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Abstract. A novel strategy to reduce unwanted swings and motions in floating wind turbines is 

presented. At above rated wind speeds, the platform, on which the wind turbine is mounted, 

causes the generator speed control loop to become unstable. The proposed strategy assures 

stability of the control loop by an additive adjustment of the measured generator speed using 

tower fictitious forces. The developed strategy is independent of the platform and wave 

dynamics.      

1.  Introduction 

For onshore wind turbines, the interaction between the drive-train dynamics and the tower dynamics 

introduces zeroes in the transmittance between pitch demand and generator speed. In certain wind 

conditions, particularly in those just above rated, these zeroes can be in the right half plane and produce 

a phase loss at frequencies close to that of the tower first fore-aft frequency, see Figure 1. For large wind 

turbines with lower tower frequencies, they can restrict the achievable control performance, reduce 

stability margins and even cause controllers to be unstable [1]. When a wind turbine is mounted on a 

non-stiff structure such as a floating platform, the drive-train dynamics also interact with the dynamics 

of the floating platform through the tower. Such interaction introduces similar zeroes in the 

transmittance between pitch demand and generator speed near the frequency of the platform, see Figure 

1, and at above rated wind speeds these can destabilise the its controller and give rise to unwanted swings 

and motions.  

Several solutions to avoid controller induced instability at above rated wind speeds have been 

proposed for floating wind turbines. For instance, the controller can be detuned to reduce its closed-loop 

bandwidth below the dominant platform mode but at a cost of degraded performance, in particular on 

generator speed regulation [2]. Fischer [3] reports closed-loop bandwidths below 0.2 rad/s for a wind 

turbine of 5MW and above, well below the 1rad/s design bandwidth usually suggested for onshore wind 

turbines. Feeding back additional measurements, e.g. nacelle fore-aft accelerations/velocities to 

demanded pitch angle or to demanded generator torque, to provide active tower damping has been used 

with both land-based and floating wind turbines. The impact of this strategy on rotor speed regulation 

and drive-train loads has to be carefully balanced. Passive approaches have also been investigated, 

although the effectiveness of such dampers is considerably reduced due to the aerodynamic damping of 

the fore-aft movement of the WT. Thorough reviews of all these solutions can be found in [4] and [5]. 



 

 

 

 

 

 

 
Figure 1. Frequency response of the linearised 5MW NREL TLP WT from pitch demand to generator 

speed 

   

The work presented here exploits the observation that the difference between the dynamics of the 

wind turbine in an inertial reference frame, i.e. with the turbine mounted on a rigid support structure, 

and the dynamics in a non-inertial reference frame, i.e. mounted on a floating support structure, can be 

represented as fictitious forces i.e. tower fictitious forces. Tower fictitious forces are apparent forces 

acting on the nacelle mass. Adding such forces to the measured generator speed decouples the nacelle 

dynamics from the tower/platform dynamics at low frequencies and consequently, standard controllers 

for land-based wind turbines can be used in offshore floating applications without retuning. This 

decoupling approach is robust since it does not depend on dynamic models of the wind turbine, only on 

the relative acceleration of the reference frames. 

Rotor and hub models, using fictitious forces and their linearisation are presented in Section 2. A 

method to alleviate tower fatigue loads, called power coordinated control is briefly presented in Section 

3.  Simulation results obtained using the fully coupled aero-hydro-servo-elastic design code FAST v7 

for the NREL 5MW reference wind turbine mounted on a tension leg platform (TLP) is presented in 

Section 4.  Conclusions and future work are discussed in Section 5.    

