Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Attosecond-scale absorption at extreme intensities

Savin, A. F. and Ross, A. J. and Serzans, M. and Trines, R. M. G. M. and Ceurvorst, L. and Ratan, N. and Spiers, B. and Bingham, R. and Robinson, A. P. L. and Norreys, P. A. (2017) Attosecond-scale absorption at extreme intensities. Physics of Plasmas, 24 (11). ISSN 1070-664X

[img]
Preview
Text (Savin-etal-PP-2018-Attosecond-scale-absorption-at-extreme-intensities)
Savin_etal_PP_2018_Attosecond_scale_absorption_at_extreme_intensities.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    A novel non-ponderomotive absorption mechanism, originally presented by Baeva et al. in one dimension, is extended into higher dimensions for the first time. This absorption mechanism, the Zero Vector Potential (ZVP), is expected to dominate the interactions of ultra-intense laser pulses with critically over-dense plasmas such as those that are expected with the Extreme Light Infrastructure laser systems. It is shown that the mathematical form of the ZVP mechanism and its key scaling relations found by Baeva et al. in 1D are identically reproduced in higher dimensions. The two dimensional particle-in-cell simulations are then used to validate both the qualitative and quantitative predictions of the theory.