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Abstract  

The paper starts with the computational modelling of the tip vortex cavitation in uniform flow 

conditions with an isolated propeller in detail and provides experimental validation. It then moves 

onto further modelling to include the effect of non-uniform flow and the presence of a rudder placed 

in the propeller slipstream. The propeller-rudder arrangement of the Newcastle University research 

vessel, The Princess Royal, and associated experimental data were used for Experimental Fluid 

Dynamics (EFD) analysis to validate the modelling. The cavitation simulations were conducted using 

commercial CFD software, Star CCM+. A new meshing technique, which utilizes a Mesh Adaptive 

Refinement approach for Cavitation Simulations (MARCS), recently developed by the authors, has 

been applied successfully to simulate the tip vortex cavitation, particularly to trace its extension up to 

the rudder in the propeller slipstream. The comparison of the CFD and EFD methods for the isolated 

propeller in cavitation tunnel conditions showed very good agreement in terms of the thrust and 

torque coefficients of the propeller as well as the sheet and tip vortex cavitation patterns observed. 

The cavitation simulations have been extended for the same propeller by using the new mesh 

refinement approach to include the effect of the hull wake and the presence of the rudder. Although 

the latter simulations fall short of the EFD results and hence they are still under development, the 

paper presents the developments and results so far to achieve the ultimate aim of this study, i.e. 

computational modelling of cavitating tip vortices of a propeller interacting with a rudder.  
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Introduction  

Sheet cavitation of marine propellers can be predicted accurately with existing methods such as lifting surface, BEM 

and even more accurately with computational fluid dynamics methods (CFD) due to better modelling of the physics 

of the flow, thanks to new developments in computational power and technology. However, computational 

modelling of the cavitating tip vortices of a propeller has its challenges, in particular for extending these vortices 

from the blades up to a rudder in the wake of a ship hull and interacting with the rudder. Even sheet cavitation 

predictions sometimes give unstable results due to the lack of accurate tip vortex cavitation modelling [1].  

There are many numerical and computational studies to predict tip vortex cavitation in literature [2, 3, 4 and 5], 

using especially CFD methods in which RANS based models for tip vortex cavitation simulations of marine 

propellers are preferred [6]. Although the RANS model is recognized as a reliable method for sheet cavitation 

simulations, further studies are still required particularly for accurate predictions of tip vortex cavitation [6]. In 

contrast to the RANS model, scale-resolving simulations can model small-scale motions and resolve the large scales 

of turbulence. Within this context, there are two popular approaches for scale-resolving simulations which are 

known to be Detached Eddy Simulations (DES) and Large Eddy Simulations (LES) models. Recently, the 

turbulence models based on these two approaches have been preferred widely by the CFD community for simulating 

complex physical phenomenon such as cavitation and especially for the tip vortex type. These two approaches are 

also implemented in the commercial CFD software, Star CCM+ [7] which is used in this study as described below, 

where the LES model is preferred for simulating the tip vortex cavitation. 

Detailed and different grid generation techniques have been investigated in literature with regards to bubble 

dynamics, cavitating bubble diameter and cavitation inception phenomenon. Although, each bubble cannot be 

modelled, followed and tracked in space using the Rayleigh-Plesset model, which is implemented in the Star CCM+ 

code, cavitation phenomena have been investigated by creatively pushing the limits of mesh generation capabilities 

of the software for capturing tip vortex cavitation. In terms of bubble dynamics, Rayleigh published the first analysis 
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about cavitation and bubble dynamics results [8]. After that, Rayleigh-Plesset equation was presented by Plesset and 

Prosperetti including bubble growth and collapse phenomena by neglecting bubble-bubble interaction and assuming 

the bubble was spherical in shape [9]. Based on the Rayleigh-Plesset equation, Schneer and Sauer developed a new 

volume of fraction (VOF) method for time dependent growth and collapse of cavitating bubbles [10]. The Schneer-

Sauer cavitation model, neglecting surface tension, viscous effects and bubble growth acceleration, is implemented 

in the Star CCM+ Code and hence also used for cavitation simulations in this study [7]. 

Recently, numerical modeling of the tip vortex cavitation phenomenon has been the focal point by some researchers 

using CFD methods and commercial codes by creating mesh refinement regions around a propeller’s tip area for 

capturing cavity bubbles in the slipstream including the authors, e.g. [12, 13]. However, if the mesh is generated 

using a larger than required surface size in the tip vortices region, tip vortex cavitation cannot be captured in the 

propeller slipstream. On this basis there is a need for studies to investigate the cavitating bubble radius for 

determining surface size in the mesh refinement region based on some useful experimental data e.g. [11]. Within 

this framework, the authors have developed a new mesh refinement technique, which utilizes a Mesh Adaptive 

Refinement approach for Cavitation Simulations (MARCS), based on the relationship between the surface size of 

the generated mesh and the cavity bubble radius [12]. In this paper, the MARCS approach has been applied to the 

propeller-rudder arrangement of the Newcastle University research vessel, the Princess Royal by taking advantage 

of the experimental data which were generated by the authors in their previous work [17] and the results are 

discussed.  

