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Abstract  

Over the last 10-15 years a new field of ‘biogeotechnics’ has emerged as geotechnical 

engineers seek to find ground improvement technologies which have the potential to 

be lower carbon, more ecologically friendly and more cost-effective than existing 

practices. This review summarizes the developments which have occurred in this new 

field, outlining in particular the microbial processes which have been shown to be 

most promising for altering the hydraulic and mechanical responses of soils and 

rocks. Much of the research effort in this new field has been focused on microbially 

induced carbonate precipitation via ureolysis (MICP); while a comprehensive review 

of MICP is presented here, the developments which have been made regarding other 

microbial processes, including microbially induced carbonate precipitation via 

denitrification and biogenic gas generation are also presented. Furthermore, this 

review outlines a new area of study: the potential deployment of fungi in geotechnical 

applications which has until now been unexplored.  
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1. INTRODUCTION 1	

Geotechnical engineers are concerned with the engineering performance of the 2	

ground comprising soil, rock and the fluids (generally air or water) held within their 3	

pore space or voids. As such geotechnical engineers consider the behavior of the 4	

ground in terms of strength and stiffness in order to assess its performance in response 5	

to loading and unloading, which may be induced at the surface or at depth. 6	

Furthermore the ground acts as a source of material for use as fill, for example in the 7	

construction of embankments. Often there is a need to control the flow of water into 8	

or around structures to maintain stability and/or to ensure underground structures 9	

remain operational (e.g. tunnels); thus we are also concerned with the hydraulic 10	

behavior of the ground (e.g. permeability). In many instances the soil/rock available at 11	

a given site is not adequate in terms of engineering performance for the intended 12	

geotechnical application; ground improvement strategies are then employed to alter 13	

the hydraulic and/or mechanical behavior.  14	

Conventional ground improvement techniques are highly invasive (e.g. jet 15	

grouting, permeation grouting, the formation of soil-cement/lime piles), are frequently 16	

energy intensive (e.g. compaction, vibration, heating, freezing, electro-osmosis) and 17	

often require the introduction of environmentally damaging chemicals or carbon-18	

intensive materials into the subsurface (e.g. chemical grouts, cement). Cement 19	

production alone is estimated to contribute 5-7% of total global CO2 emissions 20	

(Benhelal et al., 2013). Many countries worldwide have ambitious targets to reduce 21	

their carbon emissions, for example the UK has a target to reduce carbon emissions 22	

by 80% (against the 1990 baseline) by 2050.  These targets present both challenges 23	

and tremendous opportunities for the construction sector in the transition towards 24	

low-carbon economies, as the use of cementitious materials is pervasive in 25	



	 5 

conventional ground improvement techniques. There is a clear need to widen our 26	

scope of ground improvement technologies to include lower carbon, less invasive, 27	

less energy demanding and more environmentally-friendly practices. One potential 28	

avenue for achieving this is to consider the role of microbial processes in soils and 29	

rocks. 30	

Estimates suggest that there are 2 x 109 prokaryotes (archaea and bacteria) in a 31	

gram of soil sampled from surface (top 1m), decreasing to 1x108 prokaryotes at 1-8m 32	

depth in soil (Whitman et al., 1998, Gans et al., 2005). Even at greater depth 33	

prokaryotes are found in abundance, with 2.3x107 cells/cm3 estimated to exist in 34	

subsurface sediments from 10-300m, reducing to 6x106 cells/cm3 between 300-500m 35	

(Whitman et al., 1998). In terms of bacterial diversity, estimates range from 6,400-36	

830,000 different bacterial species per gram of soil (Curtis et al., 2002, Gans et al., 37	

2005). These estimates do not include the presence or diversity of eukarya (algae, 38	

fungi, protozoa). Despite the abundance and diversity of microorganisms in the 39	

ground and their ability to survive/thrive in extreme environments (e.g. Dong et al., 40	

2008) geotechnical engineers until recently have largely ignored their presence, 41	

preferring to view the ground as a sterile engineering material.  42	

In 2005, Mitchell and Santamarina published a seminal article outlining 43	

biological considerations in geotechnical engineering (Mitchell & Santamarina, 44	

2005). This hailed the beginning of the emergence of a new sub-discipline of 45	

‘biogeotechnics’. Since then research in this area has proceeded at pace with the role 46	

of microbial processes in geotechnical engineering capturing the attention of many 47	

research groups across the world and regular symposia and conference sessions 48	

dedicated to the theme, e.g. Géotechnique Symposium in Print in 2013 on ‘Bio- and 49	

chemo-mechanical processes in geotechnical engineering’. Further highlighting the 50	
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importance of this field, the National Science Foundation in the US awarded 51	

$18.5million in 2015 to establish the Center for Bio-mediated and Bio-inspired 52	

Geotechnics, led by Arizona State University.  53	

This review seeks to present the developments which have occurred over the last 54	

10-15 years, outlining in particular the processes which have been shown to be most 55	

promising for altering the hydraulic and mechanical responses of soils and rocks. 56	

Much of the research effort in this new field of biogeotechnics has been focused on 57	

microbially induced carbonate precipitation via ureolysis (MICP); while a 58	

comprehensive review of MICP is presented here, the developments which have been 59	

made regarding other microbial processes, including microbially induced carbonate 60	

precipitation via denitrification and biogenic gas generation are also presented. 61	

Furthermore, this review outlines a new area of study: the potential deployment of 62	

fungi in geotechnical applications which has until now been unexplored. The 63	

processes outlined herein underpin the development of nature-inspired ground 64	

improvement technologies, which have the potential to be more ecologically friendly 65	

and cost-effective, for the construction and maintenance of resilient infrastructure.  66	

 67	

 68	

2. NATURAL MICROBIAL ACTIVITY 69	

Although the main focus of this review is to present microbial applications which 70	

could be deployed in ground engineering, geotechnical engineers should also be 71	

aware of natural microbial activity. This section outlines (in brief) two main points: (i) 72	

the role of microorganisms in soil formation and structure and (ii) the negative 73	

impacts that have been attributed to microbial activity in a number of case histories. 74	

 75	
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2.1 Role in soil formation and structure 76	

The perspective of soil as a sterile material not only ignores the presence of 77	

microrganisms in the ground but also the role that they play in soils and rocks. Indeed 78	

clay scientists and geomicrobiologists now widely acknowledge the important role 79	

microorganisms play in weathering processes and in the dissolution, transformation 80	

and formation of clay minerals (e.g. Barker & Banfield, 1996; Douglas & Beveridge, 81	

1998; Konhauser & Urrutia, 1999; Konhauser, 2007; Gadd, 2007, 2010, 2017; 82	

Mueller, 2015; Cuadros, 2017). A typical pattern for microbially influenced 83	

mineralisation, (not considering metabolic processes), involves metal cations in 84	

solution interacting with charged groups on cell surfaces, with these sites lowering the 85	

interfacial energy required for heterogeneous nucleation to occur. If the local solution 86	

is supersaturated with respect to the metal cations then this results in nucleation and 87	

precipitation, with the available counterions (depending on the local geochemical 88	

environment) determining the final mineral phase (e.g. carbonate, phosphate, silicate 89	

etc., Douglas & Beveridge, 1998, Konhauser, 2007). Many studies have shown the 90	

close association or synthesis of low crystallinity or amorphous clay phases in the 91	

presence of microorganisms or microbial products (both bacterial and fungal species) 92	

(e.g. Barker & Banfield, 1996, 1998; Konhauser & Urrutia, 1999; Bontognali et al., 93	

2014, Tazaki, 2006; 2013). Clay formation has been shown to occur even in low 94	

nutrient, high salinity experiments designed to simulate deep, subsurface hard rock 95	

environments (Tuck et al., 2006). Aside from their role in clay formation, 96	

microorganisms also interact with clay particles such that clay particles adhere to cell 97	

surfaces and bacterial exudates (e.g. polysaccharides) bind particles inducing 98	

aggregation, influencing clay fabric, they also intrude into clay pores affecting 99	

swelling and shrinkage behavior (Dorioz et al., 1993; Mueller, 2015). Fungi influence 100	
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soil aggregation via a number of different mechanisms, this is discussed in more detail 101	

in section 3.4.2.  102	

 103	

2.2 Problematic effects of microbial activity 104	

Until the emergence of ‘biogeotechnics’ as a field of study, there was 105	

relatively little mention of microbial processes within the geotechnical engineering 106	

literature, except in rare cases where microbial activity was highlighted as a 107	

contributing factor to problematic effects arising on site. Such case histories have 108	

been reported by Mitchell & Soga (2005), Mitchell & Santamarina, (2005), Soga & 109	

Jefferis, (2008) and Jefferis (2013). Negative impacts of microbial activity have been 110	

related to the oxidizing or reducing behavior of bacteria, involved in for example, the 111	

oxidation of soluble Fe2+ to Fe3+ resulting in precipitation termed as ‘biofouling’ or 112	

‘bioslime’, this is known to contribute to clogging of groundwater wells (Jefferis, 113	

2013).  114	

In an extreme case, during the construction of the Carsington Dam in England 115	

in the 1980s, the reaction of sulfuric acid (arising from pyrite oxidation) with 116	

limestone contained in a drainage blanket, resulted in the precipitation of gypsum, 117	

iron hydroxide and release of CO2 (Mitchell & Soga, 2005; Mitchell & Santamarina, 118	

2005). The former products resulted in clogging of the drainage blanket, whereas the 119	

latter had a more catastrophic consequence; leading to the death of four men by 120	

asphyxiation, where CO2 had accumulated in an inspection chamber (Mitchell & 121	

Soga, 2005; Mitchell & Santamarina, 2005). Cripps et al. (1993) hypothesized that 122	

bacteria greatly accelerated the rate of pyrite oxidation (Mitchell & Soga, 2005; 123	

Mitchell & Santamarina, 2005).  124	
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Furthermore, it has long been recognized that the accumulation of biomass and 125	

growth of biofilms in the subsurface, often referred to as ‘bioclogging’ can lower soil 126	

hydraulic conductivity (Slichter, 1905). Bioclogging can be problematic particularly 127	

in filters, drains and geotextiles, for example in landfill barrier systems (e.g. Baveye 128	

et al., 2008; Rowe, 2005; Ivanov & Chu, 2008), and efforts have typically focused on 129	

minimizing microbial growth. More recently engineers are considering that 130	

bioclogging could be beneficial in some applications and have attempted to reduce 131	

hydraulic conductivity by enhancing microbial growth in the laboratory (Seki et al., 132	

1998, 2005) and in the field (e.g. McConkey, 1990; Blauw et al., 2009; Lambert et al., 133	

2010). Engineered bioclogging is not discussed in more detail in this article; readers 134	

are referred to the review papers by Mitchell & Santamarina, (2005) Ivanov & Chu, 135	

