
ARTICLE

Advantages to a diverging Raman amplifier
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Raoul M.G.M. Trines3 & Peter A. Norreys1,3

The plasma Raman instability can efficiently compress a nanosecond long high-power laser

pulse to sub-picosecond duration. Although, many authors envisaged a converging beam

geometry for Raman amplification, here we propose the exact opposite geometry; the

amplification should start at the intense focus of the seed. We generalise the coupled laser

envelope equations to include this non-collimated case. The new geometry completely era-

dicates the usual trailing secondary peaks of the output pulse, which typically lower the

efficiency by half. It also reduces, by orders of magnitude, the initial seed pulse energy

required for efficient operation. As in the collimated case, the evolution is self similar,

although the temporal pulse envelope is different. A two-dimensional particle-in-cell simu-

lation demonstrates efficient amplification of a diverging seed with only 0.3 mJ energy. The

pulse has no secondary peaks and almost constant intensity as it amplifies and diverges.
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The method of chirped pulse amplification has massively
increased the peak power of laser pulses. Modern lasers can
reach intensities exceeding 1021W cm−2, high enough that

the free electrons undergo relativistic oscillations in the wave.
This high intensity is achieved by compressing the pulses to their
transform limited duration with a set of reflective gratings, and
subsequent focussing1. However, the damage threshold of these
components limits the peak achievable intensity.

There are predictions that even greater intensities, of the order
1024W cm−2, will introduce quantum electro-dynamics pro-
cesses, such as vacuum phase shifts2, 3 and electron–positron pair
production4. The resultant gamma ray bursts will have numerous
applications in nuclear physics5 and industrial sensing. However,
it is impractical and expensive to scale up current solid-state
optics, and so laser compressors with greater damage thresholds
may be required to study these processes. High energy picosecond
pulses, ideally in the ultra-violet, also have implications in inertial
confinement fusion. The fast particle beams generated by these
short pulses would provide auxiliary heating to the fusion fuel,
either through collisional stopping6, 7 or two beam instabilities8–
10. Since damage thresholds of solid state devices decrease in the
ultra-violet range, ionised compression or gain media will be
required.

It was discovered by Malkin et al.11 that a plasma can act as a
pulse compressor, with an electron plasma wave mediating energy
from one pulse to another. This proceeds so long as the short seed
pulse has frequency ω1= ω0− ωp, where ω0 is the frequency of
the counter-propagating long-pump pulse and ωp is the electron
plasma frequency12. Plasma permits a much higher output
intensity than solid state optics13, possibly by a factor of 105. The
plasma should be uniform14 and approximately one hundredth of
the pump pulse critical density15, 16.

In the original proposal for Raman amplifiers, a pre-focussed
geometry was envisaged11. However, in the derivation given
there, the beams were assumed to be collimated. In this work, we
generalise those coupled envelope equations to include the case of
a converging or diverging Gaussian beam and recover the results
of Malkin et al.11 as a special case. We show that the new
diverging geometry minimises the required seed pulse energy. It
also eliminates the wastage of energy in to the usual trailing
secondary peaks of the amplified pulse. These facts indicate that a
greater output power will be achievable using the diverging
geometry, rather than a collimated geometry.

Results
Proposed geometry. The collimated amplifier evolves as fol-
lows17: energy is transferred from the pump to the seed pulse, and
in the non-linear stage of the instability, the pump is fully
depleted. The seed pulse amplitude a1 grows linearly with time.
The pump and seed amplitudes are defined as a0,1= eE0,1/
(mω0,1c), where m is the electron mass, E0 is the peak electric field
of the pump and E1 is that of the seed. As it amplifies, the full
width at half maximum duration of the seed pulse T1 decreases
inversely proportional to time, such that

a1T1
ffiffiffiffiffiffiffiffiffiffi
ω0ωp

p ’ 5: ð1Þ

In fact, Eq. (1) also gives the condition for the Raman scatter to
deplete the pump pulse15. Since the energy transfer is propor-
tional to the pump depletion, the amplification is only highly
efficient when Eq. (1) is met.