2.  Rotor and hub models using fictitious forces  

The transformation from inertial to non-inertial reference frames is applied to the nacelle and rotor 

dynamics, rather than to the complete wind turbine; that is, the fictitious forces account for both the 

tower and support structure movements. With respect to the nacelle reference frame, which moves with 

the support structure but does not rotate with the rotor, the combined rotor and hub equations of motion 

are: 

[

𝐽𝑅�̈�𝑅

𝐽𝑅�̈�𝑅

(𝐼1 + 𝑁2𝐼2)�̈�𝐻

]

𝑛𝑜𝑛−𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

≈ [

𝐽𝑅�̈�𝑅

𝐽𝑅�̈�𝑅

(𝐼1 + 𝑁2𝐼2)�̈�𝐻

]

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

+  [

−𝐽𝑅�̇�𝑧𝑁

𝑀𝑙�̈�𝑁

(𝐼1 + 𝑁2𝐼2)�̇�𝑧𝑁

]                  ( 1) 
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[

𝐽𝑅�̈�𝑅

𝐽𝑅�̈�𝑅

(𝐼1 + 𝑁2𝐼2)�̈�𝐻

]

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

= −𝐽𝑅 [

𝛾(𝛽) −𝛿(𝛽)

−𝛿(𝛽) 𝜅(𝛽)

𝛾(𝛽) −𝛿(𝛽)
] [

𝜃𝑅 − 𝜃𝐻

𝜙𝑅
] + [

𝑀𝐴𝜃

𝑀𝐴𝜙

−𝐵�̇�𝐻 − 𝑁𝑇𝐺

]               ( 2) 

and: 

 𝛾(𝛽) = (𝜔𝑒𝑠
2 𝑐𝛽

2 + 𝜔𝑓𝑠
2 𝑠𝛽

2) + (𝜔𝑒
2 − 𝜔𝑒𝑠

2 )
𝛺2

𝛺𝑅
2 , 𝜅(𝛽) = (𝜔𝑒𝑠

2 𝑠𝛽
2 + 𝜔𝑓𝑠

2 𝑐𝛽
2) + (𝜔𝑓

2 − 𝜔𝑓𝑠
2 )

𝛺2

𝛺𝑅
2 , 

 𝛿(𝛽) = (𝜔𝑒𝑠
2 − 𝜔𝑓𝑠

2 )𝑠𝛽𝑐𝛽  

 

The terms −𝐽RΩ̇𝑧N, M𝑙�̈�N and (I1 + N2I2)Ω̇zN are the fictitious forces, [6], associated with the 

relative movement of the reference frames. 𝐽R and (I1 + N2I2) are the rotor inertia and the sum of all 

inertias in the drive-train reflected to the low speed shaft by the gearbox ratio 𝑁; 𝜃𝑅 , 𝜙𝑅 , 𝜃𝐻 , Ω, Ω𝑅  are 

the rotor in-plane, out-of-plane displacements with respect to the rotor reference frame, hub rotational 

displacement, rotor speed and rated rotor speed; 𝑀, 𝐵, 𝑙 are the rotor total mass, drive-train damping 

coefficient and the distance between the blade centre of mass and centre of rotation; 𝜔𝑒𝑠, 𝜔𝑒 , 𝜔𝑓𝑠, 𝜔𝑓 are 

stationary and non-stationary centrifugally stiffened blade edgewise and flapwise frequencies, 𝑠𝛽 , 𝑐𝛽 are 

simplified notations for sine and cosine functions of pitch angle 𝛽; and MAθ, MAϕ, 𝑇𝐺 are in-plane 

aerodynamic torque, out-of-plane aerodynamic torque and generator torque. Ω̇𝑧N is the rotational 

acceleration of the nacelle about an axis perpendicular to the rotor and �̈�N is the translational acceleration 

along the same axis, measured by an accelerometer attached to the nacelle.  

The rotor equations of motion are based on the rotor Lagrangian which is obtained by combining the 

Lagrangian of three single blades, with 120˚phase shift relative to each other with only dominant 

dynamic modes represented. Centrifugal stiffening terms are also added whereas blade damping terms 

have been ignored and gravity terms are cancelled out in the Lagrangian. In a similar fashion, the 

equation of motion of the hub is obtained by assuming a non-stiff tower and the fact that the damping 

of the first mode of the drive-train components is extremely low and its frequency, being much higher 

than the frequencies of the blades, the blades can be assumed to be infinitely stiff, that is 𝜃𝐻 − 𝑁−1𝜃𝐺 →
0. 