(2008) and DeJong et al., (2013). 136	

As geotechnical engineers now begin to engage with, consider and explore a 137	

wide range of microbial processes there are tremendous opportunities for: (a) 138	

developing a better understanding of how microorganisms may contribute to soil 139	

formation, structure and engineering behavior in a range of environments, (b) 140	

investigating how microorganisms may influence the construction, operation and 141	

maintenance of geotechnical structures taking into account site specific geology, 142	

geochemical conditions and mineralogy and (c) understanding how particular 143	

processes can be controlled and deployed to bring about hydro-mechanical alterations 144	

in the ground. The following sections focus on the research conducted to-date for a 145	

range of microbial processes being considered for deployment in geotechnical 146	

engineering. 147	

 148	

 149	
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3. ENGINEERED MICROBIAL ACTIVITY 150	

3.1 Microbially induced carbonate precipitation via ureolysis 151	

3.1.1 Process 152	

A significant proportion of carbonates found at the Earth’s surface are thought 153	

to be of biogenic origin (Gadd, 2010). Microbially induced carbonate precipitation is 154	

a common biogeochemical process, which can occur via a number of different 155	

microbial pathways including photosynthesis, ureolysis, denitrification, 156	

ammonification, sulphate reduction and methane oxidation (Zhu & Dittrich, 2016). To 157	

date most of the studies investigating MICP for ground engineering applications have 158	

utilised ureolytic bacteria due to the relatively short times required to precipitate 159	

CaCO3 and the large masses of CaCO3 that can be precipitated due to the high 160	

solubility of the substrates in solution (urea and CaCl2) (Van Paassen et al., 2010). 161	

MICP via ureolysis relies on a bacterium hydrolyzing urea into ammonia and 162	

carbonic acid (Equation 1). This is followed by the production of ammonium ions and 163	

an increase in the pH surrounding the bacterial cell, due to the net production of OH- 164	

ions (Equation 2). As the pH increases, carbonic acid (H2CO3) is converted to 165	

bicarbonate ions (HCO3
-) (Equation 3), subsequently forming carbonate ions (CO3

2-) 166	

(Equation 4). Calcium ions in solution interact with charged surfaces on the bacterial 167	

cell surface and the increase in pH promotes the subsequent precipitation of calcium 168	

carbonate (CaCO3) (Equation 6) [Ferris et al., 1992; 1996; Mitchell et al., 2010]. 169	

Figure 1. shows calcite crystals produced via ureolysis, with visible indentations 170	

indicating that S. Pasteurii cells are encapsulated by the precipitation of calcite. 171	

CO(NH2)2 + 3H2O           2NH4
+ + HCO3

- +OH-       (1) 172	

HCO3
-  + H2O + OH-  CO3

2- + 2H2O   (2) 173	

Ca2+ +  CO3
2-          CaCO3 (s)                  (3) 174	



	 11 

 175	

MICP has been investigated for a wide range of applications including solid-176	

phase capture of contaminants (e.g. Fujita et al., 2008), for building restoration (e.g. 177	

De Muynck et al., 2010) and concrete remediation (e.g. Bang et al., 2001; Van 178	

Tittelboom et al., 2010). The review presented here is only intended to cover its use in 179	

ground engineering applications. From this perspective it has been investigated, over 180	

the last two decades by numerous researchers from different backgrounds and with 181	

different objectives (in terms of end-state) leading to a substantial body of literature 182	

and a collection of varying experimental procedures.  183	

Prior reviews have summarized the practical applications of MICP (often with 184	

a focus on soil stabilization), field scale testing that has been carried out to date, as 185	

well as the challenges and limitations of the technique (Anbu et al., 2016; DeJong et 186	

al., 2010; DeJong et al., 2013; Mujah et al., 2017; Philipps et al., 2013; Umar et al., 187	

2016; Wang et al., 2017). This review aims to add to the body of knowledge by 188	

examining the experimental conditions, control parameters and injection strategies 189	

employed in MICP by urea hydrolysis; and comparing this to reported outcomes 190	

including for increases in compressive strength, decreases in permeability or 191	

erodibility, and uniformity of treatment. 192	

 193	

3.1.2 Applications in geotechnical engineering 194	

Soil stabilization 195	

Investigation of the use of MICP via ureolysis has been widely studied for soil 196	

stabilisation, in particular for its ability to improve compressive strength, shear 197	

strength and stiffness, in particular in granular soils (i.e. sands and gravels) (e.g. 198	

DeJong et al., 2006; Whiffin et al., 2007, Van Paassen et al., 2010; Al Qabany & 199	
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Soga, 2013). Figure 2. shows that treatment with MICP via ureolysis transforms an 200	

initially loose fine sand into a cemented sand/sandstone. Treatment of sands via MICP 201	

has resulted in increases in unconfined compressive strength of greater than three 202	

orders of magnitude (e.g. Al Qabany & Soga, 2013) and in some cases even over four 203	

orders of magnitude (Van Paassen et al., 2010 and Terzis & Laloui, 2018). As a result 204	

of the increase in strength and stiffness afforded by MICP it has also been proposed 205	

for settlement reduction (Martinez & DeJong, 2009) and enhancing liquefaction 206	

resistance (Montoya et al., 2013). Studies investigating soil stabilisation applications 207	

have been widely reported in MICP review papers (Anbu et al., 2016; DeJong et al., 208	

2010; DeJong et al., 2013; Mujah et al., 2017; Philipps et al., 2013; Umar et al., 2016; 209	

Wang et al., 2017). 210	

 211	

Erosion resistance 212	

MICP via ureolysis has been investigated as a method for reducing soil 213	

erosion by creating a denser layer of CaCO3 at the soil surface that is more resistant to 214	

shear stresses imposed by wind or water, thereby protecting the underlying soil 215	

(Figure 3). Both Gomez et al. (2015) Hamdan & Kavazanjian (2016) investigated 216	

carbonate precipitation via urea hydrolysis as a means of suppressing dust generated 217	

by wind erosion. Gomez et al. (2015) utilised S. pasteurii, whereas Hamdan & 218	

Kavazanjian (2016) used the plant-based Jack bean urease enzyme. In both cases, 219	

treated soils exhibited enhanced erosion determined either via jet impingement tests 220	

(Gomez et al., 2015) or in wind tunnel tests, where the wind speed required to initiate 221	

erosion in treated soils exceeded that of the control samples (Hamdan & Kavazanjian, 222	

2016). 223	
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Studies have also demonstrated the potential of MICP via ureolysis to reduce 224	

water-induced erosion, including for embankments and slopes in riverine and 225	

coastal/estuarine environments and as a means of mitigating against scour around 226	

bridge piers (Salifu et al., 2016; Amin et al., 2017; Bao et al., 2017).   Results for all 227	

studies showed increased erosion resistance of MICP treated soils, with MICP treated 228	

slopes maintaining steep profiles (e.g. 53°) whereas untreated slopes exhibited 229	

collapse when subjected to repeated raising and lowering of water levels (simulating 230	

tidal cycles) (Salifu et al., 2016). In the case of scouring, although the treated sand 231	

directly around the pier showed enhanced erosion resistance, the bridge pier was still 232	

vulnerable to erosion due to undermining of the surrounding untreated sand (Bao et al. 233	

2017). 234	

 235	

Permeability reduction in porous media 236	

The precipitation of microbially induced carbonate at particle contacts and on 237	

grain surfaces reduces pore throat diameters and overall porosity, thus reducing 238	

permeability. Sand columns treated with MICP have been shown to achieve as much 239	

as 90-100% reduction in permeability from initial values (Gollapudi et al., 1995, 240	

Tobler et al., 2012). Similarly MICP can be used to reduce permeability in porous 241	

rock, e.g. sandstone (Tobler et al. in review). Although reduction in permeability may 242	

be the target end-state, a homogeneous distribution of calcite is desirable, since a non-243	

homogenous distribution with more calcite precipitated close to the injection point 244	

will result in a low permeability, but from a practical perspective will result in 245	

clogging around the injection well cutting off further soil/rock volumes from potential 246	

treatment (Tobler et al., 2012).  247	

 248	
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Rock fracture sealing 249	

Rock fracture grouting using MICP has received considerably less attention 250	

than soil stabilization. Initial work was carried out by Zhong & Islam (1995) with the 251	

motivation of enhancing hydrocarbon production by plugging fractures. They found 252	

that no plugging occurred in granite cores with artificially cut fractures unless the 253	

fractures contained filling material such as sand, silica fume or limestone dust. Stoner 254	

et al. (2005) used micromodels to investigate flow in fractures with realistic surface 255	

roughness and found that, under constant flowing conditions, vein-like flow paths 256	

formed due to MICP. 257	

El Mountassir et al. (2014) sealed lab-scale artificial fractures consisting of 258	

polycarbonate surfaces. In these experiments flocculation of the bacteria was induced 259	

in order to aid settling and straining of the bacteria in the fractures. They found that, 260	

for all flow velocities tested, preferential flow paths would form when MICP was 261	

carried out with constant flow rate injections and no static periods. This was thought 262	

to occur due to shear stresses on the fracture surfaces exceeding the bacterial 263	

attachment threshold; they found that by reducing injection flow rates it was possible 264	

to fill in the preferential flow paths. Using a similar injection strategy (although with 265	

no induced flocculation), Minto et al. (2016) found that, in a large-scale artificial 266	

granite fracture with radial injection, relatively uniform precipitation could be 267	

obtained over an area at least 3.1m2 and that high flow velocity could be used to limit 268	

bacterial attachment and CaCO3 precipitation in the vicinity of the well. Minto et al. 269	

(2016) achieved a reduction in fracture transmissivity of three orders of magnitude in 270	

3 treatment cycles. 271	

Cuthbert et al. (2013) carried out a field trial in which a single fracture in 272	

Dacite rock was sealed with eight MICP treatment cycles over four days. Two 273	
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adjacent monitoring boreholes were used for cross-hole conductance testing before 274	

and after MICP. To encourage flocculation of bacteria and attachment within the 275	

fracture, the bacteria was first mixed with 0.2M CaCl2 and then injected 276	

simultaneously with urea through a separate injection line. They inferred a reduction 277	

in fracture transmissivity of 99% close to the injection well, and 33% at a distance of 278	

2m from the injection well via cross-hole conductance tests. 279	

Only one study has to date been carried out on the mechanical behavior of 280	

MICP grouted fractures. Tobler et al., (in review) sealed four artificial fractures cut in 281	

38 mm diameter granite cores. One core was thin sectioned for optical and SEM 282	

analysis whilst the remaining three were non-destructively scanned with X-ray 283	

computed tomography then shear strength was measured. Both SEM and X-CT 284	

revealed CaCO3 covering most of both top and bottom fracture surfaces and, in 285	

places, entirely bridging the gap between surfaces. All sheared samples showed a 286	

higher residual resistance to shear than the uncemented rock surface and peak shear 287	

strength was found to correlate with the area of CaCO3 bridging across the two 288	

fracture surfaces. 289	

Fracture sealing with MICP appears to be viable, however, to date, all 290	

experiments have been carried out in single fractures that are horizontal and planar. 291	