However, this requirement on a1 poses a problem, since it is
difficult to generate intense seed pulses at the shifted wavelength.
One method is to utilise non-linear optics effects in a neutral gas
cell. It may also be possible to use optical parametric chirped
pulse amplification to generate intense tune-able seed pulses, at

the cost of increased complexity and timing issues. Even in the
most successful experiment yet18, 19, the 880 nm wavelength seed
pulse only had a1T1

ffiffiffiffiffiffiffiffiffiffiω0ωp
p ’ 0:3. The measured plasma

amplifier energy efficiency was 6.4%. The low power seed meant
this was far below the theoretical maximum of 1−ωp/ω0≃ 90%.

Since Eq. (1) is independent of the transverse dimension, an
obvious tactic to reach the non-linear stage is to start the
amplification with the seed pulse at its focus, where its intensity is
maximum. This is in contrast to the geometry proposed in ref. 11.
For example, a 1 μm wavelength, 50 fs seed pulse with energy 1
mJ in a plasma of electron density 1019 cm−3 could easily achieve
a1T1

ffiffiffiffiffiffiffiffiffiffiω0ωp
p = 5 with a focal beam waist of 6 μm. In addition, this

high initial seed intensity will also permit use of the seed
ionisation scheme20–22, where the plasma is not ionised until the
short seed pulse arrives. This has the significant advantages of
keeping the electron temperature low and avoiding instabilities of
the pump pulse, since it traverses a neutral gas until it meets the
seed.

With such a narrow beam waist, the amplifier length may be
longer than the Rayleigh length and so it is not valid to assume a
collimated beam. In fact, we will now assume that the
amplification occurs outside of the Rayleigh range. The new
proposed geometry is shown in Fig. 1. The seed approaches from
the left side and is amplified as it diverges through the plasma.
Note that this closely replicates the geometry of typical high-
power laser systems, which start with a low power, narrow seed
and increase the diameter as it amplifies. The pump and seed
overlap may be maximised by matching the focal geometry of the
pump to that of the seed, with the pump counter-propagating.

The disadvantage of this scheme is that the amplified pulse will
require subsequent focussing. However, it may exceed the damage
threshold of conventional optics. It should be possible to focus it
with a spherical plasma mirror23, 24, as shown in Fig. 1. This will
have the added advantage of improving the pulse contrast. The
mirror may be placed at a position where the low intensity pump
will propagate through the back of it, but the amplified pulse will
ionise and reflect from it. Alternatively, the pump may arrive
from a different angle, past the side of the plasma mirror. This
mirror will allow control over the final focal position.

The transverse beam profile outside of the Rayleigh range may
be a concern, however the low energy of the seed pulse will allow
the use of adaptive optics to smooth any transverse phase
imperfections. As shown in ref.25, the pump pulse must be
energetic, but need not have the same coherence, since any

Fig. 1 Schematic of the proposed diverging Raman amplifier geometry. The
seed pulse (red) starts in the amplifier at its focus, where it is met by the
counter-propagating long-pump pulse (black). It amplifies through the
plasma (purple) as it diverges outside of the Rayleigh range. A curved
plasma mirror (grey) focusses the amplified pulse to a controllable focal
position. Alternatively, the pump may arrive from a different angle, past the
side of the plasma mirror
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imperfections will be transferred to the plasma wave and not the
amplified pulse. A longer amplifier for the compression of
nanosecond pulses will also use a much lower plasma density26,
lowering the effect of competing instabilities.

