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A novel waveform design technique for enabling a communication channel within a pulse radar is 
presented. The proposed waveform is composed of quasi-orthogonal chirp sub-carriers generated by 
means of the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of 
a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative 
system. Waveform generation and demodulation are described, together with techniques aimed at 
optimising the design parameters and mitigating the Inter-Carrier Interference (ICI) caused by the 
quasi-orthogonality of the chirp sub-carriers. The proposed FrFT based communicating-radar (CoRadar) 
waveform design is compared with Orthogonal Frequency Division Multiplexing (OFDM) based CoRadar 
with respect to both radar and communication operations. Radar performance is evaluated through 
examination of the Ambiguity Function (AF) and by assessing the performance of a standard square 
law detector. Communication performance is shown in terms of Bit Error Ratio (BER) for different 
channel conditions. Results demonstrate that the proposed FrFT waveform presents performance close 
to a LFM pulse in terms of probability of detection and probability of false alarm, in exchange for slightly 
worse range and Doppler resolution. Furthermore, it is shown to maintain comparable communication 
performance with respect to the OFDM waveform. Finally, a hardware implementation is described that 
demonstrates the simultaneous radar and communication capabilities of the proposed system.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In several applications there is the dual need for a system to 
perform radar operations while sending data to another coopera-
tive system. Examples are vehicles in an Intelligent Transportation 
System (ITS) that need to share information in a rapidly chang-
ing environment [1]; Synthetic Aperture Radar (SAR) systems that 
need to share sensed data with ground stations [2]; nodes in a 
Multiple-Input Multiple-Output (MIMO) radar system for the pur-
poses of surveillance or navigation aid [3]. A straightforward solu-
tion to this problem is the use of two actual systems, one perform-
ing the radar task and another in charge of data transmission. This 
can be achieved by enforcing spectral constraints on the radar and 
the communication signals [4–6], or allowing the radar waveform 
to dynamically adapt to the presence of communication systems 
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[7], and vice-versa [8]. However, the employment of two separate 
systems to accomplish the radar and the communication opera-
tions may be not efficient, since both of them require their own 
power, hardware and frequency resources. This is in contrast with 
the low-SWaP (Size, Weight and Power consumption) requirements 
that an increasing number of applications demands together with 
the challenge of spectrum congestion [9].

The idea of designing a system capable of simultaneously per-
forming the radar and the communication tasks while sharing 
hardware, power and bandwidth resources, was first introduced in 
[10]. Nowadays, the joint radar–communication (CoRadar) system 
concept is becoming ever more appealing to the radar community, 
and it is seen as a potential feature in future radar systems [11]. 
A block diagram of a CoRadar system is depicted in Fig. 1. The il-
lustration highlights the functions that are exclusive to the radar 
and to the communication operations, in green and red, respec-
tively, and the blocks that are shared, in light blue. Source encoder, 
channel encoder and modulator, typical functions of a communica-
tion system [12], pre-process the data that needs to be embedded 
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. General working principle of a communicating radar (CoRadar) system. Blocks that are exclusive for either radar or communication operations are highlighted in green 
and red, respectively. Blocks that are shared between the two tasks are highlighted in light blue (for interpretation of the colours in the figure, the reader is referred to the 
web version of this article).
in the transmitted waveform. This is then generated by taking into 
account the radar requirements, such as range and Doppler reso-
lutions, desired Side Lobe Levels (SLLs), etc. Finally, the signal is 
sent to a Radio Frequency (RF) front-end. The received waveform, 
instead, is viewed as a target reflected radar signal, therefore it un-
dergoes standard radar processing.

The radar and the communication signals can be independently 
generated and then merged by efficiently allocating their spectra, 
as proposed in [13] and in [14], or data can be directly embed-
ded into the transmitted radar waveform [15]. The embedding of 
the data can be achieved using a time-duplexing scheme, in which 
the transmitted signal is formed by alternating a radar and a data-
modulated waveform. Following this idea, in [16] long-range pulses 
of a Senrad radar [17], originally time-duplexed with short-range 
pulses, were replaced by communication signals carrying 600 bits 
each. The system so obtained was able to transmit with a data 
rate of 900 b/s, giving up, however, on the long-range function of 
the radar. Similarly, a short-range CoRadar for automotive appli-
cation was described in [18]. The transmitted signal comprises a 
radar cycle, based on a Trapezoidal Frequency Modulated Contin-
uous Waveform (TFMCW), followed by a single frequency carrier 
modulated by information data using common modulation tech-
niques, such as Phase Shift Keying (PSK). The system was able of 
sending data at 75 Mb/s, with a Bit Error Ratio (BER) of 10−6, while 
detecting target at a maximum unambiguous range of 100 m.

A code-duplexing scheme, instead, that exploited the Direct 
Sequence Code Division Multiple Access (DS-CDMA) technique to 
avoid mutual interference between radar and communication sig-
nals was proposed in [19]. The orthogonality between radar and 
communication signals was achieved in [20] by using an up- and 
a down-chirp. The implementation of such a system was reported 
in [21]. It operated with a bandwidth of 500 MHz and a Pulse Rep-
etition Frequency (PRF) of 150 kHz, capable of transmitting 1 Mb/s
with a BER lower than 10−5 at a maximum unambiguous range of 
1 km.

Alternative reported methods use either Stepped Frequency 
Continuous Waveforms (SFCW) [22] or Linear Frequency Modu-
lated (LFM) pulses phase-modulated by Binary PSK (BPSK) [23]. In 
these cases, the number of symbols per waveform is limited to the 
square root of the time-bandwidth product. Multi-carrier signals 
[24], widely used in modern radars for their high time-bandwidth 
product and flexibility, also represent natural candidates for the 
implementation of a CoRadar system. The idea was introduced in 
[25], where the authors combined a co-located MIMO radar with 
Orthogonal Frequency Division Multiplexing (OFDM) communica-
tions by employing a step-frequency technique, achieving a data 
rate of 386.4 kb/s at a maximum unambiguous range of 74.88 km. 
A signal processing solution that circumvented the high side-lobes 
problem that arises when performing usual radar operations on 
OFDM signals, was presented in [26]. The drawback was the in-
troduction of periodicities in the radar range profile, that limited 
the unambiguous range of the system, able of transmitting data at 
20 Mb/s, to 1650 m [1]. In addition to the problem of high side-
lobes, OFDM signals also exhibit high Peak-to-Average Power Ra-
tios (PAPRs) that limit their practical application. This aspect has 
been widely investigated in communication literature, leading to 
well-known and widely used techniques such as companding [27]
and active constellation extension [28].