MICP treatment in fracture networks with fractures of different aperture and 292	

orientation is likely to be more complex. Minto et al. (2016) hypothesized that 293	

hydrodynamic feedback between bacteria transport and CaCO3 precipitation may lead 294	

to the sealing of large fractures first resulting in a progressive homogenization of 295	

fracture aperture within the network, however this remains to be tested.  296	

Much of the work on rock fracture sealing with MICP has been motivated by 297	

the context of deep geological disposal of spent nuclear fueld and higher activity 298	
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radioactive waste, where MICP could be an alternative grout capable of penetrating 299	

into fine aperture fractures with a sufficiently low pH (compared to cement grouts) to 300	

not negatively impact on the bentonite buffer performance. 301	

 302	

Well sealing 303	

MICP has been proposed for sealing leakage pathways around wells, 304	

particularly those that may be used for geological carbon sequestration (Cunningham 305	

et al., 2009). Phillips et al. (2013) demonstrated sealing of a large fracture in a 74 cm 306	

diameter sandstone core and of a fracture in the sandstone surrounding a real well at a 307	

depth of 341 m.  308	

Linked to the potential of MICP for well sealing, are questions concerning 309	

how high pressure, high temperature, high salinity, groundwater constituents, anoxic 310	

conditions, wellbore cements, and the presence of residual oil, scale inhibitors, 311	

surfactants, and other fluids injected to enhance drilling and production, might affect 312	

bacterial ureolytic activity and precipitate properties. Of particular concern for CO2 313	

sequestration is longevity of the seal and the potential for acidic CO2 saturated water 314	

to dissolve CaCO3 and form wormholes (Minto et al., 2017). 315	

The authors are not aware of any experiments that combine high pressure 316	

(>1.5MPa) with temperatures greater than 40ºC, however such test will be necessary 317	

in order to establish the maximum depth at which MICP may be used for well sealing 318	

at depth. 319	

 320	

Other applications 321	

The focus here has been on the use of MICP for geotechnical applications. However it 322	

should be noted that MICP is also being investigated for a range of other applications 323	
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including for bioremediation by co-precipitation of heavy metals and radionuclides 324	

(e.g. Mitchell & Ferris, 2005; Fujita et al., 2008; Fujita et al., 2010; Achal et al., 2011, 325	

2012a, 2012b), for CO2 sequestration (e.g. Cunningham et al., 2009; Mitchell et al., 326	

2010; Phillips et al., 2013) and for the protection and restoration of concrete and stone 327	

(e.g. Bang et al., 2001; De Muynck et al., 2010; Van Tittleboom et al., 2010). 328	

 329	

3.1.3 Control parameters and injection strategies 330	

Soil and rock fracture grouting with MICP is fundamentally different to 331	

traditional grouting using cements and resins. Numerous methodologies have arisen, 332	

among the different research groups studying this process, for the delivery of bacteria, 333	

urea, and CaCl2 so as to best control and optimize CaCO3 precipitation for different 334	

target applications. Table 1. lists the different control parameters and the injection 335	

strategies that may influence MICP precipitation. The influence of these and the 336	

typical values/ranges that have been used in MICP treatments are discussed in detail 337	

in the following. 338	

Reagents 339	

Bacteria: For engineering applications, the bacterial concentrations used during 340	

bioaugmentation mostly fall within the range 0.1 OD600 to 1 OD600, corresponding to 341	

3.7x106 to 8.6x107 cells/mL following the relationship developed by Ramachandran et 342	

al. (2001) for S. pasteurii, although concentrations greater than 3 OD600 have also 343	

been used (Cheng et al., 2017).  344	

 345	

Fixative: High ionic strength solutions have been used to “fix” bacteria onto media 346	

surfaces during bio-augmentation by reducing repulsive surface charges. Harkes et al. 347	

(2010) demonstrated that a 50 mM CaCl2 solution injected after bacterial injection 348	
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would overtake the bacteria causing the bacteria to flocculate within the porous media 349	

and fix them to the media surface resulting in greater bacteria retention and greater 350	

precipitation within the desired area. Cuthbert et al. (2013) found that to get sufficient 351	

bacterial retention in a fast-flowing fracture, it was necessary to add 200 mM CaCl2 352	

directly to the bacterial suspension and mix with 400 mM urea resulting in the 353	

formation of strongly bound bacteria-CaCO3 flocs at the point of injection and a 70% 354	

retention of injected bacteria within the fracture. 355	

 356	

Urea and calcium concentrations: Hydrolysing 1 M of urea results in, at most, 1 M 357	

CaCO3, hence, equimolar urea/calcium concentrations are often used for maximum 358	

efficiency. However, increasing calcium concentration shifts the saturation state of the 359	

system (and can increase pH if adjustment is not made) so excess calcium 360	

concentrations (i.e. above the urea concentration) may lead to more rapid 361	

precipitation. 362	

 Cheng & Shahin (2016) found the maximum amount of CaCO3 was produced 363	

at equimolar urea/CaCl2 concentrations of 0.4 M with both higher and lower 364	

concentrations reducing the total mass of precipitation. Following the same trend, 365	

Nemati et al. (2005) found that increasing CaCl2 alone from 0.045 to 0.27 M resulted 366	

in increasing amounts of CaCO3. 367	

 Al Qabany & Soga (2013) found no significant difference between the 368	

compressive strength of equimolar 0.1 M and 0.25 M solutions for a given CaCO3 369	

content. However, as the concentration increased to 0.5 M, slightly more CaCO3 370	

precipitation was required to achieve the same compressive strength and samples 371	

treated with 1 M urea/CaCl2 frequently failed before testing. This was attributed to 372	

larger CaCO3 crystals forming in the pore space at high concentrations of urea/CaCl2 373	
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and a poor spatial distribution of CaCO3 resulting in highly heterogeneous samples. 374	

Shahronkhi-Shahraki et al. (2014) on the other hand found unconfined compressive 375	

strength was greater when urea or CaCl2 concentrations exceeded 0.5 M, although at 376	

these concentrations they did not use equimolar concentrations of urea and CaCl2. 377	

They observed greater unconfined compressive strength when the urea concentration 378	

exceeded that of CaCl2 (based on a limited number of specimens). 379	

 380	

pH adjustment: CaCO3 saturation is dependent on pH hence, by decreasing initial 381	

solution pH, a delay in CaCO3 precipitation can be introduced (Dupraz et al., 2009; 382	

Mitchell and Ferris, 2005). Decreasing the cementing solution pH to 6.5 with the 383	

addition of hydrochloric acid has been used by Minto et al. (2016), El Mountassir et 384	

al. (2014), Tobler et al. (2011) and others, to delay precipitation around the injection 385	

point and to allow a greater number of injection cycles before clogging occurs. 386	

Gomez et al. (2015) used the same procedure so that bacteria, urea and CaCl2 could 387	

be pre-mixed on the surface and applied without precipitation occurring in the 388	

injection tubing. 389	

 390	

Urease activity: The rate of urea hydrolysis is governed by urease activity (measured 391	

in mM urea hydrolysed/min), which is determined by the amount of enzyme present 392	

in the solution. Given that the bacteria are the source of the enzyme, this is often 393	

reported as the specific urease activity Kurea, (mM urea/min/OD600). Kurea is 394	

commonly measured using the change in electrical conductivity over a period of five 395	

minutes, based on the premise that non-ionic urea is hydrolysed to ionic ammonium. 396	

The calibration relationship often used, is that developed by Whiffin (2004), where 397	

Urea hydrolysed (mM) = 11.11 x Change in Conductivity (mS/cm). Urease activity 398	
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values in the range of 0.5 to 60mM urea hydrolysed/min have been reported with 399	

specific urease activity values typically in the range of 0.8 to 29mM urea 400	

hydrolysed/min/OD (Minto et al., 2016; Whiffin, 2004; Harkes et al., 2010; Van 401	

Paassen et al., 2010; Terzis & Laloui, 2018).  402	

Whiffin (2004) investigated the influence of bacterial concentration on 403	

ureolytic activity for different cultivations of S. pasteurii, and there was observed to 404	

be no correlation with biomass; for a given OD600, urease activity varied by more than 405	

one order of magnitude. By contrast, Cheng et al. (2017) prepared different bacterial 406	

concentrations starting from initial OD600 values in the range of 2-2.5 and achieved 407	

suspensions with low, medium and high urease activities of 5, 10 and 50 µM urea 408	

hydrolysed/min, respectively. It should be noted that these levels of urease activity are 409	

considerably lower than those reported in other studies using S.Pasteurii (see above). 410	

During MICP treatment they kept all other variables constant and found that 411	

specimens treated with a lower urease activity suspension resulted in improved 412	

treatment, achieving a given unconfined compressive strength at a lower CaCO3 413	

content (Figure 4). Many researchers have related CaCO3 content with unconfined 414	

compressive strength (UCS), under different experimental conditions (Al Qabany and 415	

Soga, 2013; Cheng et al., 2017, 2014, 2013; Choi et al., 2016; Rowshanbakht et al., 416	

2016; Terzis and Laloui, 2018; van Paassen et al., 2010), data from these studies are 417	

also included in Figure 4 in order to understand the scale of variation. It should also 418	

be noted that differences in experimental procedure regarding carrying out UCS tests, 419	

can also lead to variability; some researchers use end caps to prepare perfectly flat 420	

ends, which can result in higher strengths being achieved than for specimens tested 421	

without the use of end caps. 422	
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The results presented in Figure 4 with respect to urease activity reflect a 423	

general trend in the data in the literature in which parameters that act to decrease the 424	

rate of ureolysis (low temperature, low urea concentration) or slow CaCO3 425	

precipitation (low CaCl2 concentration) results in marginally greater UCS for a given 426	

CaCO3 content. This may be due to the influence of the rate of ureolysis on the 427	

amount, size and distribution of crystals. Van Paassen (2009) demonstrated that high 428	

rates of ureolysis (>0.3mM urea hydrolysed/min) resulted in the formation of large in 429	

(spherical) crystals, whereas intermediate ureolysis rates resulted in smaller calcite 430	

crystals and very low rates in a small number of very large calcite crystals. 431	

