
Coordination Approaches and Systems – Part I: A Strategic Perspective

Robert Ian Whitfield1, Graham Coates1, Alex H. B. Duffy2 and Bill Hills1

1Engineering Design Centre, University of Newcastle upon Tyne, Tyne and Wear, UK; 2CAD Centre, Department of Design Manufacture
and Engineering Management, University of Strathclyde, Strathclyde, UK

Abstract. This is the first part of a two-part paper presenting

a fundamental review and summary of research of design

coordination and cooperation technologies. The theme of this

review is aimed at the research conducted within the decision

management aspect of design coordination. The focus is

therefore on the strategies involved in making decisions and

how these strategies are used to satisfy design requirements.

The paper reviews research within collaborative and co-

ordinated design, project and workflow management, and, task

and organization models. The research reviewed has attempted

to identify fundamental coordination mechanisms from

different domains, however it is concluded that domain

independent mechanisms need to be augmented with domain

specific mechanisms to facilitate coordination. Part II is a

review of design coordination from an operational perspective.

Keywords: Cooperation; Design coordination; Orga-

nisation models; Project management

1. Introduction

This review represents one part of a two-part paper,

the combined aim of which is to summarize the

current state-of-the-art of coordination techniques and

methodologies. The focus of this paper is on

coordination from a strategic perspective, which

may be viewed as the management of the control

mechanisms that govern a particular process. The

paper is not an exhaustive review of all of the

literature available, but is intended to give the reader

an understanding of the broad spectrum of work that

has been undertaken within this field.

A great deal of the research investigated here has

similarities between how humans cooperate and

organize their communities and manage their pro-

blems. Autonomous agents are increasingly being

applied to solve the problems associated with the

distributed nature of design activity. The agents have

been developed to possess knowledge of their domain

and be capable of reasoning about the tasks and

activities for which they hold responsibility.

Increases in computational power have meant that

not only is an increasing amount of design and other

activity being performed within agent architectures,

but the control mechanisms that once governed how a

design artefact progressed through its lifecycle are

also being automated. The automation of this control

has been investigated using a number of different

approaches, however, one conclusion is usually

drawn; that the control, like the agents, should be

distributed. Distributing the control mechanisms in

this manner has been of fundamental importance

when producing communities of agents, cooperating

together to solve a particular problem. However, the

authors believe that cooperation needs to be

augmented with rationale to achieve coordinated

behaviour within a multi-agent design system, i.e.

agents may be able to work cooperatively to solve a

particular problem, but the agents must be able to

reason, rationally, if the design problem is going to

progress, otherwise chaos may occur (Hogg and

Huberman 1991). It is also believed that an outcome

of providing coordination would be to enable the

identification of design activity which may be

undertaken concurrently (Duffy et al. 1993).

1.1. Scope

This paper is intended to give the reader an idea of the

research that has been, and is currently being

undertaken within the field of design coordination.

Consequently, the review is an interpretation of a wide

range of published research. Naturally, the papers

presented here have been summarized to what is

believed to be appropriate and may therefore not truly

reflect the authors’ original intentions. The reader is

referred to the papers for a more complete coverage.

Correspondence and offprint requests to: G. Coates, Enginering
Design Centre, Armstrong Building, University of Newcastle-
upon-Tyne, Newcastle-upon-Tyne NE1 7RU, UK. Email: gra-
ham.coates@ncl.ac.uk



The work covered within this review is generally

based around the development of coordination

mechanisms for computer-based Distributed Artificial

Intelligence (DAI) systems. This field has drawn on

fundamental aspects of coordination such as commu-

nication, negotiation and the use of knowledge from

practical applications, and formalized them within a

computer-based domain. It is believed that this

approach will consequently help to re-define how

coordination is managed within actual applications.

1.2. Organisation

The methodologies reviewed within this paper are

organized within six broad subject areas in an attempt

to distinguish between the different approaches

adopted. The approaches identified are:

� coordination techniques,

� cooperation techniques,

� organization models,

� project management,

� workflow management, and

� task models.

In general the methodologies reviewed tend not to fit

neatly into these categories, and it may be argued that

some of these categories may be subsumed within

others. The methodologies have however been

categorized based upon the general theme of the

work described.

2. Design Coordination Methodologies

Design coordination is a subject that is not easily

defined. This is apparent from the amount of literature

that attempts to solve coordination problems using

different perceptions of what coordination actually is.

