Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Anodic reactions and the corrosion of copper in deep eutectic solvents

Green, T. A. and Valverde, P. and Roy, S. (2018) Anodic reactions and the corrosion of copper in deep eutectic solvents. Journal of the Electrochemical Society, 165 (9). D313-D320. ISSN 0013-4651

Text (Green-etal-JES-2018-Anodic-reactions-and-the-corrosion-of-copper-in-deep)
Accepted Author Manuscript

Download (840kB) | Preview


An analysis of the anodic reaction occurring at soluble copper anodes during the electrodeposition of copper from an ethaline-based deep eutectic solvent (DES) has been performed. It was shown by UV-Vis spectroscopy and electrochemical measurements that the dominant anodic species produced is the CuCl2- complex. In pure ethaline the current efficiency of the anodic process is 100% and the dissolution valency is one. However, in the presence of Cu(II) species the apparent dissolution valency measured gravimetrically was typically less than unity, corresponding to an observed mass loss greater than that expected from Faraday’s law. Moreover, the apparent dissolution valency showed a marked dependence on the electrode rotation rate, Cu(II) concentration and the water content of the deep eutectic solvent. These observations were consistent with a corrosion reaction occurring in parallel with anodic dissolution. The most likely corrosion process is the comproportionation reaction: 2CuCl2-  CuCl42- + Cu. Voltammetric data indicate that the rate of this process is controlled by the mass transport of the CuCl42- complex to the surface and can readily explain the observed dissolution valency dependencies. Finally, it is noted that anomalous dissolution of Cu anodes in deep eutectic solvents makes their implementation as soluble anodes problematic.