Flow conditions  432	

Fluid velocity: Bacterial attachment occurs when cells become physically wedged 433	

between grains and trapped in pore throats (straining), or when cells are transported 434	

close enough to a surface that electro-static attractive forces overcome repulsive 435	

forces. Shear forces imparted by the flow velocity play a role in limiting attachment 436	

and can also cause detachment of bacteria (Bakker et al., 2002). 437	

In fractures, El Mountassir et al. (2014) and Stoner et al. (2005) have shown 438	

that preferential flow paths form when MICP is applied under constantly flowing 439	

conditions. El Mountassir et al. (2014) showed that hydrodynamic feedback 440	

reinforced preferential flow paths at the fluid velocities tested (7.2 to 119 m/hr) and 441	

that they remained stable until the injection rate was decreased. This is presumably 442	

because at constant flow rates, as permeability decreases due to calcite precipitation, 443	

the velocity increases within the remaining open channels, until the shear forces 444	

become too high for the bacteria to attach. Minto et al. (2016) proposed that flow 445	

velocity could be used to control where bacteria attach (and hence where CaCO3 446	

precipitates) within a fracture due to the radial flow drop-off in fluid velocity that 447	
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occurs around a single injection point. It follows that for multiple injection cycles in 448	

radial flow systems, maintaining a constant pressure rather than a constant flow rate, 449	

or sequentially decreasing the flow rate for consecutive cycles, may act to distribute 450	

bacteria over a large area and progressively seal the fracture towards the injection 451	

point. 452	

In porous media, the effect of bacterial attachment due to straining and 453	

filtration becomes more significant, particularly as the pore throat sizes approach that 454	

of the bacterial cells  (Tobler et al., 2014)). Tobler et al. (2014) found greater bacteria 455	

penetration through a Bentheimer sandstone core as velocities increased (superficial 456	

velocity from 0.06 to 0.18 m/hr) and Van Paassen et al. (2009) found little to no 457	

CaCO3 within approximately a 100 mm radius around a spherical injection point in 458	

Itterbeck fine sand, corresponding to a superficial flow velocity in the region of 0.4 459	

m/hr. This indicates that, even in porous media, velocity can be used to control where 460	

CaCO3 precipitates. 461	

 462	

Static periods: Periods of no flow are often used in lab-scale experiments to allow 463	

bacteria to attach to the porous media. Typically, between 0.5 and 1.5 pore volumes of 464	

bacteria are injected followed by a static period ranging from 2 to 4 hours (Alvarado 465	

and DeJong, 2008; Bernardi et al., 2014; Sham et al., 2013), 12 hours (Shahronkhi-466	

Shahraki et al., 2014) or even up to 24 hours (Amin et al., 2017; Cheng et al., 2017).  467	

This is followed by the injection of cementing solution which is also often left static 468	

for a duration of 24 hours (Amin et al., 2017; Cheng et al., 2017, 2014; Cunningham 469	

et al., 2011; Shahronkhi-Shahraki et al., 2014; Sham et al., 2013). Using this 470	

approach, each point in the porous media becomes like a batch reactor in which 471	

bacteria, urea and CaCl2 are present with only limited transport due to diffusion. The 472	
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24-hour duration of the static cementation period appears to be motivated by 473	

experimental convenience rather than consideration for the amount of bacteria, urease 474	

activity, and urea concentration.  475	

Ideally during cementation, adequate urea, CaCl2 and time would be provided 476	

for sufficient CaCO3 precipitation that the bacteria become encased, at which point 477	

the reaction ceases. However, due to the Michaelis-Menten kinetics of urea hydrolysis 478	

(e.g. Shashank et al., 2018), reaction rates decrease and urea starts to become a 479	

limiting factor before it is fully exhausted, hence an unfeasibly long time is required 480	

to fully encase the bacteria. To overcome this, some researchers (Bernardi et al., 481	

2014; Harkes et al., 2010) inject subsequent volumes of fresh cementing solution, 482	

which may not be fully utilised, but may prove more cost effective as the bacteria is 483	

are more expensive to grow, process and transport to site than the cementing solution. 484	

 485	

Single vs cyclic injection: A single injection of ureolytically active bacteria followed 486	

by cementing solution has been shown to be effective for increasing strength in sands 487	

e.g. Whiffin et al. (2007) and Van Paassen et al. (2010) whilst maintaining porosity. 488	

Additional injections of bacteria further increase strength and may result in a more 489	

uniform treatment volume (Cheng and Cord-Ruwisch, 2014; Minto et al., 2017a). 490	

However, they also decrease porosity and thus permeability, which may or may not be 491	

desirable depending upon the application. 492	

When grouting rock fractures, it is necessary to inject multiple cycles of 493	

bacteria followed by cementing solution. Each cycle progressively precipitates CaCO3 494	

on the exposed fracture surface in multiple layers, which are necessary to completely 495	

bridge the fracture aperture so as to substantially reduce fracture transmissivity 496	

(Cuthbert et al., 2013; El Mountassir et al., 2014; Minto et al., 2016; Tobler et al., in 497	
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review). When multiple injection cycles are used, it is possible to deliver the same 498	

total amount of bacteria, whilst still keeping concentrations close to their optimum 499	

values by using an increased number of injections at a lower concentration. An added 500	

advantage of this may be more uniform precipitation as preferential flow paths block 501	

first, re-directing reagents in subsequent injections (Cheng and Cord-Ruwisch, 2014; 502	

Minto et al., in review; van Paassen, 2009). 503	

An alternative approach is a single bacterial injection followed by cementing 504	

solution that either contains nutrients or is interspersed with injections of nutrients 505	

(Bernardi et al., 2014; Cunningham et al., 2014; Phillips et al., 2013). The aim of the 506	

nutrient addition is to stimulate bacteria growth whilst simultaneously precipitating 507	

CaCO3. For this approach to be effective, the relative rate of growth must be an 508	

appreciable fraction of the rate of cell death and cell encapsulation within the 509	

precipitating CaCO3; hence it favours slower precipitation rates.  510	

 511	

Medium 512	

Mineralogy: MICP has been successfully applied in silica sands, gravel (van Paassen 513	

et al., 2012) and organic soil such as peat (Canakci et al., 2015); in porous rock such 514	

as Berea sandstone (Cunningham et al., 2014; Minto et al., 2017a; Nemati and 515	

Voordouw, 2003); and for fractured rock including dolerite (MacLachlan, 2017), 516	

dacite (Cuthbert et al., 2013), granite (Minto et al., 2016), fractured sandstone 517	

(Phillips et al., 2016, 2013) and fractured limestone (Ross et al., 2001).  518	

Mineralogy has been shown to influence CaCO3. Studies have reported 519	

increased rates of ureolysis and precipitation after initial calcite deposition, suggesting 520	

that S. pasteurii preferentially attach to these surfaces over silica, glass or 521	

polycarbonate (Tobler et al., 2012; Schultz et al., 2011; El Mountassir et al., 2014). 522	
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Furthermore, the activation energy required for nucleation is typically greater than for 523	

crystal growth (e.g. Rodriguez-Blanco et al., 2011) such that CaCO3 precipitation 524	

proceeds more rapidly once calcium carbonate is already present within the system, 525	

i.e. arising from an initial MICP treatment or in limestone or marble media.  526	

 527	

Degree of saturation: Lab scale MICP tests are typically performed under fully water-528	

saturated conditions, particularly when permeability change is of interest. However, 529	

tests that incorporate a drainage step after bacteria injection and cementation (Amin et 530	

al., 2017), or were carried out under unsaturated conditions (Cheng et al., 2013), or 531	

took place in the field where saturation state could not be controlled (Cheng and 532	

Cord-Ruwisch, 2014; Gomez et al., 2015) often report more uniform CaCO3 533	

distribution and greater depth of treatment.  534	

Of all the variables explicitly studied, saturation state has the greatest effect on 535	

the CaCO3/UCS relationship, with lower degrees of saturation during treatment 536	

resulting in greater strength for the same amount of CaCO3 (Figure 5). Cheng et al. 537	

(2013) reason that lower saturation concentrates bacteria and reagents at the 538	

interparticle contact points. This is likely to be because unsaturated conditions result 539	

in a film of liquid occurring at soil particle contact points hence precipitation is 540	

concentrated at these contact points where it contributes to strength increase. 541	

Furthermore, unsaturated conditions will result in the presence of menisci; bacteria 542	

have been observed to preferentially attach at air-water interfaces rather than solid-543	

water interfaces (Schäfer et al., 1998), therefore menisci will promote bacterial 544	

attachment. 545	

 546	
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When applying MICP reagents, whether by percolation under gravity or a 547	

pressurised injection, for a given flow rate the interstitial (or seepage) velocity will 548	

increase as saturation decreases. In a similar manner to increasing the fluid velocity, 549	

this ought to have the effect of delivering bacteria and urea further into the media 550	

before attachment and hydrolysis occur. This may explain the more uniform CaCO3 551	

distribution and greater depth of treatment observed in samples treated in unsaturated 552	

conditions or with unsaturated stages. 553	

 554	

Soil structure: Van Paassen et al (2009b) demonstrated that initial dry density 555	

influences the relationship between CaCO3 and UCS. In order to achieve the same 556	

strength (UCS), a specimen with a lower initial dry density required a greater content 557	

of CaCO3 to be precipitated compared to the same material compacted to a higher 558	

initial dry density. While for specimens with the same CaCO3 content , that 559	

compacted to a higher initial dry density exhibited a higher UCS value (Van Paassen 560	

et al., (2009b). 561	

All studies presented in Figure 6 were conducted in sands of differing particle 562	

size and grading and all were treated at the core scale (35-100 mm diameter) with the 563	

exception of van Paassen et al. (2010) who cut samples out of a large block of treated 564	

sand in a 100 m3 experiment. Terzis & Laloui, (2018) tested a medium and fine sand, 565	

and showed that the medium sand achieved considerably higher UCS values (and 566	

stiffness) for a given CaCO3 content than the fine sand. This is despite the medium 567	

sand being initially more porous (Terzis & Laloui, 2018). They determined via micro-568	

CT scanning that in the medium sand the diameter of the CaCO3 bonds (where CaCO3 569	

bridges particles) created were larger than in the fine sand, reducing inter-particle 570	

stresses at contact points, and thus enhancing resistance to shearing. The difference in 571	
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behavior for the two specimens may also arise from differences in the sand properties, 572	

including for example angularity of the grains, roughness and initial pore structure, all 573	

of which could influence bacterial attachment and precipitation.  574	

Recent studies at Arizona State University on Enzymatic Induced Calcium 575	

carbonate precipitation have shown an optimum strength for Ottawa 20/30 sand (with 576	

a d50 of 400 µm) reaching 1 MPa at just 1% of CaCO3, which would fall to the left 577	

even of the trendline plotted for Terzis & Laloui (2018) data presented in Figure 6. 578	

These studies indicate that initial porosity, the distribution of contact points and area 579	

of contact points, in conjunction with the size and distribution of calcite crystals 580	

precipitated influences the strength achievable via MICP treatment.  581	

 582	
Environmental conditions 583	

Influence of oxygen concentration: S. pasteurii is an obligate aerobe yet conflicting 584	

results have been found as to the influence of oxygen on the rate of ureolysis. 585	

Mortensen et al. (2011) report higher rates of conductivity change (a proxy measure 586	

for ureolysis) for anoxic conditions, as compared with oxic conditions. Tobler et al. 587	