The methodologies tend, however, to have an agreed

starting point, this being the use of autonomous agents

having roles and responsibilities, working within a

community or organization. The use of agents within

this particular manner illustrates the use of coopera-

tion techniques to enable a particular problem to be

solved. Coordination techniques may be used within

this type of framework to enable an organization of

cooperative agents to solve a problem in an organised

and efficient manner. Two approaches have been

adopted to enable coordinated activity to be under-

taken, either using a formal representation of the

individual tasks required or by representing the entire

process using either project or workflow management.

2.1. Coordination Techniques

The techniques and methodologies described here

vary considerably from coordination testbeds that are

used to represent behavioural aspects, to languages

that allow agents to discuss coordination issues, and

algorithms that describe procedures for performing

activity within a coordinated manner. What is

apparent is that there is a great deal of diversity in

the approaches that have been devised to tackle

coordination each of which is able to represent

knowledge of the coordination process.

A flexible testbed called MICE (Michigan In-

telligent Coordination Experiment) was developed to

simplify the investigation and evaluation of coordina-

tion mechanisms (Durfee and Montgomery 1989).

The authors refer to previous investigations (Smith

1980; Lesser and Corkill 1983), that demonstrated

coordination techniques applied within domain

specific examples and argued that the use of this

coordination knowledge was difficult to utilize within

other domains. Their investigation was conducted by

simulating an agent environment through the encod-

ing of domain specific environmental constraints and

characteristics that influenced the coordination pro-

cess. It was intended that this method may be used to

extract general principles and techniques for coordi-

nation with the behaviour of the simulation high-

lighting any discrepancies. Durfee demonstrated the

use of MICE by constructing environments that

simulated predators chasing prey, agents fighting a

fire, and robots working together. A summary of

MICE, and the other systems that are reviewed within

this paper can be seen within Table 1.

A coordination language for multi-agent systems

called COOL was developed around the notion of

structured conversation between agents allowing

knowledge to be captured, represented and used by

agents to interact sociably (Barbuceanu 1995;

Barbuceanu and Fox 1996b). As with other multi-

agent communities (Cutkosky et al. 1993; Lesser

1998), the agents within Barbuceanu’s framework did

not have a complete representation of the environ-

ment in which they operated. The language however

enabled coordination to be managed allowing the

agent to communicate its requirements and actions to

other agents.

The COOL coordination language was used within

an agent building shell to provide communication,

knowledge management, cooperative information

distribution, organization modelling and conflict

management (Barbuceanu and Fox 1996a). The

agent building shell enabled coordinated, distributed

Coordination Approaches and Systems I 49



systems to be developed from interoperable and

reusable building blocks.

Barbuceanu and Fox recognised the need for the

agents to possess not only domain specific knowledge

to enable them to undertake their activities, but also

for knowledge of how the agents should interact with

each other. This social knowledge has been used to

define an agent’s role within the agent community and

has subsequently been used to define organizations of

agents (Durfee 1993; So and Durfee 1996). Jennings

also defined the term ‘cooperation knowledge level’

as the social interaction which describes how agents

should cooperate to solve a common problem

(Jennings 1992).

The Partial Global Planning (PGP) mechanism falls

into a discipline called Cooperative Distributed

Problem Solving (CDPS) which develops ideas from

artificial intelligence and distributed computing

(Durfee and Lesser 1991). CDPS is the study of

how multiple intelligent systems collectively solve

problems which were beyond their individual cap-

abilities. Starting with local coordination information,

agents responded to their current situation, exchan-

ging information with other agents to form a non-

local or partially global plan. The authors hypothe-

sized that coordination is not a separate phase in

group activity, but is instead an integral part of

decision making. They added that coordination arises

out of local planning rather than by providing a

protocol or language to allow systems to commu-

nicate. The PGP mechanism was demonstrated within

the modelling of the activity of a distributed vehicle

monitoring testbed.

The iDCSS system attempted to combine existing

coordination approaches to avoid many of their

individual limitations (Klein 1995). Three types of

coordination technology were reviewed; process

management, conflict management, and rationale

capture and the advantages and disadvantages of

each type of method were highlighted. Each of these

technologies focused on handling one particular type

of dependency and was subsequently found to have

difficulties in handling others. The iDCSS system was

an attempt to ‘combine the strengths and avoid the

weaknesses’ of each approach to enable the coordina-

tion of cooperative design.