Generalisation of the envelope equations. To investigate how
the beam geometry affects the amplification, the coupled envelope
equations from ref.11 will now be generalised to include non-
collimated beams. Including the transverse diffraction term from
the paraxial Helmholtz equation, the amplified pulse amplitude
a1(x, t) evolves as27

∂ta1 � c∂xa1 �
ic2

2ω1
∂2y þ ∂2z

� �
a1 ¼ � ω2

p

4ω1
a0n

�
2: ð2Þ

In this equation, spatial and temporal partial derivatives are
written as ∂x and ∂t. The pulse propagates along the x axis and the
origin is at the focus. The dimensionless plasma wave amplitude
n2 is normalised to the average electron density. The dispersion of
the waves is neglected. The amplified pulse vector potential is
given by the real part of by(mc/e)a1 exp(ik1x+ iω1t). The envelope
model assumes that the pulses are much longer than one
wavelength and damping processes are negligible.

To maximise the pulse overlap, the length of the amplifier
should be cT0/2, where T0 is the pump pulse duration. For a 1 ns
long-pump pulse, as found at many high-power laser facilities, the
amplifier will be 15 cm long. For the parameters described earlier,
the beam waist was wf= 6 μm, giving the Rayleigh length
LR ¼ ω1w

2
f =ð2cÞ= 113 μm. This means most of the amplification

length will have x � LR.
Assuming the seed pulse is a perfect Gaussian beam along the x

axis, the transverse Laplacian can be evaluated to give the
amplitude on the x axis as

∂ta1 � c∂xa1 þ
icLR
x2

a1 �
c
x
a1 ¼ � ω2

p

4ω1
a0n

�
2: ð3Þ

The third and fourth terms have been Taylor expanded to
leading order, assuming that x � LR. This assumption also
means the third term in Eq. (3) is negligible with respect to the
fourth. Furthermore, the maximum of the short pulse will be
close to the position x=−c(t− tf), where tf is the time of best
focus. This is the approximate coordinate for the whole pulse,
assuming that the pulse duration is much less than t− tf. The
seed pulse propagates towards negative x and the pump pulse
propagates towards positive x. In typical situations, the plasma is
very under-dense, so that ωp � ω0. Along with the other
equations from ref. 11, this leads to the system

∂t þ 2c∂xð Þa0 ¼
ω2
p

4ω0
a1n2; ð4Þ

∂ta1 þ
a1

t � tf
¼ � ω2

p

4ω1
a0n

�
2; ð5Þ

∂t þ c∂xð Þn2 ¼ �ω2
0

ωp
a0a

�
1: ð6Þ

The time t is measured from the start of the non-linear stage.
The equations have been written in a spatial coordinate system
moving along with the seed pulse, with the front of the seed pulse
remaining approximately at x= 0. The new geometric term has

been neglected for the plasma wave, since its phase velocity is
much less than c. In addition, the unperturbed pump amplitude
will barely change within the extent of the short seed pulse, so its
geometrical term can be neglected. However, since the pump is
focussing and its power may change, the incoming pump
amplitude a0(t, 0) is treated as time dependent.

Following the method of ref.11, when the pump is heavily
depleted, the interaction will be short and so the time derivatives
may be neglected with respect to the spatial derivatives in Eqs. (4)
and (6). This will give the evolution in the late non-linear stage,
where the seed duration is much less than its timescale of
evolution. The equations become

2c∂xa0 ¼
ω2
p

4ω0
a1n2; ð7Þ

∂ta1 þ
a1

t � tf
¼ � ω2

p

4ω1
a0n

�
2; ð8Þ

c∂xn2 ¼ �ω2
0

ωp
a0a

�
1: ð9Þ

Again following refs. 11, 20, we now introduce the trial function
u(x, t) and the trial solutions a0(x, t)= α0(t) cos(u/2), a1(x, t)=
α1c∂xu and n2(x, t)= α2(t)sin(u/2). The variable α0 is the
incoming pump amplitude at the start of the seed pulse.