(2011) found no significant difference in ammonium production (measured by Nessler 588	

assay) when aerobically cultured S. pasteurii were injected into oxic and anoxic 589	

groundwater.  590	

Parks (2009) found lower growth rates for S. pasteurii grown under anaerobic 591	

conditions but comparable rates of pH change were observed suggesting comparable 592	

rates of ureolysis for aerobic and anaerobic media. When exposed to oxygen, bacterial 593	

population growth in the anaerobic media increased, indicating viable cells had 594	

survived, but the author notes that growth without oxygen could not be conclusively 595	

shown. Whereas Martin et al. (2012) found that S. pasteurii would not actively grow 596	

under anaerobic conditions, but that there was still urease activity. These studies 597	
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indicate that bio-stimulation (i.e. growth of indigenous ureolytic bacteria) may be 598	

problematic in subsurface conditions with limited oxygen supply.  599	

 600	
Pressure: S. pasteurii has been shown to continue to grow and hydrolyse urea at 601	

pressures from 7.5 to 10 MPa and at temperatures between 30 and 40ºC (Mitchell et 602	

al., 2013; Verba et al., 2016). Cunningham et al. (2014) reduced the permeability of a 603	

25.4 mm diameter Berea sandstone core at 7.6 MPa whilst Phillips et al. (2016) 604	

decreased injectivity into a fractured sandstone around a 341 m deep well where 605	

pressure reached 8.3 MPa and downhole fluid temperature was 24.5ºC. Mitchell et al. 606	

(2013) slowly increased pressure to 7.6 MPa over 20 days so as to allow the bacteria 607	

to acclimatize whilst the other researchers do not appear to have taken this precaution. 608	

 609	

Temperature: Increasing temperature acts to increase the rate of ureolysis, for 610	

example Van Paassen (2009) found that between 5°C and 70°C the rate of ureolysis 611	

doubled approximately every 8°C. However as the ureolysis is driven by the urease 612	

enzyme, increasing temperatures leads to denaturation of the enzyme. Illeová et al., 613	

(2003) demonstrated using Jack bean urease that all enzyme activity was lost after 614	

40mins exposure to a temperature of 87.5°. Zhong and Islam (1995) found S. 615	

pasteurii cultivated at room temperature required five days to adapt to a temperature 616	

of 50ºC but ultimately more CaCO3 was precipitated at 50ºC. Cheng et al. (2017) also 617	

found increased CaCO3 precipitation at higher temperatures, but noted that strength 618	

increase was less efficient. Conversely, Wu et al., (2017), investigated urea hydrolysis 619	

in the absence of a calcium source, and found decreasing rates of ammonium 620	

production at temperatures above 30ºC with no ammonium production at 50ºC. 621	

 622	
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Combination of environmental factors: Environmental factors, including e.g. 623	

temperature, pressure, salinity, which may influence MICP are numerous and are 624	

interlinked. Furthermore they are also impacted by the injection strategy used. As 625	

such at this point it remains unclear from the limited studies presented in the literature 626	

on environmental factors as to the individual influence of these parameters on the 627	

resulting behavior of MICP treated soil/rock.  628	

Indeed, when reviewing data from the literature, it was often clear that there 629	

were many combined variables influencing the differences in mechanical behavior 630	

observed. Figure 7 presents the UCS vs CaCO3 for all studies (in grey) and the 631	

outliers of all the datasets are highlighted (Van Paassen et al., 2010 and Terzis & 632	

Laloui, 2018). Terzis & Laloui (2018) were able to achieve a given unconfined 633	

compressive strength at lower calcite contents indicating a more efficient process. 634	

Some of the main differences listed between these two studies are highlighted: (i) the 635	

urease activity used by Terzis & Laloui (2018) was an order of magnitude lower at 636	

1.7mM/min compared to the 18.3mM/min used by Van Paassen et al. (2010), (ii) 637	

Terzis & Laloui injected multiple cycles building up layers of calcite precipitation 638	

(Terzis et al., 2016), whereas Van Paassen used a single injection sequence (bacteria, 639	

followed by fixative, followed by cementing solution), (iii) Van Paassen used whole 640	

cells, whereas Terzis & Laloui used lyophilized cells, which may also influence 641	

enzyme kinetics (Lauchnor et al., 2015; Graddy et al., 2018; Fidaleo and Lavecchia, 642	

2003; Stocks-Fischer et al., 1999) . This illustration demonstrates that many different 643	

variables play a role in selecting suitable strategies for the deployment of MICP in 644	

geotechnical engineering applications.  645	

	646	
	647	
	648	
	649	
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3.1.4 Challenges and limitations 650	

Uniformity 651	

Uniformity of treatment remains a challenge for MICP. Due to the transport 652	

and retention of bacteria and consumption of reagents, it is possible to end up with a 653	

greater concentration of cells close to the injection point and a gradient in CaCO3 654	

precipitation from inlet to outlet. Due to the low viscosity of the MICP solutions, 655	

injected material first follows existing preferential flow paths which can lead to 656	

inhomogeneous treatment and potentially, pockets of untreated media. 657	

However, MICP has been demonstrated to be effective in columns of 5 m 658	

length (Whiffin et al., 2007) and in 100 m3 radial injection experiments (van Paassen 659	

et al., 2010). Methods to improve treatment uniformity are 1) radial injection (which 660	

is common in field trials, as opposed to linear injection most often used in lab scale 661	

experiments) which increases velocity in the vicinity of the well thus decreasing 662	

bacterial attachment, 2) lower the pH of the urea/CaCl2 cementing solution (typically 663	

to 6.5) to introduce a delay between urea hydrolysis and CaCO3 precipitation, and 3) 664	

multiple injection cycles of bacteria followed by cementing solution, possibly with 665	

lower reagent concentrations, as each cycle will distribute additional bacteria the 666	

soil/rock and, hence, treat a different region of the porous/fractured media as flow 667	

paths evolve in response to clogging of the pore space with CaCO3. 668	

 669	

Monitoring 670	

For ground improvement by MICP, monitoring of where, and to what extent, 671	

treatment has occurred will be critical. This is also true for ground improvement with 672	

traditional cement grouts, however, an empirical body of knowledge has accumulated 673	
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for cement grouts through their use over hundreds of years which will not initially be 674	

available for MICP. 675	

At the lab scale, measurement of properties such as changes in mass, 676	

permeability, shear-wave velocity and X-ray attenuation are effective at establishing 677	

treatment effectiveness (DeJong et al., 2006; Minto et al., 2017). At field scale, 678	

traditional geophysical monitoring techniques such as ground penetrating radar, 679	

electrical resistivity tomography, soil self-potential, ultrasound and seismic surveys 680	

may prove effective, together with monitoring injection pressures, cross-hole 681	

conductance testing (Cuthbert et al., 2013) and NMR well monitoring (Kirkland et al., 682	

2017). 683	

 684	

Modelling and predicting 685	

Several models have been produced to fit lab-scale and field experimental 686	

data. These mostly use simplified geochemistry in 1D (Ebigbo et al., 2012; Fauriel 687	

and Laloui, 2012; Hommel et al., 2016; Martinez et al., 2014) or 2D (Cuthbert et al., 688	

2013; van Wijngaarden et al., 2016). Those that use more complete geochemical 689	

models such as PHREEQC are limited to 1D (Barkouki et al., 2011; Dupraz et al., 690	

2009; Wu et al., 2011) or 2D with between four (Qin et al., 2016) and 17 (Zhang and 691	

Klapper, 2010) reactive species.   692	

Published 3D models are limited to Nassar et al. (2018) which, together with 693	

van Wijngaarden et al. (2016) and the authors’ own as yet unpublished model (Figure 694	

8) may be the only models with sufficiently complex reactive transport and flexible 695	

boundary conditions together with simplified and tractable geochemistry to be of use 696	

at field scale.  697	
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Given the complex nature of the MICP process, reliable predictive models for 698	

field-scale do not currently exist. These engineering models allow us to explore the 699	

consequences of a range of possible injection strategies in silico, with the aim of 700	

narrowing them down to those worth testing experimentally. 701	

	702	

By-products 703	

The main by-product of MICP is ammonia/ammonium (often in the odourless 704	

form ammonium chloride) which is considered a groundwater pollutant that is toxic to 705	

aquatic organisms and can cause algal blooms at high concentrations. In order to gain 706	

regulatory approval, Cuthbert et al. (2013) had to extract from a separate borehole at 707	

five times the rate of injection so as to collect the majority of ammonium produced in 708	

their field trial. Esnault-Filet et al. (2012) collected ammonium chloride and paid for 709	

treatment of it at a local wastewater treatment works. Other field tests do not report 710	

any regulatory requirement to collect, treat, or limit the production of ammonium 711	

(Gomez et al., 2015; Phillips et al., 2016) and this is likely to reflect whether or not 712	

MICP is being carried out in a sensitive environment or close to drinking water 713	

supplies. 714	

 715	

Upscaling 716	

For MICP to make the jump from field trials to a practical engineering ground 717	

improvement method, it will be necessary to massively upscale the process. 718	

Preparation of the cementing solution should pose no issue as CaCl2 is available in 719	

large quantities either as food grade or industrial grade (e.g. road de-icing salt) and 720	

urea is mass produced as fertiliser. Both could be transported dry and mixed to the 721	

desired concentration on site. 722	
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Growth of bacteria may be more challenging to upscale, however two 723	

promising methods have been tested in the field: stimulation of naturally occurring 724	

ureolytically active bacteria in the ground (biostimulation) which requires no special 725	

bacteria culturing equipment nor transport and handling of bacteria (Gomez et al., 726	

2018); or the approach demonstrated by (Van der Star et al., 2009) who started from a 727	

moderately large volume (100 L) of pure-strain S. pasteurii grown under sterile 728	

conditions in the lab which was used as a seed culture to inoculate a 5 m3 on-site bio-729	

reactor (bioaugmentation). In this case, less than sterile growth conditions were 730	

acceptable because ureolytically active bacteria tend to out-compete other strains 731	

when ammonia is present or urea is available (Graddy et al., 2018) and the initial 732	

concentration of S. pasteurii added to the bio-reactor would likely be orders of 733	

magnitude greater than that of any competing strains.  734	

	735	

	736	

3.2 Microbially induced carbonate precipitation via denitrification 737	

3.2.1 Process 738	

Whilst MICP by urea hydrolysis is the process most widely studied, for a 739	

range of engineering applications (Phillips et al. 2013), there are various other 740	

processes which may result in precipitation of calcium carbonate, among which 741	

denitrification based MICP is considered the most promising (Van Paassen et al, 742	

2010b). As part of the nitrogen cycle, denitrification (also known as dissimilatory 743	

reduction of nitrate) is a process naturally occurring in the subsurface, in which 744	

organic matter is oxidized to inorganic carbon and nitrate is reduced to nitrogen gas.  745	

The reduction of nitrate (NO3
-) to nitrogen gas (N2) goes through several 746	

intermediate reactions, which involves specific enzymes and the formation of 747	
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intermediate nitrogen compounds: nitrite (NO2
-), nitrous oxide (N2O), and nitric oxide 748	