The Generalised Partial Global Planning (GPGP)

approach was an extendable set of algorithms that

enabled cooperative computational agents to deter-

mine the importance of certain tasks and schedule their

activities based upon the most appropriate time

(Decker and Lesser 1992; Lesser et al. 1998). The

algorithms were produced by examining and general-

ising the mechanisms developed for the PGP

algorithm. The focus of the work was more on

detecting the coordination relationships than on local

scheduling (Decker and Lesser 1995). The authors

claimed that the algorithms could be applied to any

computational domain that required coordination, but

were again tested with a re-implementation of the

vehicle monitoring testbed (Durfee and Lesser 1991).

The algorithms were defined using TÆMS (Task

Analysis, Environment Modelling, and Simulation),

which was described as a framework for expressing

coordination problems by representing an agent’s

current beliefs about the structure of the tasks in the

current episode (Decker 1996). Five mechanisms were

produced to respond to certain features of the agent’s

current task environment and were intended to work in

conjunction with the agent’s local scheduling mechan-

ism to effectively produce improved local schedules.

The GPGP framework was compared with a

centralized scheduling agent measuring the perfor-

mance of the total final quality achieved by the

system, the amount of work done, the number of

deadlines missed and the termination time. The

authors discovered that the GPGP system was

outperformed by the centralized system 57% of the

time whilst producing 85% of the quality. This was

accredited to the additional time taken for the GPGP

based agents to gather a partially global plan of the

design problem, compared with the centralized

system’s already existing complete view. The use of

a distributed system was preferred however by the

possibility of failure of the centralised scheduling

agent resulting in complete failure of the system. The

authors also add that increasing numbers of agents

and task structures would make a complete view of

the episode hard to achieve using the centralized

approach. Finally, the authors acknowledge that the

five mechanisms only dealt with certain aspects of

coordination and may be extended as new ideas arise.

The TÆMS and GPGP paradigms were the

foundations for a domain-independent agent archi-

tecture that assumed the existence of a local

scheduling mechanism and a level of self-awareness

regarding the agent’s current and intended goals

(Lesser 1998). The agent architecture was capable of

solving problems subject to real-time constraints, the

availability of resources and the ability to coordinate

with the problem-solving activities of other agents.

Lesser’s agents provided multi-agent scheduling,

organizational design, detection and diagnosis and

on- line learning. Providing such mechanisms enabled

the agents to execute their short term coordination

behaviors as well as altering their role within an

organization.

The Design Coordination Framework proposed a

50 R. I. Whitfield et al.



concept for an ‘ideal’ design coordination system

(Andreasen et al. 1996). The authors identified the

recent trend of moving away from isolated design

towards the concurrent implementation of the design

process. Concurrent Engineering is becoming increas-

ingly possible resulting from the development of

computer based tools and integrated product data

models, however, the authors suggest:

‘‘A major shortcoming of the Concurrent

Engineering view is the failure to recognize

that what is truly required is not for activities to

be carried out in parallel but for resources to be

effectively utilized in order to carry out tasks for

the right reasons, at the right time, to meet the

right requirements and give the right results. That

is: the key to achieving optimal design perfor-

mance, and hence design productivity, is the

effective coordination of the design process.’’

To this end, Andreasen identified a number of frames

representing the key elements of coordination which

reflect the states of the design process.

Jennings argued that commitments (pledges to

undertake a specific course of action) and conventions

(means of monitoring commitments in changing

circumstances) were the foundation of coordination

in all DAI systems (Jennings 1996). The objectives of

the coordination process were proposed as ensuring:

‘‘that all necessary portions of the overall

problem are included in the activities of at least

one agent, that agents interact in a manner which

permits their activities to be developed and

integrated into an overall solution, that team

members act in a purposeful and consistent

manner, and that all of these objectives are

achievable within the available computational

and resource limitations.’’

Jennings discussed the coordination of the actions of a

group of agents based upon three different scenarios.

The first scenario involved all of the agents having a

complete representation of the goals, actions and

interactions associated with all of the other agents

within the community. If each agent was subsequently

given an unlimited amount of processing power,

Jennings argued that the agents would know the

activities of each of the other agents, and would be

able to predict what they would be doing in the future.

This scenario was considered to be impracticable due

to the increase in computational power and commu-

nication required to maintain an agent’s representa-

tion being considerably greater than that available to

perform the activity.