Substituting these trial solutions in to Eqs. (7) and (9) leads to

α1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ω0ωp

� �r
and α2=−α0(2ω0/ωp)3/2. Equation (8) then

gives

∂t þ
1

t � tf

� �
∂xu ¼ ω0ωp

4c
α20 sinðuÞ: ð10Þ

Self-similar amplification. We first find the solution for constant
pump pulse amplitude, when α0 is constant. In this case there is a
self-similar solution11. This means that the amplitudes of the
three waves, for all values of x and t, depend only on the
dimensionless coordinate β= ω0ωpα

2
0xt=ð4cÞ. This can be shown

by changing variables in Eq. (10) and writing u(x, t)= f(β),
leading to

β
d2f

dβ2
þ 2t � tf

t � tf

� �
df
dβ

¼ sinðf Þ: ð11Þ

The variable t has not been eliminated by the change of
variables and so the evolution of the pulse is not, in general, self
similar. However, in the limit tfj j � t, Eq. (11) depends only on β
and the equation reduces to the self-similar behaviour found in
ref. 11. In this limit, the focus is very far away compared to the
scale of the interaction.

There is also self-similar behaviour in the limit tfj j � t, which
applies when the non-linear stage starts at or very near the focus
of the amplified pulse. Since t is positive, this means t− tf > 0 and
so this limit will only apply to the case of a diverging beam and
not a converging beam. This is the limit illustrated in Fig. 1. In
this new geometry, the self similar equation becomes

β
d2f

dβ2
þ 2

df
dβ

¼ sinðf Þ: ð12Þ
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This equation is identical to that of the collimated case with
tfj j � t, found by Malkin et al.11, except the coefficient of the first
order term is increased from 1 to 2.

The numerical solution to Eq. (12) is shown in Fig. 2. It has a
similar form to the standard collimated solution. The pulse is
composed of many peaks that are slightly lower intensity than in
the collimated case, although a greater fraction of the energy now
resides in the main front-most peak. The Eq. (1) still holds. The
usual scaling laws still hold, so that the pulse amplitude increases
a1∝ t and the seed duration shortens ∝1/t. Considering the
divergence of the pulse, the seed power increases ∝t4 and the seed
energy increases ∝t3.

Steady-state amplification. Returning to Eq. (10), there is a
solution when ∂tu= 0. The steady-state solution satisfies

∂xu ¼ ω0ωp t � tfð Þ
4c

α20 sinðuÞ: ð13Þ

Therefore, if α0 / 1=
ffiffiffiffiffiffiffiffiffiffiffi
t � tf

p
then the amplified pulse will have

a temporal envelope that is constant as it amplifies. The pulse
intensity and duration will be constant, however the power and
energy will increase ∝t2 as the pulse diverges.

For the converging pump pulse in three dimensions, α0 /
1=

ffiffiffiffiffiffiffiffiffiffiffi
t � tf

p
requires its power to increase linearly with time ∝t− tf.

Pulse shaping such as this is routinely achieved on many large-
scale systems such as the national ignition facility28. Introducing

the proportionality constant a= (t− tf) α20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ωp=8

q
, the solution

to Eq. (13) is

tan
u
2

� �
¼ exp a

ffiffiffiffiffiffiffiffiffiffi
ω0ωp

2c2

r
x � x0ð Þ

 !
ð14Þ

a1ðxÞ ¼ asech a

ffiffiffiffiffiffiffiffiffiffi
ω0ωp

2c2

r
x � x0ð Þ

 !
: ð15Þ

The constant a is therefore the peak amplitude of the scattered
pulse. The integration constant x0 is the position of the pulse
maximum.

After an initial start-up stage, the pulse converges towards a
single, constant intensity spike that monotonically depletes the
pump pulse. There are no trailing secondary peaks. This has great

significance, since in the collimated case as much as 40% of the
pulse energy is wasted in to the secondary peaks, shown by the
solid line in Fig. 2c. The increased prominence of the first spike of
the amplified pulse is comparable to that predicted by Toroker
et al.29 when a chirped seed pulse is used. For the steady-state
amplifier, the amplitude duration product is modified to

aT1
ffiffiffiffiffiffiffiffiffiffi
ω0ωp

p ’ 2:5: ð16Þ

Equations (1) and (16) show that, for the same energy, the
diverging pulse will have four times the peak power of a pulse
from a collimated amplifier.