(NO) (Rebata-Landa and Santamarina, 2012). Accumulation of these intermediates 749	

should be avoided as nitrite and nitric oxide are toxic and inhibit microbial growth 750	

and nitrous oxide is a very strong greenhouse gas (Almeida, Julio et al. 1995; Chung 751	

and Chung 2000; Zumft, 1997; Madigan et al. 2012, Pham et al, 2016). In order to 752	

enable the efficient and full reduction of nitrate to nitrogen gas, selecting the right 753	

substrate composition is essential (O’Donnell 2016, Pham et al. 2016). Too much 754	

nitrate may lead to accumulation of intermediate compounds, whilst leaving a large 755	

excess of organic substrate would be inefficient. 756	

Although various organic substrates can be used to stimulate denitrification in 757	

the subsurface, most studies have used a solution containing calcium acetate and 758	

calcium nitrate (Van Paassen 2009; Van Paassen et al. 2010; Van der Star et al., 2012; 759	

Kavazanjian et al., 2015, Hamdan et al. 2017; Pham et al. 2016), for which the 760	

catabolic reaction is written as: 761	

 762	

C2O3H2
- + 1.6NO3

- + 0.4H2O → 0.8N2 + 2HCO3
- +0.6OH-      (4) 763	

 764	

This catabolic reaction provides the energy for indigenous denitrifying micro-765	

organisms to grow. At maximum growth, a significant amount of substrates will be 766	

converted to biomass. The resulting metabolic reaction at maximum growth can be 767	

written as (van Paassen et al., 2017, Pham 2017): 768	

 769	

1.21C2H3O2
- + 0.97NO3

- + 0.17H2O → CH1.8O0.5N0.2 + 0.39N2 +   (5) 770	

1.41HCO3
- + 0.76OH-   771	

 772	



	 35 

The actual growth rate is often limited due to limited availability of substrates, 773	

nutrients or trace elements, or due to accumulation of intermediate compounds. As a 774	

result the actual metabolic reaction stoichiometry varies between conditions of 775	

maximum growth (5) and zero growth, which corresponds to the catabolic reaction 776	

(4).  777	

By using soluble calcium salts as substrates, the produced inorganic carbon 778	

precipitates as calcium carbonate: 779	

 780	

Ca2+ + HCO3
- → CaCO3 + H+   (6) 781	

 782	

Calcium carbonate (CaCO3) precipitation buffers the pH as it consumes the alkalinity 783	

produced by reduction of the nitrate. Maintaining a stable pH helps to prevent the 784	

accumulation of toxic intermediate nitrogen compounds and stimulates microbial 785	

growth (Pham et al., 2016). O’Donnell (2016) showed that a mixed microbial 786	

community developed by bio-stimulation in a natural soil was more efficient at 787	

denitrification than a pure culture of a well-known denitrifying bacteria, pseudomonas 788	

denitrificans. 789	

 790	

 791	

3.2.2 Hydro-mechanical behavior and applications 792	

Similar to biomineralization by urea hydrolysis, CaCO3 precipitation by 793	

denitrification can reduce soil permeability by filling up the pore space or increase 794	

soil strength, stiffness and dilatancy by coating and roughening the soil particles or 795	

creating cementitious bonds at the particle contacts (Figure 9). O’Donnell et al. (2017) 796	

reported that CaCO3 precipitation of 1 to 2% (by mass) was sufficient to increase 797	
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cyclic shear strength in cyclic direct simple shear tests by 40% on both natural and 798	

laboratory standard sands. Pham et al. (2018) found that treatment resulting in a 799	

CaCO3 content of 0.65% more-than-doubled the small strain stiffness under static 800	

compressive loading conditions. Through shear wave velocity measurements 801	

O’Donnell (2016) observed that sands treated by denitrification showed a greater 802	

improvement in the shear stiffness of the soil when compared to ureolysis-treated 803	

specimens at the same carbonate content. This was attributed to bigger calcite crystals 804	

due to the slow rate of precipitation via denitrification. Precipitation was also more 805	

dominant at inter-particle contacts due to interaction between gas bubbles and 806	

precipitation. O’Donnell (2016) also showed that after failure, when samples treated 807	

by MICP via denitrification were de-aggregated and reconstituted they retained some 808	

increase in static and cyclic strength and stiffness (compared to untreated soils), 809	

which was attributed to particle surface roughening.  810	

 811	

3.2.3 Challenges and limitations 812	

While recent results for urea hydrolysis have shown that ureolytic bacteria can be 813	

stimulated in situ, in most cases MICP through urea hydrolysis still requires ex situ 814	

cultivation and injection of (specific) ureolytic bacteria. The main advantage of MICP 815	

by denitrification is that the process does not require ex situ cultivation. The substrate 816	

solution will stimulate indigenous denitrifying bacteria. Secondly, if nitrate is 817	

completely reduced to nitrogen gas the process does not leave any toxic by-products. 818	

The absence of a harmful by-product (e.g., ammonium chloride) is another potential 819	

advantage of denitrification over ureolysis. However, compared to urea hydrolysis, 820	

MICP via denitrification is a relatively slow process (Martin et al. 2013; Van Paassen 821	

et al. 2010) Van Paassen et al. (2010b). For continuously cycled substrate solutions, 822	
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over a period of 100 days, Van Paassen et al. (2010b) reported precipitation ranging 823	

from 1 to 9.5% CaCO3 (by mass). O’Donnell et al (2017) required 30 flushes over a 824	

period of 400 days to precipitate approx. 2.5% CaCO3. Pham et al. (2018) aimed to 825	

optimize treatment protocol and showed that using a large number of flushes with low 826	

concentrated substrate solution resulted in a more efficient conversion than a low 827	

number of flushes with high concentrated substrate solution, they obtained 0.65% 828	

CaCO3 in 15 flushes in 35 days. The low rate at high concentrations may be the result 829	

of inhibition by toxic intermediates or limited substrate availability. This implies that 830	

a lower initial nitrate concentration provides a more efficient environment for MICP 831	

via denitrification (Hamdan et al. 2017). The consequence of the low reaction rate and 832	

the preferred use of low concentrations is that a larger volume of solution needs to be 833	

injected and a long treatment time is required. Another result of the low reaction rate 834	

is that the precipitation process generates a relatively low number of large crystals. 835	

The effect of crystal size and distribution on the mechanical performance still requires 836	

further investigation. Another challenge to be solved is the interaction between the 837	

different product, CaCO3 minerals, nitrogen gas and biomass. Although by-products 838	

of the denitrification reaction are not toxic, they do affect the hydro-mechanical 839	

behavior of soils and may affect the crystallization process. For example, during the 840	

experiments reported by Pham et al. (2018), hydraulic conductivity reduced 841	

significantly, which was mainly attributed to the combined formation and entrapment 842	

of nitrogen gas and biomass. 843	

 844	

 845	

 846	

 847	
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3.3 Biogenic gas formation via denitrification 848	

3.3.1 Process 849	

Although biogenic nitrogen gas may be considered as a by-product of MICP via 850	

denitrification, as described in the previous section, several recent studies have 851	

investigated the potential use of biogenic nitrogen gas alone for ground improvement 852	

(He et al. 2013; He and Chu 2014; Kavazanjian et al. 2015, Pham et al. 2016, 853	

O’Donnell, 2017a). The most common biogenic gases that are formed in the 854	

subsurface are methane (CH4), nitrogen (N2), hydrogen sulphide (H2S), and carbon 855	

dioxide (CO2). These gases are the product of metabolic processes of microorganisms. 856	

As nitrogen gas has a low solubility and is neither toxic nor a greenhouse gas, 857	

biogenic production of nitrogen gas is considered to be the most appropriate candidate 858	

for ground improvement via biogenic gas generation (Van Paassen et al. 2017). As 859	

shown in the previous section, the amount of nitrogen gas produced depends on the 860	

metabolic conversion. Depending on the growth rate of the bacteria the yield of 861	

nitrogen gas over nitrate (N2/NO3
-) ranges from 0.4 to 0.5. However, the volume of 862	

produced gas depends on the solubility, bubble size, pore pressure and partial pressure 863	

of the gas phase. Van Paassen et al. (2017) presents a theoretical framework for 864	

estimating the volume of gas produced by a biogenic process and the resulting degree 865	

of saturation, combining Henry’s law and the ideal gas law. The results show that for 866	

a given amount of produced substrate consumption the resulting gas saturation 867	

decreases with depth, due to an increase in pressure and gas solubility.       868	

 869	

3.3.2 Hydro-mechanical behavior and applications 870	

The presence of entrapped biogenic nitrogen gas in the pore volume may significantly 871	

affect the hydro-mechanical behavior of the soil. The presence of gas can significantly 872	
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reduce the hydraulic conductivity of soils, even if it fills up a small fraction of the 873	

pore space (Ronen et al., 1989; Baird & Waldron, 2003; Mahabadi and Jang, 2014; 874	

Mahabadi et al. 2016). Biogenic nitrogen gas production may also mitigate both static 875	

liquefaction (He and Chu 2014; Pham et al. 2016) and earthquake-induced 876	

liquefaction (Rebata-Landa and Santamarina 2012; He et al. 2013; Kavazanjian et al. 877	

2015). The gas phase increases the compressibility of the pore fluid (Biot, 1941; 878	

Tsukamoto et al. 2002; Ishihara et al., 2004), which dampens pore pressure build up 879	

during monotonic and cyclic undrained loading (Yang et al. 2004; Yegian et al. 2007, 880	

He and Chu 2014) It has been shown that small levels of desaturation can increase 881	

liquefaction resistance significantly (Ishihara and Tsukamoto, 2004; Okamura and 882	

Soga, 2006). For example He et al. (2013) demonstrated that by desaturating a clean 883	

coarse sand through denitrification, to a degree of saturation of 80 to 95%, they could 884	

significantly dampen pore pressure build up, prevent loss of bearing capacity and 885	

significantly reduce settlements arising from surface loading. O’Donnell (2016) 886	

reported reaching a degree of saturation of approximately 94% via biogenic gas 887	

formation within 1 to 3 days in laboratory columns using a clean, uniform medium 888	

fine sand and demonstrated that a 40% increase in cyclic shear strength was obtained 889	

upon cyclic simple shear testing of specimens at this degree of saturation.  890	

 891	

3.3.3 Challenges and limitations 892	

The potential of using biogenic nitrogen gas to reduce hydraulic conductivity or to 893	

increase liquefaction resistance seems promising. Particularly because the amount of 894	

substrates required to generate a significant amount of desaturation is very low. A 895	

single flush containing 50 mM dissolved nitrate is sufficient to fill up 48 to 60% of 896	

the pore volume with nitrogen gas close to the surface or 14 to 16% of the pore 897	
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volume at 25 m below the groundwater level. Another advantage of microbially 898	

induced desaturation through denitrification is that desaturation can be achieved over 899	

large areas through bio-stimulation of indigenous soil bacteria, which can reduce 900	

some of the challenges encountered when using bioaugmentation, enhancing gas 901	

distribution compared to abiotic gas injections. However, in order to rely on the gas 902	

phase to improve liquefaction resistance, long-term persistence of the gas phase must 903	

be ensured. Although Okamura et al. (2006) and Eseller-Bayat et al. (2013) reported 904	

that abiotically induced desaturation can persist for periods of several years, the gas 905	

may escape through upward migration and/or dissolution or through convective and 906	

diffusive transport through groundwater. The amount of gas which can be trapped in 907	

the pore space depends on the pore size distribution and connectivity between the 908	

pores. When gas bubbles are smaller than the pore throats between the grains, they 909	

may easily migrate upwards due to buoyancy. Once the bubbles increase in size they 910	

may get trapped at pore throats. If additional gas is being produced the bubble can 911	

only migrate further if pressure in the bubble exceeds the capillary pressure or air 912	

entry pressure required to squeeze through the pore throat. In this way the gas phase 913	

gradually forms a network of gas filled pores, until it finds a zone of higher 914	

permeability, which allows the gas network to vent and rapidly migrate upward. If 915	

upward migration is restricted by a low permeability layer (e.g. clay), gas pockets 916	

may form, and if the gas pressure exceeds the overburden pressure then cracks may 917	

form in the soil as the soil above the gas pocket may be lifted up (Sobkowicz and 918	