CoRadar approaches based on the joint use of waveform diver-
sity and side lobe control have also been recently reported. In [29]
a dual-function system based on time-modulated array was pro-
posed, which implemented the radar function in the main lobe 
while the communication was performed in the side lobe by ex-
ploiting the variation of the beam pattern. A similar idea was pre-
sented in [30] wherein each orthogonal waveform embedded one 
information bit, whose value depended on the radiation beam pat-
tern employed. Finally, in [31] the information was embedded in 
the differential phase between two beamforming weight vectors, 
which did not affect the radar operation in the main beam.

1.1. Proposed method

As discussed, many of the CoRadar waveform design techniques 
presented above either are meant for short-range applications, i.e. 
automotive, or suffer from low data rates. In this paper a novel 
Fractional Fourier Transform (FrFT) based waveform design method 
for CoRadar systems [32] is presented and analysed. This technique 
aims to preserve the radar performance typical of an LFM pulse, 
while exploiting the quasi-orthogonality of different chirp rates to 
embed data. Moreover, unlike other approaches, it does not require 
a phased array antenna, thus not limiting the scope of application. 
The design of the waveform is driven by the radar requirements, 
such as the bandwidth and the pulse duration, and, depending on 
the application, the maximum detectable range can vary from few 
to hundreds km, while the data rate can be as high as few Mb/s at 
medium-long distances.

The FrFT has already been successfully employed in radars as 
waveform design tool for MIMO radar systems [33–36] and cogni-
tive radars [37], for target detection [38] and SAR processing [39,
40], as well as for wireless RF [41] and underwater communication 
systems [42]. The main contributions of this paper are summarised 
below:

• description of a novel FrFT based waveform design technique 
for CoRadar system;

• introduction of optimisation procedures for maximising the 
throughput of the system;

• assessment of the radar and the communication performance 
and link budget analysis;

• feasibility demonstration through the implementation of the 
proposed approach on a Software Defined Radio (SDR) device.

The remainder of the paper is organised as follows. Section 2
introduces the FrFT and the proposed waveform design, while 
three optimisation procedures are described in Section 3. Section 4
presents the radar and communication performance and Section 5
describes the implementation of a real-time CoRadar system based 
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Fig. 2. Block diagram of (top) the FrFT Radar Transmitter, in charge of the waveform generation, and (bottom) the FrFT Communication Receiver, whose task is the demodu-
lation of the received pulses.
on the proposed waveform design. In Section 6 some practical 
open challenges are reported while Section 7 concludes the paper.

2. FrFT CoRadar system

In this Section, the Fractional Fourier Transform (FrFT) based 
CoRadar waveform design is presented. It is a multiplexing scheme 
that uses the FrFT to map the in-phase and quadrature (IQ) sym-
bols of a selected modulation scheme to different chirp, or Lin-
ear Frequency Modulated (LFM), sub-carriers with different time-
frequency rates. Hereafter, following a brief introduction on the 
FrFT, the proposed waveform generation and demodulation are de-
scribed.

2.1. Fractional Fourier Transform (FrFT)

The FrFT belongs to the class of linear Time-Frequency Rep-
resentations (TFRs), and it was firstly introduced in [43]. It is a 
generalisation of the ordinary Fourier transform and can be consid-
ered as a rotation by an arbitrary angle, φ, in the time-frequency 
plane. Letting x [u] be an arbitrary signal of length U , its α-th or-
der discrete FrFT is defined as [44]:

Xα [u] =
U/2∑

u′=−U/2

Kα

[
u, u′] x

[
u′] (1)

where

α = 2φ

π
(2)

is the fractional order and Kα

[
u, u′] is the FrFT kernel, defined as 

[44]:

Kα

[
u, u′] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0e jπ
(
u2+u′ 2)

cot φ×
e− jπ2uu′ csc φ

if φ �= mπ

δ
[
u − u′] if φ = 2mπ

δ
[
u + u′] if φ = 2mπ + π

(3)

where A0 = e j φ
2√

j sin φ
, δ (·) is the Dirac delta function, j = √−1

and m ∈ Z is an integer. The FrFT is an invertible linear transform 
continuous in the angle φ, which satisfies the basic conditions for 
it to be meaningful in the time-frequency plane [45].

2.2. Waveform generation

The waveform design is shown at the top of Fig. 2. The bits 
to be embedded in the CoRadar pulse are divided into C − 1 seg-
ments of N bits each by the serial-to-parallel (S/P) block, where 
C is the number of chirp sub-carriers to use. The 0-th order sub-
carrier is not used to carry information bits, since it accommodates 
Fig. 3. Spectrogram of a FrFT CoRadar waveform with 7 sub-carriers.

a pilot waveform used at the communication receiver for syn-
chronisation and phase compensation. Therefore, each pulse con-
tains N × (C − 1) information bits, leading to a final bit rate of 
N × (C − 1)× PRF b/s, where PRF is the Pulse Repetition Frequency.

In each segment, G guard bits are added at the end of the 
sequence in order to compensate the group delay introduced by 
the Root Raised Cosine (RRC) filter [46]. Then, a binary block code 
with code rate D [12] is applied, leading to a coded sequence of 
(N + G) /D bits, and an interleaver may be used to mitigate the 
Inter-Carrier Interference (ICI); this solution is discussed in more 
detail later in the paper. Finally, the digital modulator maps a se-
ries of B bits to any of the M = 2B complex symbols according to 
the employed modulation scheme (i.e. MPSK). The final sequence 
is then composed by U = (N + G) × R/ (D × B) samples, where R
is the up-sampling factor of the RRC filter.

The C − 1 sub-waveforms so obtained, referred to as xi [n], with 
i = 1, . . . , C − 1, are then mapped, through equation (1), to differ-
ent chirp sub-carriers uniformly spaced in the time-frequency do-
main. Note that the FrFT is periodic in φ with period 2π , however 
rotations of φ and φ + π produce signals that overlap in the time-
frequency plane. For this reason, only angles in the range [0,π)

are considered, that leads to α ∈ [0,2). Thus, the uniformly spaced 
sub-carriers are obtained by choosing the i-th fractional order to 
be equal to αi = i ᾱ, where ᾱ = 2

C . The transmitted waveform is 
then obtained by adding the chirp modulated sub-waveforms and 
the pilot waveform, p [n], that is:

stx [n] = p [n] +
C−1∑
i=1

U/2∑
u=−U/2

Kαi [n, u] xi [u] (4)

Before sending it to the RF front-end, its mean is removed and the 
power is normalised such that all the transmitted pulses present 
the same power.