Taken together, these facts mean that a much greater peak
intensity could be reached with the diverging beam scheme rather
than the collimated scheme, possibly by a factor of four or more.
A shorter, single spike is the desired pulse profile for many uses in
high energy density science. To reach a similar power output with
collimated beams, a much greater beam diameter and a
correspondingly more powerful seed pulse would be required.

A further advantage of this scheme over the collimated case is
that the pulse will never reach relativistic intensity. In the
collimated case, the length of the amplifier is limited by de-tuning
due to the relativistic electron non-linearity30. This can happen
even before the pulse degrades in to transverse filaments31, 32. In
the new geometry, this problem is eradicated and the length is
only limited by competing plasma instabilities.

Particle in cell simulation. The diverging seed ionisation scheme
may be investigated with the use of fully kinetic particle simu-
lations that initialise perfect Gaussian laser pulses. Although, full
three-dimensional (3D) simulations are currently infeasible, the
steady-state behaviour is also observed in two-dimensional (2D)
Cartesian simulations. This is provided that, as before, α0∝ 1/ffiffiffiffiffiffiffiffiffiffiffi
t � tf

p
outside its Rayleigh range. The derivation proceeds as

before, except a becomes 2a.
The particle-in-cell code Osiris33, 34 was used to model the

amplification of a diverging seed pulse. To reduce computational
expense, the simulation used a spatial domain that enclosed only
the seed pulse and moved with it. The domain size was 125λ0 by
1000λ0 transversely, where λ0 is the pump wavelength.

To model the seed ionisation scheme, a neutral hydrogen gas
was initialised across the entire simulated volume. A field
ionisation model was used to initialise the free electrons at the
appropriate time within the simulation. The electrons were
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initialised with temperature 50 eV and uniform density 1019 cm
−3. The laser pulses were initialised as ideal Gaussian beams. The
long-pump pulse had a constant wavelength 1.054 μm and on-
axis amplitude that decreased as α0∝ 1/

ffiffiffiffiffiffiffiffiffiffiffi
t � tf

p
outside of the

Rayleigh range, such that a= t � tfð Þα20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ωp=8

q
= 0.08. The

focal beam waist was 6 μm.
The seed pulse was initialised at its focus, exactly counter-

propagating with the pump pulse. The focal position and beam
waist were the same as for the pump. The central wavelength was
1.18 μm, its peak amplitude was a1= 0.1, its peak intensity was
1016W cm−2, its duration was 50 fs and, extrapolated azimuth-
ally, its energy was 0.3 mJ. The simulation followed the
amplification and divergence of the short seed pulse for 22.4 ps
(a propagation distance of 6.7 mm). The seed started close to the
non-linear stage.

The development of the seed pulse intensity envelope is shown
over three time-steps in Fig. 3. The pulse starts at its focus, then
amplifies as it diverges. Because its amplitude decreases, the long-
pump pulse is only visible on the colour scale in the first time-step.

Since the pump pulse intensity is higher on-axis, the pulse
duration is slightly shorter in the centre. This leads to some
transverse gain narrowing, where the focal angle of the amplified
pulse is reduced somewhat. This effect could be minimised by

using a pump with a flat-top, rather than Gaussian transverse
profile. There are some filament structures that permeate through
the ionisation front ahead of the amplified pulse, although their
growth saturates.

The development of the peak intensity over time is shown in
Fig. 4a. The pulse initially drops in intensity as it diverges, then
increases again as the Raman scatter converges to the asymptotic
constant intensity solution, as predicted by Eq. (15). The peak
intensity should eventually converge to a constant value, although
the simulation did not continue long enough to observe this.