Numerical Approach  

For cavitation simulation, the Volume of Fluid (VOF) method was used in defining two states of the fluid (water and 

vapour) in flow domain. DES and LES turbulence models were preferred for the reasons explained in the 

introduction. 

The Schnerr-Sauer cavitation model used in this study is based on a reduced Rayleigh–Plesset (RP) equation within 

Star CCM+. It neglects the influence of surface tension, bubble growth acceleration, viscous effects and the bubble-

bubble interaction but includes scaling of the bubble growth and collapse rates for both single-component and multi-

component materials. Using this cavitation model, the cavitation bubble growth rate can be calculated as follows, 
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Where psat is the saturation pressure, p∞ is the pressure of the liquid and ρl is the liquid density. 

The cavitation number (rotational speed, σn) is also defined as, 

 σn =
p − psat

0.5ρl(nD)
2
  

The new adaptive mesh refinement approach (MARCS) proposed by the authors is used to enhance the capture of 

tip vortex cavitation in a propeller slipstream. In MARCS, the adaptive mesh refinement was created only in the 

region where the tip vortex cavitation may occur. At the beginning of this application, the upper limit of absolute 

pressure in the solution was determined by creating a threshold region in Star CCM+. In such cavitation simulations, 

the volume fraction of vapour shows the volume where the absolute pressure is below the saturation pressure of 

water, thus identifying the cavitating volume. A threshold region was created by increasing the saturation pressure 

from the default saturation pressure, 3169 [Pa] used by Star CCM+ to a higher value, 17,000 [Pa] thus generating, 

the pink region shown in Figure 1. This artifice provides an indication of the volumetric trajectory on which to 

generate a fine mesh for accurately capturing the pressure-drop correctly and tracking the cavity bubbles in the 

propeller slipstream.  
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In applying this idea on a generated mesh, two field functions were created in order to prepare a table including 

coordinates and the surface size of the new refined mesh for generating the adaptive mesh. These were needed in 

order to extend the tip vortex cavitation, much as shown in Figure 1. One of the two field functions, called “Cell 

Width”, specifies the one dimension of each cubic cell. Whereas the other field function termed “Refinement” is 

defined for creating a refinement table which includes coordinates of each cell in x, y and z directions and the 

surface size of the new mesh to be used while an adaptive mesh is being generated. The “Refinement” field function 

represents each mesh cell, where the absolute pressure below 17000 [Pa] and above 3169 [Pa], is sub-divided by 

three in the three dimensions. The upper limit of absolute pressure was defined by creating a threshold (17000 [Pa]) 

and checked visually as shown in Figure 1. The lowest limit of the pressure was determined by the saturation 

pressure (3169 [Pa]). Figure 1 shows, respectively, the threshold below 17000 [Pa] and mesh generated using the 

new adaptive mesh refinement approach (MARCS).  

The most important part of the MARCS approach is to determine the surface size of the each cubic cell in the tip 

vortex region for capturing cavity bubbles in the slipstream. Kuiper [11] investigated and measured cavitation 

inception, including tip vortex cavitation, using a model scale propeller (Propeller V) at J-values of 0.3, 0.4 and 0.5. 

Additionally, he defined an experimental relationship between the cavitating core radius (ac) and cavitation index 

(σn) by preparing equations and graphs in this range of J values. In his study, the minimum radius of each bubble (ai) 

was consistently found to be about 0.25 mm on a 250 mm diameter propeller at the cavitation inception stage. 

According to these investigations, the core radius (ac) always tends to go to the minimum core radius (ai). On the 

basis of Kuiper’s study, similar relations between bubble radius, mesh size and simulating tip vortex cavitation are 

determined within the new adaptive mesh approach. The mesh size was always required to be maintained below 

0.25 mm (it is approximately 0.22 mm for this case) for capturing the tip vortex cavitation structure in the propeller 

slipstream. Using a mesh size larger than 0.25 mm, the tip vortex cavitation could not be simulated as extended as 

shown in Figure 2.   

  

Figure 1. Adaptive Mesh Refinement (MARCS) 

Results  

Cavitation phenomena, particularly the cavitating tip vortex, have been investigated using EFD and CFD methods 

for the Princess Royal Propeller. This propeller has been recommended recently by the ITTC [14] as a benchmark 

propeller for test ranging from open water tests to noise measurement studies. 