The spectrogram of a FrFT CoRadar waveform with relatively 
few sub-carriers (C = 7) is shown in Fig. 3 for clarity, although 
in practice the spectrogram could appear more crowded. The time 
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axis is normalised to the length of the CoRadar pulse, τ , while the 
frequency axis is normalised to its bandwidth:

B w = U

τ
= N + G

D B

R

τ
(5)

2.3. Waveform demodulation

The co-operative communication system that receives the se-
quence of CoRadar pulses demodulates them and extracts the em-
bedded information. A block diagram of this Comms Receiver is 
shown in Fig. 2. Once the synchronisation and the phase com-
pensation are performed by exploiting the pilot waveform,1 the 
acquired signal, whose length is U samples, is redirected to C − 1
different IFrFT blocks that perform the inverse FrFT with order αi . 
Each sequence is then input of the RRC filter, which also down-
samples the sub-waveform by a factor R , and then the digital 
demodulator that translates the sequence of symbols in a sequence 
of bits. At this point, a de-interleaver may be placed which per-
forms the inverse operation of the interleaver. Finally, the channel 
decoding block, which extracts the N + G uncoded bits while per-
forming the error correction, is followed by the guard remover and 
the P/S blocks, that reconstruct the original stream by combining 
the N-long bit sequences coming from the C − 1 different parallel 
branches.

3. FrFT CoRadar waveform optimisation

In this Section three waveform optimisation procedures are de-
scribed. The introduction of either a guard time or an interleaver 
has the objective of minimising the Inter-Carrier Interference (ICI), 
caused by the overlap of the chirp sub-carriers. Then, for both 
these methods, a parameters selection process is presented that 
maximises the data rate while fixing some parameters that meet 
the radar requirements. Finally, the adaptive duration technique 
of the sub-waveforms that aims to efficiently occupy the available 
bandwidth is introduced.

3.1. ICI mitigation

Due to the nature of chirps, when more than one sub-carrier 
is used there is an overlapping area with centre at the zero fre-
quency and half duration of the pulse that produces ICI. In this 
Section two ICI mitigation approaches are proposed for the devel-
oped waveform design, namely guard time and interleaver.

3.1.1. Guard time
In order to avoid data loss, the time-frequency region affected 

by ICI is not used for the transmission of bits of information but 
carries guard bits instead. This can be achieved by slightly modify-
ing the guard adder block in Fig. 2, such that it adds both G2 bits 
in the middle of the sequence to mitigate the ICI and G1 bits at the 
end in order to compensate the group delay introduced by the RRC 
filter. This leads to an overall guard band width of G = G1 + G2. To 
compute the amount of guard bits G2 needed to mitigate the ICI, 
let us introduce the normalised guard time T G , equal to:

T G = ρ Q (6)

where ρ ∈ (0,1] and Q is a measure of the sub-carriers overlap, 
graphically represented by the diameter of the red circle in Fig. 4. 
The value Q depends on the inter-carrier separation angle ψ =

1 Note that the alignment with the received signal on a sample basis is needed 
to perform the inverse FrFT.
Fig. 4. Waveform optimisation: representation of the region affected by Inter-Carrier 
Interference (ICI).

Fig. 5. Graphical representation of the increase of the ICI as (a) the number of sub-
carriers or (b) the bandwidth of each sub-waveform increase, with respect to Fig. 4.

φi+1 −φi = π/C, ∀ i = 0, . . . , C − 2, with φi be the rotation angle of 
the i-th chirp sub-carrier. Through geometrical considerations, Q
is equal to:

Q = B w,sub

B w
csc

( π

2C

)
(7)

where csc (·) indicates the cosecant of the argument. The term 
B w,sub is the bandwidth of each sub-waveform, equal to:

B w,sub = N + G1 + G2

D B

β + 1

τ
(8)

where β is the RRC roll-off coefficient. The result obtained in (7)
is graphically explained by Fig. 5, which depicts the same setup 
reported in Fig. 4 with either (a) double the number of sub-carriers 
or (b) double the bandwidth of each sub-waveform. It is intuitively 
clear how Q increases, namely the ICI gets worse, as the number 
of sub-carriers and the bandwidth of each sub-waveform increase, 
with respect to the original case identified by the red dashed circle. 
The guard time T G finally translates to a guard band width of G2

bits given by:

G2 =
⌊
(N + G1)

T G

1 − T G

⌋
=

⌊
(N + G1)

ρQ

1 − ρQ

⌋
(9)

where the operator �·	 gives the largest integer not greater than 
the argument.

3.1.2. Interleaver
The second approach to mitigate the ICI is the use of an inter-

leaver. As shown in Fig. 4, the interference is localised around the 
centre of rotation of the waveform. This means that it generates 
a burst of errors, affecting a small group of bits that can be dealt 
with the use of a suitable interleaving technique [47].

3.2. Parameters selection

In the proposed CoRadar system the radar task is given priority 
over the communication one. For this reason the proposed pa-
rameters selection process starts from the pulse’s bandwidth, B w , 
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and duration, τ , that account for some radar requirements such as 
range and Doppler resolution and minimum detectable range, and 
aims to derive the other parameters in order to maximise the bit 
rate. Assuming that the number of bits per symbol, B , the code 
rate, D , and the number of guard bits, G1, are fixed, the follow-
ing procedure derives the number of sub-carriers, C , of bits per 
sub-carriers, N , and the up-sampling factor, R . The process differs 
depending on the ICI mitigation technique used.

3.2.1. Guard time
The number of samples per waveform, U , is bounded by the 

time-bandwidth product as follows (see equation (5)):

τ B w � (N + G1 + G2)
R

D B
= N + G1

(1 − ρ Q )

R

D B
(10)

where the last analytical step uses (9). By rewriting Q in (7) by 
means of (5) and (8) as:

Q = β + 1

R
csc

( π

2C

)
(11)

and substituting (11) into (10), a quadratic inequality in R can be 
obtained, such that Rmin � R � Rmax, which admits real solutions 
only if the following condition is met:

C (N) � π

2

1

sin−1
(

4
N + G1

D B

ρ (β + 1)

τ B w

) (12)

where the dependency of C on N is highlighted for clarity. Thus 
the maximum data rate occurs when:

C (N) =

⎢⎢⎢⎢⎢⎣π

2

1

sin−1
(

4
N + G1

D B

ρ (β + 1)

τ B w

)
⎥⎥⎥⎥⎥⎦ (13)

Recalling that the bit rate is proportional to N × (C − 1), the pa-
rameters selection can be achieved by following this iterative pro-
cedure:

1. Find an N such that:

max
N

[N × (C (N) − 1)] subject to N ∈N (14)

while fixing ρ , where N is the set of natural numbers.
2. Choose the maximum value of R within its range of solutions 

from the quadratic inequality, that is:

R = �Rmax	 (15)

subject to:

N + G1 + G2 (R)

D B
∈N (16)

where the dependency of G2 on R comes from (9) and (11). 
This condition guarantees that the number of symbols after 
the digital modulator is integer.