To assess the effect of ionisation on the final pulse wave-front,
the phase of the pulse was found as a function of radial distance.
It was found to deviate from a parabolic shape by <0.1 radians
across the transverse width of the pulse. The corresponding
radius of wave-front curvature was 6.2 mm, similar to the
expected curvature of 6.7 mm for a Gaussian pulse in vacuum.

Figure 4b shows a line-out of the pulse envelope along the x
axis, at the final time-step after 22.4 ps. As predicted, there are no
secondary trailing peaks. Although, suppression of these peaks is
also possible when the pump exceeds the threshold wave-
breaking intensity35–39, here this was only true for the first 20% of
the propagation. We therefore attribute the suppression to the
divergence of the pulse, rather than premature breaking of the
plasma wave.

0.4
a b c

0.4

0

–0.4

0.4 ×1015

10

8

6

4

2

06.86.766.726.683.443.43.36
Longitudinal distance (mm)

0.120.080.080

0

–0.4

0
Tr

an
sv

er
se

 d
is

ta
nc

e 
(m

m
)

In
te

ns
ity

 (
w

/c
m

2 )

–0.4

Fig. 3 Results of the two-dimensional particle-in-cell simulation. The intensity envelope of the diverging amplified pulse is shown at three time-steps in the
simulation, at a 0 ps, b 11.2 ps and c 22.4 ps. The plasma was uniform with density 1019 cm−3 and the pump amplitude (visible on this colour scale only at
the first time-step) decreased a0∝ 1/

ffiffiffiffiffiffiffiffiffiffiffi
t� tf

p
. The pulse propagates towards the right and it has been smoothed on a wavelength scale using a Gaussian

filter

10
×1015 ×1015

10 2

1.5

c

1

0.5

0
06.68 6.72 6.76 6.8 1 2 3 4 5 6 7

8

6

4

2

0

8

6

4

2

0
0 1 2 3
Longitudinal distance (mm) Longitudinal distance (mm) Longitudinal distance (mm)

P
ea

k 
in

te
ns

ity
 (

W
/c

m
2 )

In
te

ns
ity

 (
W

/c
m

2 )

E
ne

rg
y 

(J
)

4 5 6 7

ba

Fig. 4 Results of the two-dimensional particle-in-cell simulation. a The peak intensity of the amplified pulse, as it develops over the 6.7 mm propagation,
starting at the focus. b A line-out (solid line) along the x axis of the final intensity envelope after 22.4 ps, given in Fig. 3c. The prediction of Eq. (15) is also
shown with the dashed line. c The development of the energy of the amplified pulse. This was found from the two-dimensional data by assuming azimuthal
symmetry

COMMUNICATIONS PHYSICS | DOI: 10.1038/s42005-018-0021-8 ARTICLE

COMMUNICATIONS PHYSICS |  (2018) 1:19 | DOI: 10.1038/s42005-018-0021-8 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


Also plotted with a dashed line in Fig. 4b is the prediction of
Eq. (15). Since the simulation used a 2D geometry, the predicted
convergent pulse amplitude is twice that of the 3D derivation.
This explains why the intensity of the simulated pulse exceeds the
3D prediction. However, the shape of the temporal envelope is
accurately reproduced.

In Fig. 4c, the energy of the amplified pulse is plotted as a
function of the propagation distance. This was calculated by
assuming azimuthal symmetry about the x axis and integrating
the intensity profile. Although the intensity is approximately
constant, the energy of the pulse increases by a factor of more
than 4000. The overall pump to seed energy efficiency was 59%.
This value is very high because the amplifier started in the non-
linear stage from the beginning and the pump pulse was
predominantly below the threshold wave-breaking intensity.

Discussion
Seed pulses in typical Raman amplifier experiments are not
intense enough to reach the non-linear stage from the start, so
there must first be a long stretch of the amplifier in the low
efficiency linear stage. This lowers the overall efficiency. We
propose that this stage can be avoided by starting the amplifier at
the focus, maximising the effectiveness of the seed. Although
some previous studies have used small spot sizes in plasma wave-
guides40, 41, the allowable pump energy is then constrained by the
small plasma volume. The new diverging geometry increases the
allowable pump energy while retaining the minimal seed pulse
requirements.