2.1.  Low frequency approximation of the hub equation of motion 

The hub equation of motion can be approximated for frequencies much less than that of the blade 

frequencies. At the nacelle, the dynamics of 𝜃𝑅 and 𝜃𝐻, in the Laplace domain, are 

 

(𝜃𝑅 − 𝜃𝐻) = [1 − (𝑠−2 + 𝛼(𝑠2 + �̂�𝑠)−1)𝛾(𝛽)] [𝑠−2 (
𝑀𝐴𝜃

𝐽𝑅
− Ω̇𝑧𝑁) + (𝑠2 + �̂�𝑠)−1 (

𝛼𝑁𝑇𝐺

𝐽𝑅
+ Ω̇𝑧𝑁  )

+ �̂�𝛿(𝛽)𝜙𝑅] 

 

 where 𝛼 = 𝐽𝑅(𝐼1 + 𝑁2𝐼2)−1, �̂� = 𝐵(𝐼1 + 𝑁2𝐼2)−1 and 𝛾(𝛽) accounts for blade edgewise stiffening. 

The scaling factor can be approximated to  

[1 − (𝑠−2 + 𝛼(𝑠2 + �̂�𝑠)
−1

) 𝛾(𝛽)] ≈ [𝑠2 + 𝛼(1 + 𝛼)−1𝑠 + (1 + 𝛼)𝛾(𝛽)]
−1

𝑠2(𝑠 + �̂�) (𝑠 +
�̂�

1 + 𝛼
)

−1

 

 

For fixed 𝛽, 𝑠2 + 𝛼(1 + 𝛼)−1𝑠 + (1 + 𝛼)𝛾(𝛽) has lightly damped zeroes with frequency very close to 

that of the blades. Hence the scaling factor, at low frequencies, can be further approximated to 

 

(1 + 𝛼)−1𝛾−1(𝛽)𝑠2(𝑠 + �̂�) (𝑠 +
�̂�

1 + 𝛼
)

−1

 



 

 

 

 

 

 

and (𝜃𝑅 − 𝜃𝐻) approximates to: 

 

(𝜃𝑅 − 𝜃𝐻) ≈ (1 + 𝛼)−1𝛾−1(𝛽)(𝑠 + �̂�) (𝑠 +
�̂�

1 + 𝛼
)

−1

(
𝑀𝐴𝜃

𝐽𝑅
− Ω̇𝑧𝑁)

+ (1 + 𝛼)−1𝛾−1(𝛽)𝑠 (𝑠 +
�̂�

1 + 𝛼
)

−1

(
𝛼𝑁𝑇𝐺

𝐽𝑅
+ Ω̇𝑧𝑁) + 𝛾−1(𝛽)𝛿(𝛽)𝜙𝑅 

 

Using the above result, the dynamics of 𝜙𝑅 can also be approximated at low frequency, that is 𝜙𝑅 ≈

�̂�−1(𝜙�̈� + �̂�𝜙𝑅), where �̂�(𝛽) = 𝜅(𝛽) + 𝛾−1(𝛽)𝛿2(𝛽), thus reducing the effect of the zeroes introduced 

by the blade flapwise stiffening:  

 

𝜙𝑅 ≈ �̂�
−1 (

𝑀𝐴𝜃

𝐽𝑅

+ 𝑀𝜆𝑧𝑁
̈ ) + �̂�

−1
𝛿(𝛽)(1 + 𝛼)−1𝛾−1(𝛽)(𝑠 + �̂�) (𝑠 +

�̂�

1 + 𝛼
)

−1

 

(
𝑀𝐴𝜃

𝐽𝑅

− Ω̇𝑧𝑁) + �̂�−1𝛿(𝛽)(1 + 𝛼)−1𝛾−1(𝛽)𝑠 (𝑠 +
�̂�

1 + 𝛼
)