If step 2) has no solution, the procedure is repeated by excluding 
the previous found solutions for N .

3.2.2. Interleaver
When an interleaver is used as ICI mitigation approach, the ap-

plication of the bound on the number of samples leads to a linear 
inequality as follows:

R (N) � D B
τ B w ⇒ R (N) =

⌊
D B

τ B w

⌋
(17)
N + G1 N + G1
Fig. 6. Waveform optimisation: representation of sub-waveforms with different du-
ration on varying the fractional order.

where, again, the dependency on N is highlighted for clarity. More-
over, by forcing the overlap degree, Q , to be less than a threshold, 
T , the following constraint on the number of sub-carriers can be 
obtained:

C (N) � π

2

1

sin−1
(

β + 1

R (N) T

) ⇒ C (N) =

⎢⎢⎢⎢⎢⎣π

2

1

sin−1
(

β + 1

R (N) T

)
⎥⎥⎥⎥⎥⎦

(18)

Therefore N can be found by solving the following maximisation 
problem:

max
N

[N × (C (N) − 1)] subject to
N + G1

D B
∈N (19)

As before, the condition guarantees that the number of symbols is 
integer.

3.3. Sub-waveform adaptive duration

As shown in Fig. 3, the FrFT CoRadar pulse does not occupy the 
entire available bandwidth since it is clearly enclosed in a circle of 
radius 0.5 in normalised units. In order to maximise the band-
width occupancy, it is possible to consider sub-waveforms with 
different time durations depending on the fractional order. This 
also leads to an increase of the bit rate with no effect on the bit 
error ratio, at cost of a slightly higher design complexity.

An example of a longer sub-waveform is shown in Fig. 6: it has 
a rotation angle of φi = π/4 and a bandwidth B w,sub . The fraction 
of additional time with respect to the duration of the pulse, τplusi , 
is equal to:

τplusi = τi − τ

2τ
(20)

where τi is the duration of the i-th sub-waveform given by:

τi =

⎧⎪⎨
⎪⎩

τ

| cos (φi) | φi ∈
[

0, π
4

)
∪

[
3π
4 ,π

)
τ

| sin (φi) | φi ∈
[

π
4 , 3π

4

) (21)

i = 1, . . . , C − 1. Thus, the number of bits that the longer i-th sub-
waveform can accommodate is given by:

Ni =
⌊

D B

R
τi B w

⌋
− G s.t.

Ni + G

D B
∈N (22)

Equation (2) shows a linear relationship between the fractional 
order α and the rotation angle φ. When sub-waveforms with dif-
ferent durations are considered, this equation becomes nonlinear 
and can be written as:

αi = 2 [
φi + 


(
φi, τplusi

)]
(23)
π
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Fig. 7. Spectrograms of a FrFT CoRadar waveform (a) without and (b) with adaptive 
duration.

where



(
φi, τplusi

) = cos−1

[
cosφi

(
λ

1 + 2τplusi

+ 2τplusi

λ
(
1 + 2τplusi

)
)]

(24)

with

λ =
√

1 + (
1 + 2τplusi

)2 tan2 φi (25)

An example of spectrograms of a FrFT CoRadar waveform (a) with-
out and (b) with adaptive duration is shown in Fig. 7. The red 
circle indicates the time-frequency region occupied by the pulse 
when no optimisation is applied. In terms of bit rate, the adaptive 
duration optimisation leads to an improvement of about 10%.

4. Performance evaluation

In this Section the radar and communication performance of 
the FrFT CoRadar waveform design are evaluated and compared 
with those obtained with OFDM waveforms, as they are already 
used in radars and CoRadar systems. Preliminary results are also 
reported when using reduced PAPR FrFT waveforms, obtained by 
means of a companding technique. Moreover, a link budget anal-
ysis is performed to demonstrate the feasibility of the proposed 
FrFT based waveform design method for CoRadar system.

4.1. System configuration

This Section describes the configuration of the CoRadar system 
used for the performance evaluation. For simplicity, a repetition 
block code is used with D = 1/L, where L is the length of the 
employed Barker codeword.2 Regarding the interleaver, this is im-
plemented as a matrix filled by rows and emptied by columns [47]. 
Finally, the pilot waveform is a bi-phase coded signal based on a 
Coarse/Acquisition (C/A) code [48] given by:

p [n] = e
jπ

(
a[n]− 1

4

)
(26)

where a [n] is the selected C/A code properly up-sampled and trun-
cated to match the length, in samples, of the CoRadar waveform.3

The OFDM waveforms are generated by using the same framework 
used for the FrFT waveforms, shown at the top of Fig. 2, in which 
the FrFT block is replaced by an OFDM block [49]. Note no cyclic 
prefix was used and the interleaver was removed.

2 The Barker code is selected for its good autocorrelation properties. However 
any other sequence with similar properties can be used, and even other correction 
techniques can be employed.

3 In case of moving transmitter and/or receiver, carrier offset compensation would 
also be necessary. Therefore, depending on the application, frequency shifted ver-
sions of the pilot waveform may be used.
Table 1
List of the parameters obtained when FrFT optimised and OFDM optimised selection 
processes are used, respectively.