We have shown that if the pump pulse power increases linearly
with time, the seed has constant intensity as it amplifies and
diverges. In fact, the usual trailing secondary spikes of the stan-
dard solution are eliminated, concentrating more energy in the
front-most spike. The geometry also enables easy use of the seed
ionisation scheme, which has many further advantages. Fur-
thermore, unlike the collimated case, the seed never reaches
relativistic intensity and so de-tuning due to the relativistic
electron non-linearity is avoided.

The geometry offers a route to scale up the amplifiers to use
nanosecond long-pump pulses, as discussed in ref.26. The design
could utilise a multi-kilojoule pump pulse with a sub-millijoule
seed to reach unprecedented pulse powers. The growth of a 0.3 mJ
seed has been simulated to over 1.2 J, with the only eventual
limitation set by competing instabilities such as Raman forward
scattering and filamentation of the amplified pulse.

Methods
Computer simulation algorithm. The simulation used the particle-in-cell code
Osiris, version 2. The grid was Cartesian in two dimensions. The main loop of the
algorithm repeats a process that advances the plasma by a finite time-step. First, it
interpolates the charge and current densities of a large number of particles to a
spatial grid. The grid resolves the Debye length, along with the electromagnetic and
plasma wavelengths. The electric and magnetic fields are known on the grid and are
advanced in time using the Maxwell equations. The fields are interpolated to the
position of each particle and used to update their momentum and position.

As such, the development of the pulse is found directly from the Maxwell
equations and all particle trapping effects are modelled in the simulation42.
Collisional damping is not modelled in the simulation, however the pump will be
largely unaffected because the plasma is only ionised at the position of the short
seed pulse. The inverse collisional damping rate is much longer than the seed pulse,
so inclusion of collisional damping should barely change the interaction. The
domain moved with the amplified pulse at a velocity 0.994c, by initialising new cells
at the front of the domain and deleting those at the rear. The pump pulse was also
initialised at the leading edge. The laser pulses were initialised as perfect Gaussian
beams.

Analysis of the computer simulation. Initially the pump pulse ionised the
plasma, but after 1 mm the pump pulse beam waist was wider and it was below the
ionisation intensity. From here onwards, the plasma was ionised by the seed pulse.
Plasma instabilities of the pump pulse across the 1 mm region near the focus were

not modelled. If the pump pulse is excessively degraded by instabilities in this
region, it could be reduced in size by increasing the focal angle.

The grid resolution was λ0/60 by λ0/2 transversely. There were 32 electron
particles per cell and the ions were held static to reduce computational costs. The
simulation used open boundary conditions and cubic particle interpolation. The
pulses had aligned linear polarisation.

The pulse envelope was extracted by saving the electromagnetic energy density
in each cell at intervals of 280 fs, then smoothing the data on a wavelength scale
using a 2D Gaussian filter. The simulated energy of the pulse was extracted by
taking the data on only one side of the x axis, assuming the pulse is axially
symmetric, then integrating radially and longitudinally using the Jacobian for
cylindrical coordinates to obtain the volumetric integral. The total energy efficiency
was found by integrating the final seed pulse energy density in two dimensions to
obtain a quantity with units J cm−1. The equivalent figure for the pump was found
by integrating the unperturbed pump energy density across the simulation domain,
then multiplying by the ratio of the pump pulse length to the length of the
simulation domain, since the simulated pump power was constant. The overall
simulated efficiency is the ratio of these values.

Data availability. The Osiris particle-in-cell code is available on application to the
Osiris consortium at: www.picksc.idre.ucla.edu. The simulation set-up files and
output data are available on request to P.A.N. E-mail: peter.norreys@physics.ox.ac.
uk.
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