−1

(
𝛼𝑁𝑇𝐺

𝐽𝑅

− Ω̇𝑧𝑁) 

  

Using the approximations for (𝜃𝑅 − 𝜃𝐻) and 𝜙𝑅 in the hub equation of motion, it follows that: 

 

 [(𝐽𝑅 + 𝐼1 + 𝑁2𝐼2)𝑠 + 𝐵]�̇�𝐻 ≈ 𝑁𝑀𝐴𝜃 − 𝑁𝑇𝐺 − (𝐽𝑅 + 𝐼1 + 𝑁2𝐼2)�̇�𝑧𝑁                           ( 3) 

 

The above approximation is sufficient to represent the nonlinear dynamics over a range of 

frequencies including the floating structure dynamics but not the tower or the blades since it is assumed 

that those frequencies are sufficiently high such that their dynamics can be neglected.  

It would be possible to use an estimator to determine the aerodynamic torque MAθ, thus the 

decoupling term to be added to the measured hub speed becomes: 

 

[(JR + I1 + N2I2)s + B]−1[NM̂Aθ − (JR + I1 + N2I2)Ω̇zN] 
 

and M̂Aθ is the estimated aerodynamic torque. However at above rated wind speeds, the nonlinearity 

introduced by the aerodynamic torque is already handle by gain scheduling, thus a much simpler 

approach based on linearising the dynamics suffices.   

2.2.  Linearisation of rotor and hub dynamics 

Using Taylor series expansion, the following linearised equations of motion for 𝜃𝑅 and 𝜙𝑅 are obtained:  

 

[
𝛥�̈�𝑅

𝛥�̈�𝑅

] ≈ − [
𝛾(𝛽) −𝛿(𝛽)

−𝛿(𝛽) 𝜅(𝛽)
] [

𝛥𝜃𝑅 − 𝛥𝜃𝐻

𝛥𝜙𝑅
] + 𝐽𝑅

−1 [

𝜕𝑀𝐴𝜃

𝜕𝛺
−𝐿

𝜕𝑀𝐴𝜃

𝜕𝑉
𝜕𝑀𝐴𝜙

𝜕𝛺
−𝐿

𝜕𝑀𝐴𝜙

𝜕𝑉

] [
𝛥�̇�𝑅

𝛥�̇�𝑅

] + [
−𝛥�̇�𝑧𝑁

𝑀𝑙𝛥�̈�𝑁

𝐽𝑅

]   ( 4) 

where 
𝜕𝑀𝐴

𝜕Ω
,

𝜕𝑀𝐴

𝜕v
 are the partial derivatives of 𝑀𝐴𝜃 with respect to rotor speed and wind speed, 

respectively. 𝐿 is the effective length of the blade which represents the centre of pressure of aerodynamic 

loading and can be calculated from the following equation: 

 

𝑀𝐴𝜙 cos(𝛽) + 𝑀𝐴𝜃 sin(𝛽) = 𝐿
𝐹𝐴

# blades
 

 

𝐹𝐴 is thrust and a usual value for 𝐿 is 70% of the blade radius. 



 

 

 

 

 

 

Rearranging the above equation such that 𝜃𝑅 and 𝜙𝑅 are in the left side and noting that at low 

frequencies much less than 𝜔𝑒𝑠 or 𝜔𝑓𝑠, the zeroes introduced by the dynamics of 𝜃𝑅 and 𝜙𝑅 will be 

lightly damped, that is: 

𝑠2 − 𝑠𝐽𝑅
−1

𝜕𝑀𝐴𝜃

𝜕Ω
+ (𝜔𝑒𝑠

2 𝑐𝛽
2 + 𝜔𝑓𝑠

2 𝑠𝛽
2) ≈ (𝜔𝑒𝑠

2 𝑐𝛽
2 + 𝜔𝑓𝑠

2 𝑠𝛽
2) 