The next scenario was to furnish a single agent with

a global representation and use this agent to direct the

activity of the other agents. This scenario would

significantly reduce the resource requirements of the

individual agents but would result with the global

controller having a communication bottleneck as well

as the possibility of suffering from complete failure.

The final scenario involved distributing the control

and data such that each agent has a degree of

autonomy in deciding the activity that it is going to

undertake. This scenario is perhaps more representa-

tive of the control mechanisms involved within actual

organizations. One of the requirements of this

scenario is that the design of the control mechanisms

should not significantly restrict the resources avail-

able to perform the activity – a condition that Decker

and Lesser only partially satisfied (Decker and Lesser

1992). Each agent also has only a partial perspective

of the global problem.

Jennings finally hypothesized that all coordination

mechanisms could be expressed in terms of commit-

ments, conventions, social conventions and local

reasoning capabilities, which was demonstrated by

the reformulation of a number of common coordina-

tion techniques using these terms.

Gupta et al. (1996) described a constraint based

system with the objective of achieving high levels of

concurrency by timely communication and coordina-

tion of information. The authors discussed two

approaches that have been traditionally used to

obtain concurrency; multi-disciplinary team meetings,

and distribution lists. They mentioned that team

meetings are often difficult to arrange with respect

to deciding who needs to attend, wasteful of time, and

are frequently complicated by geographical distribu-

tion. The dynamic nature of organizations also

highlights limitations of distribution lists due to

their static representation. The timely communication

of accurate information, the ability to share work in

progress, and the accurate determination of the

impacts of change were all requirements that were

identified to achieve concurrency.

The framework that was produced possessed a

representation of requirements, constraints, para-

meters, roles and responsibilities within a shared

object model. Gupta implemented this model of

concurrency by providing an environment in which

people could share their work and work on the same

piece of data.

Coordination Approaches and Systems I 51



2.2. Cooperation and Collaboration Techniques

Smith specified speed, reliability, extensibility, and

the ability to handle applications that have a natural

spatial distribution as reasons for having a distributed

approach to problem solving (Smith 1980). Reducing

bottlenecks was one area where speed may be

achieved by distributing control, data and knowledge

sources. This philosophy has been adopted by a

number of significant research projects since and is

still seen as being one of the ways forward within the

artificial intelligence community. Distribution of

control also enhances reliability and permits graceful

degradation of performance in the case of individual

agent failures.

One of the earliest research projects investigating

cooperative problem solving was the contract net

protocol which described problem solving commu-

nication and control for the agents within a distributed

system (Smith 1980). The agents were defined as

loosely coupled, asynchronous knowledge sources.

Smith presented the connection problem which

identified the issues associated with how one agent

with a task to be performed may negotiate with

another, suitably idle agent, to undertake this task.

Four important components were recognised to

facilitate such negotiation; local rather than centra-

lized process control, a two way exchange of

information, evaluation of information from each

agent’s perspective, and final agreement achieved by

mutual selection. The contract net protocol has since

fashioned many other researchers ideas within the

area of negotiation.

Smith has argued that solutions to problems within

an artificial intelligence environment often require

many tasks to be performed and the combination of

many tasks with many knowledge sources can result

with a combinatorial explosion in the amount of

activity.

In a discussion about the trends in CDPS, an

attempt was made to justify why the difficulties of

defining an effective cooperation mechanism should

be overcome and consequently warrant designing

distributed problem solving systems (Durfee et al.

1989). The authors recognized that advances in

computational power and communication systems

make the connection of large numbers of powerful

processors a cost-effective way of dealing with the

computational requirements of DAI. They add that

artificial intelligence systems are invariably distrib-

uted and maintenance and debugging of smaller

packets of distributed knowledge is therefore an

easier task than is the case for a single unifying

system. Providing distribution of knowledge also

enables the development and understanding of the

mechanisms involved within cooperation and coordi-

nation.

From their analysis of a number of approaches for

CDPS, the authors identified three requirements for

effective coordination. The first requirement was for a

structured approach to enable the agents to interact in

a predictable way. The dynamic nature of the

environment in which CDPS agents operate requires

that the agents are flexible in dealing with incomplete,

inaccurate or obsolete information. The final require-

ment was that the agents should possess the knowl-

edge and reasoning capabilities to be able to

intelligently use this structure and flexibility.

