99.52 99.44 99.60 99.36 90.52 99.68 

Fallow_smooth 98.26 98.18 99.17 97.06 96.43 93.28 98.80 

Stubble 99.75 99.69 99.94 99.89 99.86 99.55 99.52 

Celery 99.84 99.78 99.72 99.60 99.41 98.98 99.44 

Grapes_untrained 87.67 89.73 89.79 78.77 82.29 81.66 89.51 

Soil_vinyard_develop 99.73 99.70 99.80 99.12 99.44 96.96 99.87 

Corn_sensced_green_weeds 96.81 96.75 95.29 95.39 94.71 86.00 97.19 

Lettuce_romaine_4wk 98.23 98.02 97.51 97.71 96.88 93.14 99.69 

Lettuce_romaine_5wk 100 99.88 99.60 99.65 100 99.37 100 

Lettuce_romaine_6wk 99.15 98.91 97.45 97.58 96.00 96.73 97.70 

Lettuce_romaine_7wk 96.37 96.16 93.67 94.91 96.57 92.00 97.20 

Vinyard_untrained 67.85 67.82 67.84 65.81 71.29 60.29 78.43 

Vinyard_vertical_treils 99.45 99.32 98.46 98.46 98.40 94.65 94.78 

OA   92.48 92.42 92.83 89.99 91.46 87.91 94.13 

AA 96.21 96.10 96.01 94.95 95.49 91.97 96.95 

k 93.45 93.27 92.00 88.85 90.49 86.51 93.45 
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(a)                                                           (b) 

 

 

 

 

 

 

 

 

 

 

 

                                           (c) 

Fig. 7. The impact of hidden neurons of ELM: (a) Pavia University; (b) Pavia Center; (c) Salinas. 

 

From Fig. 7 (b) and Fig. 9, although the AA of 1200 and 1500 hidden neurons are higher than 900 hidden neurons, the 900 

hidden neurons achieve the best OA and kappa statistic. The OA, AA, kappa statistic with 900 hidden neurons is 98.85%, 97.50% 

and 98.34%, respectively. So we can say that 900 hidden neurons are the best choice for Pavia datasets. 

The same as Pavia Center, from Fig. 7 (c) and Fig. 10, we can know that the AA is higher with 1400 hidden neurons than AA 

with 1100 hidden neurons, but the 1100 hidden neurons achieve the best classification results. So 1100 hidden neurons are the 

best choice for Salinas datasets. 
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(a)                (b)                 (c)                   (d)                  (e) 

Fig.8. The different classification results of Pavia University: (a) 300 hidden neurons of ELM with 91.27% (OA); (b) 600 hidden neurons of 

ELM with 93.16% (OA); (c) 900 hidden neurons of ELM with 93.3% (OA); (d) 1200 hidden neurons of ELM with 93.18% (OA); (e) 1500 

hidden neurons of ELM with 92.49% (OA).   

 

          (a)                 (b)                (c)                  (d)                 (e)                         

Fig.9. The different classification results of Pavia Center: (a) 300 hidden neurons of ELM with 98.57% (OA); (b) 600 hidden neurons of ELM 

with 98.75% (OA); (c) 900 hidden neurons of ELM with 98.85% (OA); (d) 1200 hidden neurons of ELM with 98.77% (OA); (e) 1500 hidden 

neurons of ELM with 98.68% (OA). 

5 Conclusion 

In this paper, we have proposed a new method for HSI classification by combining CNN with ELM. Firstly, we used CNN for 

HSI spectral feature reconstruction. Then the reconstructed feature was used for the input of ELM. Finally it was classified by 

ELM. This is the first time to use the reconstructing spectral of CNN as the input of ELM for HSI classification. Through the 

experiment results on three HSI datasets, it shows that the reconstructed spectral greatly improves the classification accuracy of 

HSI datasets. From the last experiment, we can see that the hidden neurons of ELM are important for HSI classification results 

and we achieve best results for appropriate hidden neurons. 

We have improved the classification accuracy by reconstructing the spectral features, but spatial information is also important 

for HSI classification, so the future work will focus on using the spatial information for improve the accuracy. 



 15 

 

 (a)                (b)                  (c)                  (d)                 (e) 

Fig.10. The different classification results of Salinas: (a) 500 hidden neurons of ELM with 93.84% (OA); (b) 800 hidden neurons of ELM with 

94.08% (OA); (c) 1100 hidden neurons of ELM with 94.15% (OA); (d) 1400 hidden neurons of ELM with 94.14% (OA); (e) 1700 hidden 

neurons of ELM with 94.00% (OA). 
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Figure Captions 

 

Fig. 1. The architecture of an ELM. 

 

Fig. 2. A typical architecture of CNN consists of input layer, convolutional layer, max pooling layer and fully connected layer. 

 

Fig.3 The flowchart of the proposed CNN-ELM. 

 

Fig. 4. Pavia University dataset: (a) Training samples; (b) Testing classification results. 

 

Fig. 5. Pavia Center dataset: (a) Training samples; (b) Testing classification results. 

 

Fig. 6 Salinas dataset: (a) Training samples; (b) Testing classification results. 

 

Fig. 7. The impact of hidden neurons of ELM: (a) Pavia University; (b) Pavia Center; (c) Salinas. 

 

Fig.8. The different classification results of Pavia University: (a) 300 hidden neurons of ELM with 91.27% (OA); (b) 600 hidden 

neurons of ELM with 93.16% (OA); (c) 900 hidden neurons of ELM with 93.3% (OA); (d) 1200 hidden neurons of ELM with 

93.18% (OA); (e) 1500 hidden neurons of ELM with 92.49% (OA). 

 

Fig.9. The different classification results of Pavia Center: (a) 300 hidden neurons of ELM with 98.57% (OA); (b) 600 hidden 

neurons of ELM with 98.75% (OA); (c) 900 hidden neurons of ELM with 98.85% (OA); (d) 1200 hidden neurons of ELM with 

98.77% (OA); (e) 1500 hidden neurons of ELM with 98.68% (OA). 

 

Fig.10. The different classification results of Salinas: (a) 500 hidden neurons of ELM with 93.84% (OA); (b) 800 hidden neurons 

of ELM with 94.08% (OA); (c) 1100 hidden neurons of ELM with 94.15% (OA); (d) 1400 hidden neurons of ELM with 94.14% 

(OA); (e) 1700 hidden neurons of ELM with 94.00% (OA). 

 