Morgenstern, 1984; Grozic et al., 1999; Leroueil et al. 2015). An excess amount or 919	

sudden rapid venting of trapped gas may reduce bearing capacity and is considered a 920	

major hazard for offshore foundations. Considering the durability of the gas phase and 921	

that its potential to mitigate liquefaction may be limited, a number of authors suggest 922	
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the use of biogenic gas formation as the first step in a combined two-stage process of  923	

desaturation and carbonate precipitation via denitrification (O’Donnell, 2017a,b). In 924	

particular, this has been considered for mitigating liquefaction, where gas formation 925	

provides enhanced resistance in the short term and calcium carbonate precipitation 926	

provides enhanced resistance in the long term (Kavazanjian et al. 2015; Khodadadi et 927	

al. 2017; O’Donnell 2016). 928	

 929	

 930	

3.4 Fungal hyphal networks 931	

3.4.1 Introduction 932	

The benefits of harnessing bacterial processes in soils are now being widely 933	

investigated within the geotechnical engineering community. Fungi, however, despite 934	

accounting for up to 25% of the biomass on earth (Miller, 1992) are rarely considered, 935	

and only in a problematic context (e.g. human exposure to molds, Geostrata, 2003). 936	

However, of the 99,000 known fungal species, less than 0.3% are pathogenic to 937	

humans and animals and less than 10% are capable of colonising plants; an even 938	

smaller fraction of these are plant pathogens (Carris et al., 2012). 939	

The classification of fungi into phyla, historically considered to include 940	

Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota (e.g. Webster and 941	

Weber, 2007) is continuing to change as research provides more evidence for further 942	

differentiation and exapansion of the kingdom (introduction of Glomeromycota and 943	

Microsporidia phyla). Regardless of their classification, soil fungi can generally be 944	

considered as falling into the following main categories: (i) saprotrophic (i.e. 945	

decomposers) that digest dead organic matter (dead wood, leaf litter producing fungal 946	

biomass, carbon dioxide and other compounds such as organic acids, which are of 947	
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critical importance for nutrient cycling in soils, (ii) pathogenic or parasitic fungi that 948	

colonise hosts (e.g. plants or other organisms) causing disease and (iii) fungi that exist 949	

in symbiotic relationships these include mycorrhizal fungi (ectomycorrhizal and 950	

arbuscular mycorrhizal) which live in a mutually beneficial symbiotic relationship 951	

with plants increasing their uptake of nutrients and water (e.g. nitrogen and 952	

phosphorus) and protecting against soil pathogens, and lichens which live in 953	

symbiotic relationships with algae and cyanobacteria (Jeffries et al., 2003; Konhauser, 954	

2007; Hoorman, 2011). 955	

Fungi have widely ranging morphologies from single-celled yeasts to multi-956	

cellular fungi, that is, fungi that predominantly grow through the development of 957	

hyphae. Hyphae are multi-cellular tube-like structures, consisting mainly of chitin (a 958	

polysaccharide containing nitrogen), typically with diameters in the range of 1 – 30 959	

µm and lengths from several microns to several metres (Islam et al., 2017). Hyphae 960	

can branch into multiple hyphae, and, anastomose creating complex three-961	

dimensional networks. The mass of branching hyphae is known as the mycelium. A 962	

densely packed mass of hyphae can form into sclerotia, consisting of a hardened 963	

aggregated mass of hyphae containing food reserves. Sclerotia may form when 964	

nutrients are scarce, although other stimuli can also trigger their formation (Money, 965	

2016). 966	

 967	

3.4.2 Fungi-soil interactions 968	

Fungi are known to play an important role in soil aggregation, both in the 969	

formation of aggregates and in maintaining aggregate stability (Lynch and Bragg, 970	

1985, Rillig, and Mummey, 2006). From an agricultural perspective soil aggregate 971	

stability is important for maintaining transport of air, water and nutrients within the 972	
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soil. From a geotechnical engineering perspective the aggregation of soils influences 973	

their hydraulic behavior (i.e. permeability and water retention capability) (e.g. Juang 974	

& Holtz, 1986, Barbour, 1998, Vanapalli et al., 1999) and their mechanical behavior 975	

(Barden & Sides, 1970; Alonso et al., 1987). Although it is widely acknowledged that 976	

aggregated soils are encountered within geotechnical engineering (e.g. Collins & 977	

McGown, 1974, Alonso et al., 1987) little, if any, consideration has been given to the 978	

role of microorganisms in the formation or stability of aggregates in this context. 979	

Studies by soil and agricultural scientists have observed increased size of 980	

aggregates formed in soils inoculated with fungi and enhanced resistance to 981	

breakdown upon wetting, for a range of different fungal species including mycorrhizal 982	

and saprotrophic species (e.g. Tisdall and Oades, 1979; Tisdall and Oades, 1982; 983	

Degens et al., 1996; Caesar-TonThat and Cochran, 2000, Caesar-ThonThat, 2002, 984	

Peng et al., 2013). Rillig & Mummey (2006) outline three categories of mechanisms 985	

by which fungi (focused on arbuscular mycorrhizal fungi, AMF) can contribute to soil 986	

aggregate stability: (i) Biophysical, (ii) Biochemical and (iii) Biological mechanisms.  987	

The biophysical influence of fungal hyphae is similar to the action of plant 988	

roots (although at a smaller scale) where hyphae act to enmesh and entangle soil 989	

particles, binding micro-aggregates together (Tisdall & Oades, 1982). The effects of 990	

plant roots are well-studied, they bind soil particles and aggregates together providing 991	

an additional apparent cohesion against shearing (Stokes et al., 2009). The level of 992	

reinforcement provided is dependent on root tensile strength and root architecture 993	

(e.g. root diameter, root length density). Greater shearing resistance is provided by 994	

many smaller diameter roots than by a smaller number of larger diameter roots, where 995	

the fraction of the soil plane occupied by the plant roots is the same. (Stokes et al., 996	

2009). By drawing similarities with plant root reinforcement literature, the mechanism 997	
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by which fungal hyphae bind particles and aggregates might also be expected to 998	

depend on the morphological properties of the fungal networks (e.g. hyphae diameter, 999	

density, and interconnectivity) and the tensile strength of the different strains of 1000	

fungal hyphae (Rillig & Mummey, 2006). However, little is known of how these 1001	

properties vary between different species and strains. Hyphae may also be 1002	

hypothesised to contribute to water transport and retention in soils, ultimately 1003	

inducing wetting and drying cycles on a localised-scale (Rillig & Mummey, 2006) 1004	

which may influence binding of soil particles to hyphae and influence mechanical 1005	

behavior of micro-aggregates; these effects remain largely unexplored. Additionally, 1006	

the growth of fungal hyphae have been observed to influence soil structure by 1007	

aligning clay particles along hyphae, due to the stress exerted on soil particles during 1008	

growth, possibly even forming micro-aggregates (Rillig & Mummey, 2006). 1009	

In terms of synthetic fibers, it has been widely reported in geotechnical 1010	

engineering that the addition of fibers increases soil strength (i.e. compressive, shear 1011	

or tensile strength at failure) and increases strain to failure (i.e. increased ductile 1012	

behavior) (e.g. Ranjan et al., 1996; Santoni et al., 2001, Michalowski & Čermák, 1013	

2003). The reinforcing effect increases with increasing fiber content (up to a limit) 1014	

and increasing aspect ratio (length/diameter) (e.g. Michalowski & Čermák, 2003). 1015	

Fungal hyphae can be considered to be micro-scale roots with a very high aspect ratio. 1016	

Furthermore, unlike synthetic fibers fungal hyphae may also exhibit anastomosis 1017	

forming complex interconnected three-dimensional networks with further potential for 1018	

entanglement and enmeshment of soil particles and aggregates. 1019	

Soil aggregate formation and stability are also influenced by biochemical 1020	

processes. Fungal hyphae are known to secrete biochemical products into their 1021	

surroundings (exudates), as well as containing products in their hyphal walls, that may 1022	
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after decomposition persist in the soil (Rillig and Mummey, 2006). Chenu (1989) 1023	

demonstrated that scleroglucan (a fungal polysaccharide) improved the stability of 1024	

kaolinite and montmorillonite aggregates, and increased clay porosity. Glomalin-1025	

related soil protein has been correlated with soil aggregate stability for AMF amended 1026	

soils (e.g. Wright and Upadhyaya, 1996, 1998; Rillig 2004) and is thought to act as a 1027	

‘glue-like’ substance. Studies by Caesar-TonThat & Cochran, (2000) and Caesar-1028	

ThonThat, (2002) on a saprotrophic species highlighted the importance of insoluble 1029	

extracellular compounds polysaccharides on the water stability of aggregates 1030	

amended with a saprotrophic fungus. Comparing aggregate stability for soils 1031	

inoculated with fungi with those inoculated with liquid media in which the 1032	

microorganisms were grown, demonstrated that the binding agents remain in close 1033	

association with the hyphae and are not excreted into the liquid/soil media (Aspiras et 1034	

al., 1971). 1035	

Filamentous or mycelia-forming fungi such as those belonging to the 1036	

Ascomycota Basidiomycota phyla are also known to secrete proteins called 1037	

hydrophobins (Wessels et al., 1991; Wessels, 1996). Hydrophobins play varied roles 1038	

in the functional processes that occur throughout the growth and life cycle of fungi 1039	

including, modification of environmental conditions to allow sporulation and aerial 1040	

hyphae formation (Wessels, 1996; Wösten et al., 1999; van Wetter et al., 2000), 1041	

mediation of hyphal attachment to surfaces, substrate colonisation (Wösten et al., 1042	

1994; Temple et al., 1997) and involvement in the production of fruiting bodies 1043	