The Design Fusion system was intended to produce

superior designs by the concurrent consideration of

multi- disciplinary design requirements and used

constraints as the language with which the designers

communicated with each other (Finger et al. 1992).

The designers were given advice regarding the

analysis of the design via groups of perspectives

which contained domain specific knowledge sources.

Coordination of the perspectives was managed

through a centralized blackboard architecture.

Cooperative multi-agent systems could be con-

structed using the GRATE framework which con-

tained a significant amount of cooperation and control

related knowledge that could be augmented with

domain specific knowledge (Jennings et al. 1992).

The authors recognised that the ideal scenario would

be for the framework to have all of the necessary

control knowledge to enable cooperation between any

suite of agents. They realised however, that it would

be unlikely that the cooperation mechanism would be

expressive enough to be able to deal with the specifics

of the agent’s domain. Despite this, they believed that

generic control knowledge should be an integral part

of the solution but recognized that it needed to include

more powerful mechanisms.

Explicitly represented knowledge was used as a

communication medium to facilitate cooperation

within the SHADE project (Gruber et al. 1992). The

aim of the SHADE project was to provide a

framework that would enable the sharing of knowl-

edge between people and their programs and to

coordinate that knowledge so that it reached the

interested parties. The knowledge-based technologies

produced by DARPA were used as the basis for the

development of this framework.

A hybrid approach using control knowledge and

more powerful reactive mechanisms was developed

within the ARCHON project (Jennings and Pople

1993; Wittig et al. 1994). Jennings proposed that the

control mechanisms within a distributed system

52 R. I. Whitfield et al.



should also be distributed to overcome the difficulties

in representing the control strategies of legacy

systems within a unifying whole and the associated

bottlenecks that such a system would produce.

The initial objective of the ARCHON project was

to provide a supporting software architecture to

enable the cooperation of legacy expert systems

dealing with different aspects of decision making.

Jennings addressed a number of issues that are key

considerations within the development of multi-agent

systems. ARCHON was intended to be used within

industrial applications, hence it was identified that the

decision making process should not consume sig-

nificant amounts of resources and leave sufficient

computational power for the design activity. The

distribution of the decision making process would

therefore become a function of the distribution of

available resources ensuring that all events are dealt

with giving priority to those of greater importance.

The agents were given roles, either to complete their

own objectives, to aid in the completion of other

agents’ objectives, or as a mixture of the two.

Jennings claimed that from the perspective of DAI,

ARCHON represented; ‘‘one of first serious attempts

to build a generic cooperation framework for large-

scale, real-world industrial applications’’. An exam-

ple was given of the use of the ARCHON framework

within the fault diagnosis in an electricity manage-

ment application (Wittig et al. 1994).

The Palo Alto Collaborative Testbed (PACT) was

formed to explore the issues associated with building

a multi-disciplinary framework that primarily dealt

with the sharing of knowledge between disparate

computer-aided design software (Cutkosky et al.

1993). The authors examined the technological and

sociological issues of building large scale, distributed

concurrent-engineering systems. One of the problems

identified was that existing legacy software generally

tended to offer ‘point’ solutions to problems within

their particular domain, and whilst the tool may

contain its own knowledge-base and representation of

the design model, the methods available to transfer

this knowledge to other design tools were either non-

existent or very limited.

The group realized that the answer lay not in

unifying the systems, but in providing an over-arching

framework that could coordinate the tools without

having to change them. To achieve this, the frame-

work communicated the tool’s knowledge in a formal

manner using techniques developed by the DARPA

sponsored knowledge-representation standards com-

mittees (Patil et al. 1992). The resulting agent based

architecture was demonstrated using examples in-

cluding cooperative design refinement, simulation of

the design artefact, and the interactions associated

with a design change.

Toye et al. (1994) examined the issues associated

with providing a shared perception of the design and

the design process which was not previously possible

due to the lack of information organization within the

available CAD systems. This deficiency resulted in

difficulties involving the retrieval of past designs or

the lack of information available within these designs.

The SHARE system was designed to identify what

was meant by a ‘shared understanding’, and to

identify the tools that would enable designers to

capture and exploit it and produce design records

which may be shared and retrieved for future use.

A similar problem was described and tackled within

a distributed collaborative design methodology using

the Internet called Madefast (Cutkosky et al. 1996).