𝑠2 + 𝐿𝐽𝑅
−1

𝜕𝑀𝐴𝜃

𝜕𝑉
+  (𝜔𝑒𝑠

2 𝑠𝛽
2 + 𝜔𝑓𝑠

2 𝑐𝛽
2) ≈ (𝜔𝑒𝑠

2 𝑠𝛽
2 + 𝜔𝑓𝑠

2 𝑐𝛽
2) 

 

The determinant of the matrix accompanying 𝜃𝑅 and 𝜙𝑅 approximates to: 

 

𝜂(𝛽) ≈ 𝜅(𝛽)𝛾(𝛽) − 𝛿2(𝛽)   
 

At low frequencies, the linearisation of the aerodynamic torque MAθ will therefore be: 

 
𝜕𝑀𝐴𝜃

𝜕Ω
Δ𝜃𝑅 − 𝐿

𝜕𝑀𝐴𝜃

𝜕𝑉
Δ𝜙𝑅 =

𝜕𝑀𝐴𝜃

𝜕Ω
Δ𝜃𝐻 − 𝜅1(𝛽)Δ�̇�𝑧𝑁 + 𝜅2(𝛽)

𝑀𝑙Δ�̈�𝑁

𝐽𝑅
 

 

with: 

 

 𝜅1(𝛽) = 𝜂−1(𝛽) {
𝜕𝑀𝐴𝜃

𝜕Ω
𝜅(𝛽) − 𝐿

𝜕𝑀𝐴𝜃

𝜕𝑉
𝛿(𝛽)} , 𝜅2(𝛽) = 𝜂−1(𝛽) {−𝐿

𝜕𝑀𝐴𝜃

𝜕𝑉
𝛾(𝛽) +

𝜕𝑀𝐴𝜃

𝜕Ω
𝛿(𝛽)} 

 

The feedforward correction to the controller output can now be determined from the above dynamic 

equations in the form of an additive adjustment to measured hub or generator speed, that is: 
  

𝛥�̇�𝐻 = 𝐺(𝑠)[−𝑁𝛥𝑇𝐺 − (𝐽𝑅 + 𝐼1 + 𝑁2𝐼2)𝛥�̇�𝑧𝑁] + 𝑠𝐺(𝑠) [−𝜅1(𝛽)𝛥�̇�𝑧𝑁 +
𝜅2(𝛽)𝑀𝑙𝛥�̈�𝑁

𝐽𝑅
]     ( 5) 

where  

𝐺(𝑠) = [(𝐽𝑅 + 𝐼1 + 𝑁2𝐼2)𝑠 + 𝐵 −
𝜕𝑀𝐴𝜃

𝜕𝛺
]

−1
                                       ( 6) 

 

Equivalently, the modification to generator speed is: 

 

𝛥�̇�𝐺 = 𝐺(𝑠)[−𝑁2𝛥𝑇𝐺 − (𝐽𝑅 + 𝐼1 + 𝑁2𝐼2)𝑁𝛥�̇�𝑧𝑁] + 𝑠𝐺(𝑠) [−𝜅1(𝛽)𝑁𝛥�̇�𝑧𝑁 +
𝑠𝐺(𝑠)𝜅2(𝛽)𝑀𝑙𝑁𝛥�̈�𝑁

𝐽𝑅
] 

( 7) 

 

 
 

Figure 2. Generator speed control loop at above rated wind speed 



 

 

 

 

 

 

From the above, the speed controller need not be altered since the correction on measured generator 

speed transforms the non-inertial reference frame to the inertial reference frame and suppresses the low 

frequency right half-plane zeroes introduced the floating platform. The control scheme of the resulting 

generator speed feedback loop is shown in Figure 2. 

The term 
𝜕𝑀𝐴𝜃

𝜕Ω
 in G(s) depends on wind speed and pitch angle but is weakly nonlinear such that, at 

above rated, the gain scheduling can handle its implementation.  