FrFT optimised OFDM optimised
B w 500 MHz
τ 9.982 μs
D 1/7
B 2 (QPSK)
G 3
β 0.4
T � 3/7 = 0.429
C 11 16
N 59
Bit/Pulse 590 885
R 23
Q 0.428 0.621
B w,sub 30.435 MHz

 f 45.455 MHz 31.250 MHz

Furthermore, two parameters selection processes are consid-
ered. The first one, FrFT optimised, is the one previously described 
in Section 3.2.2 when an interleaver is used. The second one, 
OFDM optimised, using the same initial parameters, increases the 
number of sub-carriers, C , in order to optimise the frequency oc-
cupancy of the OFDM waveform. Table 1 lists the parameters ob-
tained when the two selection processes are used, respectively. 
The FrFT optimised parameters selection procedure ensures that 
Q � T , however the OFDM sub-carrier spacing, 
 f , is greater than 
B w,sub , which means that frequency gaps are present in the OFDM 
waveform. On the other hand, the OFDM optimised parameters 
selection process leads to 
 f ≈ B w,sub , but Q > T . Moreover, in 
both cases the number of bits per sub-carrier, N , is 59, while the 
number of sub-carriers, C , is 11 and 16, respectively. This means 
that the bit rate would be 590 × PRF b/s in the first case, and 
885 × PRF b/s in the second case.

4.2. Radar performance

In order to evaluate the radar performance of the proposed 
FrFT based CoRadar waveform design, two analyses are carried out. 
Firstly, parameters such as range resolution, Doppler resolution and 
Side Lobe Levels (SLLs) are estimated from its Ambiguity Function 
(AF). Then, by means of a Monte Carlo simulation, the Receiver 
Operating Characteristic (ROC) for a square law detector is derived. 
A similar analysis is performed for OFDM waveform and LFM pulse 
for comparison purposes. In particular, the LFM pulse is designed 
such that it occupies the same bandwidth, B w , and has the same 
duration, τ , of the FrFT and the OFDM CoRadar waveforms.

4.2.1. Ambiguity function
The FrFT’s and OFDM’s AFs are computed over a Monte Carlo 

simulation with 100 iterations, since for both of them the ac-
tual pulse is affected by the transmitted sequence of random bits. 
Fig. 8(a) and Fig. 8(b) show the average AFs of the FrFT and the 
OFDM, respectively, when the FrFT optimised parameters are used. 
The FrFT’s AF has a much flatter shape than the OFDM’s, which, in-
stead, presents very high side lobes caused by spectral peaks and 
valleys between the OFDM sub-carriers. This behaviour is more ev-
ident by looking at the zero-Doppler cuts shown in Fig. 8(c) and 
Fig. 8(d), for the FrFT and the OFDM waveform, respectively, while 
the zero-delay cuts in Fig. 8(e) and Fig. 8(f) show a similar trend 
between FrFT, OFDM and LFM waveform, though this changes at 
different delay cuts. However, lower side lobes are achieved at cost 
of a slightly worse resolution of the FrFT waveform with respect to 
OFDM and LFM, both in range and Doppler. Resolutions and side 
lobe levels are summarised in Table 2, where all the values are 
taken by assuming a reference level at −3 dB. Moreover, range 
resolutions are normalised to 0.886 × c , with c denoting the 
2B w



D. Gaglione et al. / Digital Signal Processing 80 (2018) 57–69 63
Table 2
Radar performance parameters.

FrFT optimised OFDM optimised LFM
FrFT OFDM FrFT OFDM

Normalised range res. 1.46 1.01 1.48 1.03 1.01
Normalised Doppler res. 1.30 × 10−4 0.90 × 10−4 1.31 × 10−4 0.90 × 10−4 0.89 × 10−4

Zero-Doppler SLL −16.6 dB −4.6 dB −16.5 dB −9.9 dB −13.3 dB
Zero-delay SLL −16.6 dB −13.3 dB −16.5 dB −13.3 dB −13.3 dB
Fig. 8. Average Ambiguity Functions (AFs) of the (a) FrFT and (b) OFDM waveform 
when the FrFT optimised parameters are used. Figures (c)–(d) show their zero-
Doppler cuts (average, in blue, and upper bound, in red) compared to the LFM’s 
zero-Doppler cut. Figures (e)–(f) show their zero-delay cuts (average, in blue, and 
upper bound, in red) compared to the LFM’s zero-delay cut.

speed of light,4 while Doppler resolutions are normalised to B w . 
Figs. 8(c)–8(f) also report an upper bound for the AF in addition 
to the average AF, obtained by taking the maximum value for each 
delay/Doppler bin for all the 100 Monte Carlo iterations. The dis-
placement between the upper bound and the average AF is higher 
for the FrFT waveform than for the OFDM waveform, showing a 
higher variability of the former.

The results obtained when the OFDM optimised parameters are 
used, confirm that the FrFT waveform presents a general better 
trend in terms of side lobes, but it is outperformed by the OFDM 
waveform in range and Doppler resolution, as shown in Fig. 9 and 
reported in Table 2.

4.2.2. Square law detector
The FrFT CoRadar waveform is examined, and compared with 

OFDM and LFM waveforms, when used for detection purposes with 
a square law detector. The threshold is selected based on the noise 
level, namely the Signal-to-Noise Ratio at the Radar receiver, S N Rr , 

4 Theoretical range resolution for an ideal chirp evaluated at −3 dB [50].
Fig. 9. Average Ambiguity Functions (AFs) of the (a) FrFT and (b) OFDM waveform 
when the OFDM optimised parameters are used. Figures (c)–(d) show their zero-
Doppler cuts (average, in blue, and upper bound, in red) compared to the LFM’s 
zero-Doppler cut. Figures (e)–(f) show their zero-delay cuts (average, in blue, and 
upper bound, in red) compared to the LFM’s zero-delay cut.

and the desired Probability of False Alarm (P F A ). In order to esti-
mate the Receiver Operating Characteristic (ROC) of the detector, 
a Monte Carlo simulation with 105 iterations is carried out. In 
each iteration, a FrFT based pulse is generated which embeds a 
random sequence of bits (the same sequence is also used for gen-
erating the OFDM based pulse). Since the length of the pulse, in 
samples, is approximately of 5 × 103 (time-bandwidth product), 
the total number of Monte Carlo tests is equal to 5 × 108. Fig. 10
compares the performance of the FrFT, OFDM and LFM waveforms 
when S N Rr = 20 dB, and (a) the FrFT optimised and (b) the OFDM 
optimised parameters are considered. In both cases the FrFT wave-
form shows performance very close to the LFM. For the OFDM 
waveform, fixing the Probability of Detection, P D , to a certain de-
sired level yields a higher P F A compared to the FrFT and LFM 
waveforms. This is due to the higher range side lobes that its AF 
presents, as shown in Section 4.2.1.