(Lugones et al., 1999).  Hydrophobins self-assemble at surficial interfaces forming 1044	

amphipathic (or amphiphilic) layers capable of altering surface wettability. Given the 1045	

role of hydrophobins in aiding fungal hyphae attachment to surfaces, and the role in 1046	
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altering surface properties, it is envisaged that these proteins also play a role in soil 1047	

aggregation (Rillig & Mummey, 2006). 1048	

Finally, in terms of biological mechanisms, fungi may influence the location 1049	

and density of microbial populations in the soil, for example exudates may act as 1050	

substrates for bacterial growth, which could also impact on the formation or stability 1051	

of soil aggregates (Rillig & Mummey, 2006).  1052	

The extent of the role played by each mechanism within a given soil will be 1053	

highly dependent on the fungal type and species (or indeed community as a whole) 1054	

and the soil composition, grain size and pore size distribution. For example, Aspiras et 1055	

al., (1971) demonstrated by sonicating fungal inoculated aggregates, that aggregate 1056	

stability was not greatly reduced, despite the hyphal network being disrupted, 1057	

concluding that the role of binding substances, (mainly polysaccharides) is more 1058	

important than the physical entangling effect of the hyphae for clayey soils (where 1059	

clay content was >25%). Whereas Degens et al., (1996) demonstrated for sandy soils 1060	

that aggregation could be attributed to increases in hyphal length, with hyphae 1061	

observed via Scanning Electron Microscopy to cross-link sand grains together via 1062	

short hyphal lengths. Furthermore Degens et al., (1996) observed no difference 1063	

between the hot-water extractable carbohydrate carbon content of aggregated and 1064	

non-aggregated soils, indicating that microbial polysaccharides were not in this case 1065	

the dominant mechanism controlling aggregation. What is not yet clear is how 1066	

aggregations on a local scale, formed or maintained stable via fungal activity, may 1067	

influence the bulk hydraulic and mechanical behavior of soil. 1068	

 1069	

 1070	

 1071	
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3.4.3 Hydro-mechanical behavior and applications 1072	

Fungi are ubiquitous in soils and the observations of fungi soil-interactions 1073	

outlined above support the proposal that fungal growth could indeed be engineered for 1074	

geotechnical engineering applications. To date, the use of fungi for soil improvement 1075	

applications has been largely limited to the combined study of plant-mycorrhizal 1076	

systems (e.g. Mardhiah et al., 2016; Graf & Frei, 2013, Jeffries et al., 2003), in eco-1077	

engineering studies. The introduction of mycorrhizal fungi has mainly been 1078	

considered as a means to enhance plant growth for successful re-vegetation of 1079	

degraded soil systems following erosion, landslide or desertification (e.g. Requena et 1080	

al., 2001, Caravaca et al., 2003). The presence of mycorrhizal fungi promotes the 1081	

formation and stability of aggregates acting as stores for nutrients and water for plant 1082	

growth (Tisdall & Oades, 1982), thus accelerating and aiding plant colonisation (Graf 1083	

& Frei, 2013, Jeffries et al., 2003, Peng et al., 2013). Furthermore, mycorrhizal have 1084	

been shown to increase root production, root length density and for some species even 1085	

enhance plant root tensile strength (Stokes et al., 2009). Peng et al., (2013) 1086	

demonstrated that independent of the involvement of plant roots, hyphal networks 1087	

have a positive impact on the stability of soil aggregates. The mechanisms by which 1088	

arbuscular mycorrhizal fungi may influence soil aggregations are expected to be 1089	

similar for other types of fungi (Rillig & Mummey, 2006). Furthermore, considering 1090	

that binding substances are known to be closely associated with hyphal surfaces for a 1091	

range of fungal types (Aspiras et al., 1971), it is proposed that other fungal species 1092	

could by themselves also be considered for soil improvement applications, for 1093	

example to enhance resistance against water or wind-induced erosion (Tisdall et al., 1094	

2012; Mardhiah et al., 2016;). 1095	
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Researchers at the University of Strathclyde (El Mountassir and Salifu) have 1096	

been investigating the hydro-mechanical behavior of fungal inoculated soils over the 1097	

past two years. Early results based on engineering the growth of Pleurotus ostreatus 1098	

demonstrate that fungal hyphae can result in the enmeshment and entanglement of 1099	

sand particles (Figure 10A), with hyphae and sclerotia turning loose sand into a 1100	

cohesive mass (Figure 10C). Water drop penetration tests conducted on fine sands 6 1101	

days after inoculation with Pleurotus ostreatus, indicate that the fungal treated sand 1102	

exhibits extreme hydrophobicity; 10µL water droplets did not penetrate the sand 1103	

where mycelium growth was visible even after 24hrs (Figure 10B), whereas 1104	

penetration was immediate (within several seconds) in the non-inocculated control 1105	

samples. These results are promising for the deployment of fungi in a range of ground 1106	

engineering applications where enhanced cohesion, or the ability to control surface 1107	

wettability is desirable. 1108	

Finally, for geotechnical applications where greater soil strength may be 1109	

desirable, than that which can be achieved by hyphae and its associated products 1110	

alone, fungal biomineralisation processes could be triggered. Fungi are known to play 1111	

a significant role in mineral formation and transformations in the natural environment 1112	

(e.g. Gadd 2007, Gadd, 2017) and can induce biomineralisation by nucleating and 1113	

precipitating minerals, most commonly carbonates and oxalates, on or within cell 1114	

walls (Gadd, 2007; Gadd, 2017). Some fungi are known to precipitate calcium 1115	

carbonate extra-cellularly and urease positive fungal strains can also break down urea 1116	

resulting in the formation of calcium carbonate in a calcium rich environment (Li et 1117	

al., 2014; Kumari et al., 2016; Li and Gadd., 2017). 1118	

Given the vast number of different fungal species and variations in their 1119	

behavior there is huge scope for their deployment in geotechnical engineering. It is 1120	
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envisaged that ground improvement technologies incorporating fungi could be 1121	

relatively cheap given that treatment of soil surfaces could be conducted in a 1122	

relatively easy manner over potentially large areas. 1123	

 1124	

3.4.4 Summary 1125	

The use of fungal hyphal networks in ground improvement is a new avenue of 1126	

research within biogeotechnics, with many open questions. To begin to investigate the 1127	

feasibility and limitations of their deployment from an engineering perspective, a 1128	

better understanding of the possible changes to soil behavior that can be induced by 1129	

fungal inoculation is needed for a range of fungal species.  1130	

 1131	

4. CONCLUSIONS 1132	

During the last 10-15 years, geotechnical engineers have started to consider 1133	

the use of microbial processes in the development of novel nature-inspired ground 1134	

improvement technologies. MICP via ureolysis, is the process which has gained the 1135	

most attention within the geotechnical community to-date, with many research groups 1136	

worldwide investigating the process and injection strategies for its deployment. It is 1137	

evident that there are numerous control parameters and variables related to the 1138	

reagents, flow conditions, the medium in which it is to be deployed and 1139	

environmental conditions, which all influence the hydro-mechanical behavior of the 1140	

resulting treated soil or rock volume. These all need to be considered in order to 1141	

design suitable strategies for its use in geotechnical engineering applications. Other 1142	

microbial processes also being considered for the manipulation of the hydraulic and 1143	

mechanical behavior of the ground include MICP via denitrification and biogenic gas 1144	

formation. Although, it is clear that there remain a whole host of microbial processes 1145	
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that could be explored by geotechnical engineers. This review outlined one such area 1146	

for investigation: the potential engineered growth of fungi in soils.  1147	

Aside from the development of new technologies, there is an additional 1148	

opportunity for geotechnical engineers to enhance their understanding of existing soil 1149	

behavior by considering the role that microorganisms play in the formation of soil 1150	

particles and soil structure. In order to achieve this aim and that of novel ground 1151	

improvement technologies, increased collaboration between geotechnical engineers 1152	

and geomicrobiologists will be required in order to explore more fully a wider range 1153	

of microbial processes under both natural and engineered conditions. 1154	

 1155	
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TABLES 1893	

Table 1. Control parameters and variables in MICP treatments 1894	

Reagents Bacteria concentration ± use of fixative 

 Urea and calcium concentrations 

 pH adjustment 

 Urease activity 

Injection strategy Fluid velocity 

 Static treatment periods 

 Single/Cyclic injection 

Medium Porous/Fractured 

 Mineralogy 

 Degree of saturation 

 Soil structure (Grain size & pore size distribution, 

density) 

Particle shape & roughness 

Environmental Conditions Temperature 

 Pressure 

 Salinity of pore fluid 

 Anoxic/Oxic 



FIGURE CAPTIONS 

Figure 1. SEM image of CaCO3 precipitate resulting from urea hydrolysis. 
Indentations within the CaCO3 are a result of S. pasteurii cells in the process of 
being encapsulated. 

 
Figure 2. Loose sand before and after treatment with MICP. 
 
Figure 3. Surficial treatment of sand for erosion reduction. White CaCO3 concentrated 

at the top of the sample forms a low permeability erosion resistant layer that 
extends approximately 10 mm into the silica sand. 

 
Figure 4. Relationship between CaCO3 content and unconfined compressive strength 

for all studies (grey circle outlines: data from Al Qabany and Soga, 2013; Cheng 
et al., 2014, 2013; Choi et al., 2016; Rowshanbakht et al., 2016; Terzis and 
Laloui, 2018; van Paassen et al., 2010) with comparable urease activity 
highlighted (Cheng et al., 2017). 

 
Figure 5. Relationship between CaCO3 content and unconfined compressive strength 

for studies in which saturation was either fully saturated or not recorded (grey 
circle outlines: (Al Qabany and Soga, 2013; Cheng et al., 2017, 2014; Choi et al., 
2016; Rowshanbakht et al., 2016; Terzis and Laloui, 2018; van Paassen et al., 
2010) with controlled saturation states highlighted (Cheng et al., 2013). 

 
Figure 6. Relationship between CaCO3 content and unconfined compressive strength 

for all studies (grey circles) (Al Qabany and Soga, 2013; Cheng et al., 2017, 
2014; Choi et al., 2016; Rowshanbakht et al., 2016) with datasets highlighted 
(Terzis and Laloui, 2018) comparing medium and fine sand. 

 
Figure 7. Relationship between CaCO3 content and unconfined compressive strength 

for all studies (grey circles) (Al Qabany and Soga, 2013; Cheng et al., 2017, 
2014; Choi et al., 2016; Rowshanbakht et al., 2016) with outlier datasets 
highlighted (Terzis and Laloui, 2018; Van Paassen et al., 2010). 

 
Figure 8A. Schematic representation of the coupled 3D model of MICP treatment 

processes developed at the University of Strathclyde. B. Predicted CaCO3 
precipitation, using the University of Strathclyde model, for MICP treatment 
using a single injection well within a heterogeneous sand. 

 
Figure 9. Calcite crystals formed via microbial denitrification bridging silica sand 

grains. 
 
Figure 10A. Hyphae of Pleurotus ostreatus enmeshing sand grains imaged under an 

optical microscope, B. Growth of mycelium of Pluerotus ostreatus in fine sand 6 
days after inoculation with P.ostreatus. Water drop penetration tests showed that 
water droplets of 10µL did not penetrate even after 24hrs. C. Hyphae and 
sclerotia of Pleurotus ostreatus binding originally loose sand grains together.  

	
 
 