3.  Alleviation of tower fatigue loads 

The right half plane zeroes arising from the interaction between the drive-train dynamics and the tower, 

at above rated wind speeds and at frequencies close to the tower frequency, can be removed by a control 

scheme called power coordinated control (PCC) [7], see Figure 3. The control action of the PCC is 

achieved through a combination of pitch and torque demand. The element 𝑌 is designed as a low pass 

filter or a notch filter centred at the tower frequency to reduce pitch activity in the vicinity of such 

frequency. The element 𝑋 is applied to torque demand such that the transmittance from its input to Ω𝐺  

is similar to the transmittance from β𝑑 to Ω𝐺  and the speed controller remains unchanged. For wind 

speeds, particularly just above rated, the generator speed obtained using PCC is the same as that using 

the speed controller alone. However, there can be large power fluctuations because the gain from 𝑇𝑑 to 

Ω𝐺  is much weaker than that from β𝑑 to Ω𝐺 . These fluctuations have a direct impact on the drive-train 

components such as gearbox and generator [7]. A reduction in these fluctuations can be attained by 

replacing the speed control loop with a power control loop. Since the power converter is relatively fast 

acting, torque fluctuation Δ𝑇𝐺 about 𝑇𝐺0 are relatively small compared to fluctuations ΔΩ𝐺 about Ω𝐺0, 

thus if 𝑃 is well controlled then so is Ω𝐺  and the power control loop from Figure 3 is similar to the speed 

control loop from Figure 2 at above rated wind speeds. The system output 𝑃 can be expressed as: 

 

𝑃 ≈ 𝑇𝐺0 [𝛺𝐺0 + (𝛺𝐺 − 𝛺𝐺0) +
𝛺𝐺0

𝑇𝐺0
(𝑇𝐺 − 𝑇𝐺0)]                                      ( 8)  

  

 
Figure 3. Power coordinated control scheme 

with 𝑃 = 𝛺𝐺𝑇𝐺. 𝑋 is designed such that it counteracts the right half plane zeroes introduced by the 

interactions with the tower dynamics and stabilises the transmittance (𝐵 +
Ω𝐺0

𝑇𝐺0
) 𝐴−1, while keeping the 

transmittance similarity: 

 

𝐶𝐴 ≈ 𝐶𝑌𝐴 + 𝐶(1 − 𝑌)𝑋 (𝐵 +
𝛺𝐺0

𝑇𝐺0
)                                                   ( 9) 

𝐴, 𝐵, 𝐶 are the transmittance from 𝛽𝑑 to Ω𝐺 , the transmittance from 𝑇𝑑 to Ω𝐺  and the speed controller, 

respectively. 𝐷, 𝐸, 𝐻 are also transmittances. A low order approximation suffices for 𝑋 since only 

frequencies over a narrow range focused on the tower frequency are of interest.  



 

 

 

 

 

 

4.  Simulation Results 

The developed control strategy is tested using FAST v7 for the NREL 5MW reference wind turbine 

mounted on a TLP. Specifications of the wind turbine and platform can be found in [8]. Frequency 

response of the linearised model is obtained to show how the phase losses due to platform and tower 

dynamics are counteracted with the proposed approach. Time responses are also obtained to show how 

the swings and motions of the platform are suppressed. 

4.1.  Frequency analysis 

The frequency response of WT using the baseline controller is compared with that using the 

measurement correction of generator speed by means of fictitious force contributions, see Figure 4 (left). 

Only regular waves can be used for model linearisation. Simulation results showed that only platform 

surge displacement causes phase loss for the TLP and thus is the only active platform mode. The 

magnitude 𝑠 [−𝜅1(𝛽)𝑁𝛥�̇�𝑧𝑁 +
𝑠𝐺(𝑠)𝜅2(𝛽)𝑀𝑙𝑁𝛥�̈�𝑁

𝐽𝑅
]  is very small compared to [−(𝐽𝑅 + 𝐼1 +

𝑁2𝐼2)𝑁𝛥�̇�𝑧𝑁], however only the sum counteracts the phase loss at the platform surge frequency, see 