4.3. Communication performance

Communication performance is expressed in terms of Bit Error 
Ratio (BER) as a function of energy per bit to noise power spec-
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Fig. 10. Receiver Operating Characteristic (ROC) of the square law detector (noise 
level at SN Rr = 20 dB) when FrFT, OFDM and LFM waveforms are used, and when 
(a) the FrFT optimised and (b) the OFDM optimised parameters are selected.

Fig. 11. Performance in terms of BER of the FrFT CoRadar waveform design in pres-
ence of AWGN, when (a) a guard time or (b) an interleaver is used as ICI mitigation 
approach.

tral density ratio [47], i.e. γb = S N Rc × R/(C B), where S N Rc is 
the Signal-to-Noise ratio at the Communication receiver. In the fol-
lowing, two analyses are carried out. Firstly, performance for the 
two different ICI mitigation approaches is evaluated in Additive 
White Gaussian Noise (AWGN): the objective is to derive condi-
tions for ρ and T that ensure the best performance. The second 
analysis regards the comparison with the OFDM waveform for dif-
ferent channel models. Note that these analyses do not take into 
account the relative position between transmitter and receiver, and 
that both the FrFT and the OFDM pulses are assumed to be already 
synchronised and their phase compensated.

4.3.1. Guard time and interleaver in AWGN
Communication performance of the FrFT based CoRadar wave-

form design subject to AWGN when guard time and interleaver 
are used as ICI mitigation approach, respectively, is evaluated and 
shown in Fig. 11. The curves are obtained by means of a Monte 
Carlo simulation during which 108 bits are sent. The parameters 
selection process described in Section 3.2 is used with different 
values of ρ and T , for guard time and interleaver, respectively. The 
resulting parameters are summarised in Table 3.

The lower bound, represented by the light blue dotted line, is 
the BER obtained when the chirp sub-carriers are considered in-
dependent, and no ICI is present, and the noise that affects each 
of them is still AWGN. This is equivalent to the BER of a QPSK 
modulation (employed in these simulations) taking into account 
that the coding technique used can correct up to �L/2	 errors per 
codeword. When guard time is used as ICI mitigation approach, 
as expected the BER decreases as the parameters ρ increases. In 
fact, ρ < 1 means that part of the region affected by ICI is still 
used to send information bits, thus more errors are expected. In 
particular a BER floor is visible for ρ1 = 0.5. This is due to er-
rors that are independent of the noise level and are only caused 
Table 3
List of the parameters for the two ICI mitigation approaches, Guard Time and Inter-
leaver, respectively, and on varying ρ and T .

Parameters
N C Bit/pulse R

G. time ρ 0.5 54 14 756 12
1.0 30 12 360 22
1.5 21 11 231 32

Interl. T 4/7 53 16 848 25
3/7 59 11 649 23
2/7 27 15 405 47

by ICI. Conversely, when ρ > 1 the guard time is larger than the 
region affected by ICI, hence the sub-carriers can be considered 
independent and the BER approaches the lower bound.5 Similar 
results are obtained when the interleaver is used as ICI miti-
gation method, where the BER decreases as T decreases, since 
there is less overlap of the chirp sub-carriers. Interesting is that 
for T � T � = 3/7, the BER does not present a plateau anymore 
(which is visible for T1 = 4/7) and approaches the lower bound. 
This happens because with T � 3/7 the number of expected errors 
per codeword is less or equal than which the coding technique 
can correct, therefore the sub-carriers can be considered indepen-
dent.

4.3.2. Comparison with OFDM
In this Section the communication performance of the FrFT 

CoRadar waveform is compared with the performance obtained 
with the OFDM waveform. The signal is assumed to experience 
a slow-flat fading, therefore a time-invariant narrowband chan-
nel model is considered. Let stx be the vector which contains the 
transmitted signal samples, i.e. stx = [

stx [1] , . . . , stx [U ]
]
. The re-

ceived signal can be written as:

srx = h ◦ stx + ζ (27)

where h is the vector that contains the channel coefficients, ζ
is the white Gaussian noise and the operator ◦ indicates the 
Hadamard, or entrywise, product. The complex elements of the 
vector h are drawn from a statistical distribution whose param-
eters depend on the propagation path. In addition to the AWGN 
only scenario for which h = 1, three other cases are considered. In 
case of existence of the Line of Sight (LOS) path, the channel is 
modelled as Rician with a Rice factor of 4 dB. Conversely, when 
no LOS path exists, the channel coefficients h are drawn from a 
Rayleigh distribution with scale parameter 

√
2/2. Finally, in order 

to take into account shadowing and diffraction that can occur in 
bad weather conditions, a combination of Rice and Lognormal is 
considered [51]. In this case the channel coefficients are obtained 
as the product of a Rice process normalised in power and a Log-
normal variable, whose associated Gaussian variable has a standard 
deviation of 4 (dB spread).

Assuming that the received signal has been equalised, the com-
munication performance is evaluated in terms of BER vs γb [dB] in 
Fig. 12. As before, a Monte Carlo simulation is run during which 
107 bits are sent. The blue lines refer to the FrFT waveform, while 
the red lines to the OFDM. Solid lines and dotted lines refer to the 
cases in which FrFT optimised and OFDM optimised parameters 
are used, respectively. In the presence of AWGN only, as shown 
in Fig. 12(a), the FrFT waveform is outperformed by the OFDM. 
Moreover, a plateau can be observed for the FrFT waveform when 
OFDM optimised parameters are used, which confirms the results 

5 Note that, here and in the following, some curves are incomplete due to the 
limited number of bits generated during the simulations.
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Fig. 12. Communication performance. Comparison between FrFT waveform and 
OFDM waveform on varying the parameters selection process and for four differ-
ent channel models: (a) AWGN only, (b) Rice channel, (c) Rayleigh channel and 
(d) LogNormal-Rice channel.

obtained in Section 4.3.1 since Q > T � . For all the analysed chan-
nel models, the OFDM is not affected by the selected parameters, 
while the FrFT, as expected, shows better performance when FrFT 
optimised parameters are used, as they ensure that the overlap 
is lower than T � = 0.429. However, even when OFDM optimised 
parameters are used, for which Q = 0.621 > T � but more informa-
tion bits are sent (see Table 1), the FrFT’s BER is still comparable 
with the OFDM’s.

The objective of the analysis above was mainly to show the 
comparable performance between FrFT and OFDM waveforms with 
a similar setup. However, it is worth mentioning that replacing the 
repetition block code with a stronger one, as also mentioned in 
Section 4.1, or employing a different digital modulation rather than 
QPSK, could lead to improved BER and/or data rate.