In 2017, this propeller was tested in the cavitation tunnel of the Shanghai Jiao Tong University (SJTU) as a part of a 

collaborative study between the University of Strathclyde (UoS) and SJTU. The model propeller was manufactured 

using a 3.41 scale factor, resulting in model scale diameter of 0.22 m for SJTU model propeller. The main 

particulars of the propeller and the CAD model of it were supplied by the UoS [15]. The cavitation test matrix was 

composed according to the test conditions that have been prepared and published before in literature as a part of a 

round-robin test campaign [16]. Accordingly, 12 different conditions were determined with 2 different J (0.4 & 0.5) 

and 3 different σV values (13.9, 8.1 and 4.5-5.5) using J and KT similarities. CFD simulations of each condition were 

conducted simultaneously to allow validation of the computational model for an isolated propeller. Figure 2 shows 

the comparisons between EFD and CFD results for only one condition at J=0.4 and σV=8.1 (Condition 2) where the 

strongest tip vortex cavitation was observed and with sheet cavitation rolling up to the tip vortex. This condition was 

selected for comparison with CFD results due to the behavior of the strong tip vortex cavitation. The CFD 
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predictions of the cavitation patterns were created using a volume of vapour (VOF) value of 0.1. The comparison 

results showed good agreement in terms of propeller performance coefficients -deviation is 2.5% and 5% for KT and 

KQ respectively- as well as the sheet and tip vortex cavitation patterns as shown in Figure 2.  

  

  

Figure 2. Cavitation comparisons between EFD and CFD Results (Left; EFD, Right;CFD) 

Following this achievement in simulating the tip vortex cavitation of the Princess Royal Propeller in uniform flow, 

the study was extended to simulations in non-uniform flow in the presence of a rudder in order to investigate 

propeller-rudder interaction with cavitating tip vortices. Thus the Princess Royal Propeller with the rudder 

arrangement in non-uniform hull wake was simulated using the same mesh refinement approach (MARCS) to allow 

the tip vortices to interact with the rudder. While the sliding mesh method was used for the case of an isolated 

propeller, the “overset mesh” method was preferred in order to eliminate interface problems between the rotating 

and stationary domains for the propeller-rudder interaction simulations.  

Figure 3 shows cavitation pattern comparisons between the EFD and CFD results including sheet and tip vortex 

cavitation. The EFD results were obtained from cavitation tests conducted in the Emerson Cavitation Tunnel, 

University of Newcastle, as presented in the literature [17]. It can be observed that although the same mesh 

refinement approach was used for the propeller-rudder interaction case, the CFD prediction of the tip vortex 

cavitation could not be extended as far as in the isolated propeller simulations (Figure 2 and 3) and hence currently 

presenting a discrepancy compare to the EFD results.  

Bearing in mind the differences in physical conditions for the isolated propeller and the propeller-rudder 

arrangement cases, which include shaft inclination, non-uniform flow (wake screen) and the presence of a rudder for 

the latter case, the discrepancy between the two simulation cases can be investigated using Figure 4. In this figure, 

CFD simulations at 35000, 60000 and 70000 iterations are presented (from Left to Right) while the simulation was 

running and the generated mesh is rotating with the propeller. At 35000 iterations, a new mesh was generated using 

the MARCS method as described above. During the simulation, other images from 60000 and 70000 iterations were 

captured as seen in Figure 4. It can be observed that the generated mesh at 35000 iterations cannot match with the 

tip vortices that are produced at subsequent time steps in the simulation (i.e. 60000 and 70000 iterations) for the 

same shape at 35000 iterations. While the vortices were produced for each blade position and each time step and the 

propeller is rotating with inclined shaft, in non-uniform flow and presence of a rudder, the mesh generated at the 

beginning was no longer suitable during the subsequent solution time. Thus, tip vortex cavitation cannot be extended 

for propeller-rudder interaction simulation as much as in the isolated propeller simulations. Although the latter 

simulations are still under development during the preparation of this paper, so far the tip vortex cavitation 

simulations have been encouraging for evaluating the propeller performance in cavitating conditions interacting with 

the rudder in its slipstream.  
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Figure 3. Cavitation comparisons between EFD and CFD Results (Left; EFD, Right;CFD) 

   

Figure 4. Adaptive Mesh Refienement (MARCS) during solution time (From Left to Right; Mesh from 35000, 

60000 and 70000 iterations) 

Conclusion 

This paper has presented a new and efficient Mesh Adaption and Refinement approach for Cavitation Simulation 

(MARCS) of marine propellers, particularly for tip vortex cavitation. Successful simulations on an isolated propeller 

were achieved for the extension of the cavitating tip vortices well downstream of the propeller plane using the new 

approach such simulations. Further, the Princess Royal propeller was simulated using the same method in non-

uniform flow and in the presence of a rudder. The simulation results so far for the latter case present a discrepancy 

compared to the EFD results and hence require further development in order to extend the tip vortex cavitation 

through the rudder. It is hoped, in the near future, to achieve further improved simulations of the propeller, rudder 

and hull flow interaction leading to more accurate prediction of the performance of propellers in cavitating 

conditions both at model and full-scale which is the ultimate aim of this study.  
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