Figure 4 (right) (model 1 in blue and model 2 in red are almost identical in magnitude and phase so their 

bode plots overlap each other). The measurement correction introduces high frequency drift caused by 

the transmittance between 𝛽𝑑 to Ω̇𝑧, which is suppressed by low pass filter centred at the platform surge 

frequency given by:  

𝐺𝑓(𝑠) =
0.3362𝑠

𝑠2 + 0.3362𝑠 + 0.113
 

 
Figure 4. (left) WT Frequency response comparison, (right) zoomed frequency response at platform 

surge frequency 

 

The PCC reduces the pitch activity at the vicinity of the tower fore-aft frequency, see Figure 5 (left and 

right). The elements 𝑌 and 𝑋 are designed to be: 

𝑌 =
𝑠2 + 0.4𝑠 + 6.25

𝑠2 + 1.6𝑠 + 6.25
 

𝑋 = −
1𝑒8

(𝑠 + 0.035)(𝑠 + 5)(𝑠 + 50)(𝑠 + 120)
 

 



 

 

 

 

 

 

 
Figure 5. (left) WT frequency response with PCC, (right) zoomed frequency response at tower fore-

aft frequency 

4.2.  Performance comparison 

Simulations conditions are: turbulent rated wind speed of 11.4m/s, water depth of 70m with irregular 

waves of type Pierson-Moskowitz spectrum and platform surge mode active. The baseline controller is 

compared to the developed strategy under wave conditions in which the baseline controller might 

become unstable. The following two scenarios are tested.  

    

Scenario 1. Wave height and peak spectral period are set to be 1.5m and 6.61s respectively. Generator 

speed time series show no oscillatory response for the baseline controller thus the fictitious forces 

measurement correction will not affect the performance of the control loop, see Figure 6 (left). There is, 

however, a slight performance improvement due to the PCC in generator speed, which reduces blade 

pitch activity, see Figure 7 (right) and consequently tower fore-aft displacement, see Figure 7 (right). 

There is also a small reduction in the magnitude of platform surge accompanied by a phase drift due to 

the PCC which by reducing the motion of the tower reduces the magnitude of oscillation of the platform, 

see Figure 6 (right).   

 

 
Figure 6. Control performance comparison for scenario 1 (left) generator speed, (right) platform surge 

displacement 



 

 

 

 

 

 

 
Figure 7. Control performance comparison for scenario 1 (left) generator power, (right) tower fore-aft 

displacement 

 
Figure 8. Control performance comparison for scenario 2 (left) generator speed, (right) platform surge 

displacement 

 
Figure 9. Control performance comparison for scenario 2 (left) generator power, (right) tower fore-aft 

displacement 

Scenario 2. This is a more aggressive scenario with height and peak spectral period set to be 4.55m 

and 9s respectively. Under these conditions, the baseline controller becomes unstable at wind speeds 

just above rated. The developed strategy stabilises the controller when pitch is active, see Figure 8 (left) 

for generator speed, Figure 9 (left) for tower fore-aft displacement and specially Figure 8 (right) for 



 

 

 

 

 

 

platform surge displacement where motions of the platform have been attenuated. The PCC is also active 

as shown in Figure 9 (right). The platform surge displacement standard deviation comparison for both 

scenarios can be seen in Table 1. 

  

Table 1. Standard deviations Platform surge displacement 

 Baseline controller Fictitious force 

correction 

Percentage difference 

Scenario 1 1.616 1.5172 6.1% 

Scenario 2 1.6211 1.1120 31.4% 

 

5.  Conclusions 

The proposed strategy reduces unwanted swings and motions in offshore floating wind turbines without 

adding the platform dynamics into the control design. An additive adjustment in the generator speed 

measurements by means of tower fictitious forces reduces blade pitch activity at low frequencies where 

all the important platform modes appear. Since the fictitious forces are simply accelerations scaled by a 

mass or inertia, they are easily measured and feedforwarded into the baseline controller. Tower fatigue 

loads are reduced by reducing the pitch activity in the vicinity of the tower frequency by using PCC. 
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