4.4. Reduced peak-to-average power ratio

One drawback of applying the proposed multiplexing scheme is 
the high PAPR governing the envelope of the transmitted signal, 
which is due to the fact that most of the energy is concentrated 
at the centre of the signal, namely in the overlapping area. This 
phenomenon can lead to non-linear distortions due to the use of 
High-Power Amplifiers (HPAs), which shall be driven as close to 
their saturation point as possible in order to operate in maximum 
efficiency [52]. A possible way to reduce the PAPR of the pro-
posed waveform is by companding the signal in transmission, and 
de-companding it before demodulation at the communication re-
ceiver. In this Section a preliminary analysis is conducted to assess 
the radar and communication performance of the FrFT waveform 
when a non-linear companding function is applied. Specifically, an 
exponential companding is used [53], such that the transmitted 
waveform, s̃tx , can be written as:

s̃tx = d
√|stx|e jθ (28)
Table 4
PAPR for companded FrFT waveforms.

Average Min Max
d = 1 12.24 dB 9.91 dB 16.60 dB
d = 2 6.89 dB 5.70 dB 9.15 dB
d = 3 4.79 dB 3.94 dB 6.24 dB

Fig. 13. PAPR reduction. Comparison between the unmodified FrFT waveform (d = 1) 
and the companded pulses with d = 2 and d = 3, in terms of AF’s (a) zero-Doppler 
and (b) zero-delay cuts, and (c) communication performance in AWGN. For com-
pleteness, (d) the full average AF of the companded FrFT pulse with d = 3 is re-
ported.

where θ = � stx is the phase of the signal before companding. 
A comparison is made between the unmodified FrFT waveform, 
namely with d = 1, and the companded FrFT pulses with d = 2 and 
d = 3. The average PAPR of the original waveform, computed on 
106 instances, is equal to 12.24 dB, and it reduces to 6.89 dB and 
4.79 dB for d = 2 and d = 3, respectively; maximum and minimum 
PAPR are also reported in Table 4. Fig. 13(a) and Fig. 13(b) com-
pare the AF’s zero-Doppler and zero-delay cuts of the three wave-
forms, while Fig. 13(d) shows the communication performance in 
AWGN when FrFT optimised parameters are used. For complete-
ness, Fig. 13(c) depicts the full AF of the companded pulse when 
d = 3. Both the AF’s cuts show small improvements in terms of 
side lobe levels, as well as an enhanced Doppler resolution, at cost 
of a slight degradation of the BER. On the other hand, the use 
of PAPR reduced FrFT waveforms would probably allow the HPA 
to operate in compression/saturation, gaining in terms of trans-
mitted power, therefore achieving comparable communication per-
formance with respect to the unmodified FrFT waveforms, since 
simulations provided no errors for γb above 10 dB.

4.5. Link budget

In order to validate the feasibility of the proposed FrFT based 
waveform design for CoRadar system, a link budget analysis is car-
ried out. Signal-to-Noise Ratio at the Radar receiver, S N Rr , and 
energy per bit to noise power spectral density, γb , are chosen de-
pending on the desired radar and communication performance, as 
shown in Section 4.2 and Section 4.3. For example, according to 
Fig. 10(a), an S N Rr = 20 dB can ensure a probability of false alarm 
of 5 × 10−6 and a probability of detection of 0.88. Then, assuming 
that a PRF = 3 kHz is used, an average power of Pt = 50 W is sent, 
and using the FrFT optimised parameters as in Table 1, the max-



66 D. Gaglione et al. / Digital Signal Processing 80 (2018) 57–69
Table 5
Link Budget Parameters.

Param. Description Value
P R F Pulse Repetition Frequency. 3 kHz
Pt Transmitted average power. 50 W
λr Wavelength. 3 cm
k Boltzmann’s constant. 1.38 · 10−23 J/K
T0 Noise reference temperature. 290 K
SN Rr SNR at radar receiver. 20 dB
Gt,main Radar transmitting antenna’s gain in the main 

lobe.
35 dB

Gr,radar Radar receiving antenna’s gain. 35 dB
σ Radar cross section. 1 m2

Ls Loss factor. 0.4
n Number of pulses incoherently combined. 64
Gsp Signal processing gain. 37 dB
Fradar Radar’s noise figure. 4 dB
rmax Maximum radar range. 22.14 km
γb Energy per bit to noise power spectral density. 20 dB
SN Rc SNR at communication receiver. 19.81 dB
Gt,side Radar transmitting antenna’s gain in the side 

lobe.
5 dB

Gr,comms Communication receiving antenna’s gain. 15 dB
Fcomms Communication receiver’s noise figure. 10 dB
dmax Maximum radar–communication receiver 

distance.
22.26 km

imum radar range, rmax , and the maximum radar–communication 
receiver distance, dmax , are obtained. For this specific analysis, the 
radar link budget is obtained by rearranging the radar range equa-
tion as follows:

rmax =
(

Pt

τ P R F

λ2
r σ Ls

(4π)3 kT0 B w S N Rr

Gt,mainGr,radar

Fradar
n0.5Gsp

)1/4

(29)

while the communication link budget is:

dmax =
(

Pt

τ P R F

Gt,side Gr,commsλ
2
r

Fcomms (4π)2 kT0 B w S N Rc

)1/2

(30)

All the parameters are listed in Table 5. It is worth noting that 
the communication link budget is evaluated assuming that the 
communication receiver is placed in the side lobe of the radar’s 
antenna beam. With this configuration, a target with a radar 
cross section of 1 m2 can be detected at a maximum range of 
rmax = 22.14 km with a probability of detection of about 0.88. 
At the same time, a data stream of 1.947 Mb/s can be directed to 
a communication receiver placed in the radar antenna’s side lobe 
at a distance of dmax = 22.26 km, ensuring a BER lower than 
10−4. Longer radar range and radar–communication receiver dis-
tance may be obtained, for example, by decreasing the bandwidth 
of the signal B w , therefore trading them off for the range resolu-
tion and the data rate, respectively.

5. Hardware implementation

An implementation of the proposed FrFT CoRadar system on 
a Software Defined Radio (SDR) device has been presented in 
[54]. The prototype consists of a mono-static radar that generates 
the FrFT waveforms, sends the pulses and performs basic radar 
tasks, and a separate communication receiver that demodulates the 
pulses. The prototype is highly flexible, since all the parameters 
described in this paper can be set, and demonstrates the feasibil-
ity of the proposed waveform design. However, it suffers from the 
computation complexity of the discrete FrFT, limiting the PRF and 
allowing to generate only waveforms with few sub-carriers.

The FrFT CoRadar prototype has been used in a controlled lab-
oratory environment to acquire data and assess its radar and com-
munication capabilities. The ICI mitigation approach based on the 
Fig. 14. Snapshots of the real-time spectrogram computed from FrFT Co-Radar 
pulses. (a) C = 4 sub-carriers, person walking towards the radar approximately be-
tween 0–5 seconds and 10–11 s, and away from it between 5–10 s. (b) C = 8
sub-carriers, person walking towards the radar approximately between 4–8 s, and 
away from it between 0–4 s and 8–11 s.

Fig. 15. Communication performance evaluated on real data, on varying γb and for 
different number of sub-carriers.

interleaver has been used and the parameters have been set as 
follows: wavelength λr = 10 cm, bandwidth B w = 1 MHz, pulse 
duration τ = 378 μs, N = 3 information bits and G = 3 guard 
bits per sub-carrier, L = 7 the length of the Barker code, QPSK 
is the selected modulation scheme, β = 0.4 and R = 18 are the 
roll-off and the up-sampling factors of the RRC filter, respectively, 
and PRF = 83.33 Hz. Due to the limited power and bandwidth re-
sources of the employed SDR device, the radar capability of the 
system is assessed by computing a real-time spectrogram from 
the received pulses. During the acquisitions a human target was 
walking towards and away from the radar, and its Doppler and 
micro-Doppler signature can be clearly seen from the snapshots of 
the real-time spectrogram in Fig. 14(a) and Fig. 14(b), for C = 4
and C = 8 sub-carriers, respectively. Communication performance 
is also evaluated in terms of BER on varying the estimated energy 
per bit to noise power spectral density, γb , and compared with 
results obtained with a Monte Carlo simulation assuming a Rice 
channel with K -factor equal to 6 dB (indoor channel) in Fig. 15. 
Results on real and simulated data are consistent, with BER that 
decreases as γb increases and the number of sub-carriers, C , de-
creases.

6. Practical challenges

Despite demonstrating the feasibility of the proposed FrFT 
based CoRadar framework in Section 5, some practical challenges 
still have to be addressed in order to obtain a full working system. 
In this Section a non-comprehensive list of them is presented.

The first one concerns the computation of the discrete FrFT. This 
topic has been widely investigated in the literature [55,56] but, 
even if algorithms with complexity O  (U log U ) (with U length of 
the signal) have been proposed [57], they approximate the con-
tinuous FrFT rather than representing fast algorithms for the com-
putation of the discrete FrFT (as the Fast Fourier Transform (FFT) 
algorithm is for the ordinary discrete Fourier transform). A method 
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for the discrete FrFT computation with complexity O  
(
U 2

)
is pre-

sented in [58], and it has been used in [54] for prototype develop-
ment. However, as mentioned earlier, due to its high computational 
cost this implementation of the discrete FrFT limits the generation 
of waveforms with either a high number of sub-carriers or a high 
time-bandwidth product. For this reason, either a new formulation 
of discrete FrFT is sought or an ad-hoc and clever hardware imple-
mentation of an existing algorithm is required.

Clutter cancellation and mitigation of the Range Side lobe Mod-
ulation (RSM) effect that occurs because of the transmission of 
different pulses each PRI, are two other practical challenges. Com-
mon matched filter processing at the radar receiver would produce 
range side lobes that are different for each waveform, leading to 
the problem of clutter dispersion for which standard clutter can-
cellation techniques are ineffective. Different approaches have been 
proposed for pulse agility radars and may be adapted to the pro-
posed FrFT CoRadar system. In [59] the RSM effect is mitigated 
by mismatch filtering the different waveforms sent in a Coherent 
Processing Interval (CPI) in order to obtain similar range side lobe 
responses. In particular an iterative procedure for the joint design 
of multiple receiver filters is presented. This technique is also re-
called in [60], where the authors propose a closed-form rather 
than iterative solution specifically adapted for Moving Target In-
dication (MTI) radars. A more general framework for dealing with 
the problem of RSM is proposed in [61], whose aim is the optimi-
sation of the Cross Ambiguity Function (CAF) at cost, however, of a 
higher computational complexity.

Other problems concern the deep fade that the communication 
receiver may experience as it moves through the radiation beam 
pattern of the radar’s antenna, and the reduction of the PAPR. With 
this regards, preliminary results have been reported in Section 4.4
by using an exponential companding technique, however other so-
lutions can be examined and evaluated.

7. Conclusions

A novel concept of joint radar–communication (CoRadar) sys-
tem based on the Fractional Fourier Transform (FrFT) was pre-
sented. The proposed waveform design technique directly embeds 
data into the radar waveform, allowing the two operations, radar 
and communication, to run simultaneously. The method exploits 
the FrFT to map modulated signal, i.e. QPSK signals, into chirp 
sub-carriers with different chirp rates. This also makes the sys-
tem fully scalable, since its configuration can be adapted to the 
available bandwidth, pulse length and condition of the channel. In 
particular, procedures for parameters selection driven by the radar 
requirements were explained, along with two waveform optimisa-
tion techniques aiming at minimising the effect of the Inter-Carrier 
Interference (ICI) and maximising the data rate.

Radar and communication performance of the proposed wave-
form design were assessed and compared with an OFDM CoRadar 
system, that presents a comparable bit rate. Results showed that 
the FrFT waveform presents performance closer to a Linear Fre-
quency Modulated (LFM) pulse than OFDM waveform in terms 
of probability of detection and probability of false alarm, slightly 
trading range and Doppler resolutions. Communication perfor-
mance confirmed the viability of the proposed waveform design, 
showing comparable Bit Error Ratios (BERs) with the OFDM wave-
form in all the analysed cases. A link budget analysis was also 
conducted to prove the feasibility of the FrFT based waveform 
design for CoRadar system. Finally, a prototype of the proposed 
FrFT CoRadar system was presented, and radar and communica-
tion performance were evaluated by means of data acquired in a 
real controlled laboratory environment.

The FrFT CoRadar technology is suitable for a wide range of ap-
plications, but it needs to be further investigated. A stress analysis 
in presence of clutter is necessary in order to definitely validate 
the concept, and an investigation of possible clutter cancellation 
techniques needs to be carried out. Furthermore, practical prob-
lems must be addressed, such as the fast computation of the dis-
crete FrFT and the mitigation of the Range Side lobe Modulation 
(RSM) effect.
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