The Madefast project was an exercise in using Internet-

based tools developed by the ARPA Manufacturing

Automation and Design Engineering program to

produce a shared repository of all of the models,

notes, results and calculations relating to the design of

an artefact. The team realized that it was as important

for the tools to capture the processes and rationale

leading to the design as well as the design itself.

2.3. Organisation Models

Despite not specifically describing the development of

an organization model, Jennings described the social

interaction knowledge required for the behavior of

agents collaborating to solve a common problem

(Jennings 1992). This ‘cooperation knowledge level’

was developed to provide agents with rich and explicit

models of common social phenomena. Early distrib-

uted systems commonly only contained the knowledge

required to perform their domain specific activities,

and subsequently had difficulty in cooperating to solve

a common task. To solve this problem, models of

knowledge describing how agents should perform

sociably to solve a common problem were developed.

One of the foundations for the development of DAI

has been the analysis of how communities of people

collectively solve problems, the intention therefore

being to define how AI agents may be individually

and collectively intelligent. Durfee focussed on this to

determine three social metaphors for the basis of DAI;

organizations, team plans and collective scheduling

(Durfee 1993). From an organizational perspective,

each AI agent would play a particular organizational

Coordination Approaches and Systems I 53



role. If these roles were defined and assigned

appropriately, the group as a whole could work as a

coherent team.

The CommonKADS framework was developed to

enable the acquisition of knowledge within cooperat-

ing knowledge-based systems (Weih et al. 1994). The

CommonKADS model set was described by a set of

models representing different types of knowledge. An

organizational model (de Hoog et al. 1994a)

contained descriptions of the function, structure,

authority and resources of an organization. The

framework also contained models of tasks, agents,

communication and expertise (de Hoog et al. 1994b).

The analysis of human organizations has contrib-

uted to the development of the field of distributed

artificial intelligence. So and Durfee described the

design of tree-structured organizations consisting of

communicating, autonomous computational agents

(So and Durfee 1996), and defined an organization

as ‘‘a long term commitment made by the agents to a

particular way of jointly handling the cooperative

tasks’’.

Previous distributed systems performed their

activity based upon a set of instructions. So and

Durfee mention that as computational power in-

creases, it is possible to give the agents a degree of

‘‘intelligence’’ by providing them with roles and

responsibilities. The paper goes further by demon-

strating how the agents can themselves design the

organization such that they can participate in jointly

performing a set of tasks in a cooperative manner.

The issues regarding organizational self-design (So

and Durfee 1994) were discussed following the

concern that organizational structures are typically

dynamic in nature, and as such, the agents operating

within an organization need to be able to adapt their

role and responsibilities so that they can adjust as the

circumstances change.

An organization ontology for the TOVE (Toronto

Virtual Enterprise) model was described which

possesses a number of agreed upon organization

related concepts such as agents, roles, positions,

goals, communication, authority and commitment

(Fox et al. 1996). An organization was defined as a

set of constraints on the activities performed by a set

of collaborating agents. The authors believed that the

use of an ontology made it possible for both mixed

groups of agents and people to agree upon the

requirements by ensuring that everybody has the same

interpretation. They described the organization ontol-

ogy as being composed of a number of agents playing

roles in which they are acting in solving specific goals

according to various constraints defining the ‘rules of

the game’.

Barbuceanu also used an ontology to describe the

organizational structure within which the agents were

operating (Barbuceanu 1996a). As with Fox et al.

(1996), the ontology consisted of models of the other

agents within the environment, their roles, goals and

actions available to them, the information that they

were interested in and the services that they could

provide.

Nagendra Prasad et al. (1996) described a graph-

grammar-based task structure language to enable the

design of functionally structured agent organizations.

The TÆMS and GPGP paradigms that had been

developed and used to represent an organizational

design (Decker and Lesser 1994), were used to

develop a distributed data processing organization.

The authors demonstrated that the grammar based

language enabled the designer to model task

structures in a suitable manner that otherwise had

generated unexpected behaviour from the GPGP

coordination mechanisms.

2.4. Project Management

A domain independent decision maintenance server

was described and proposed as a mechanism for

federating heterogeneous design agents (Petrie 1993).

One of the issues dealt with within this paper was

semantic unification, or the ability of one system to

understand the language and knowledge of another.

Petrie also discussed the propagation of change within

a general design model. The Knowledge Query and

Manipulation Language (KQML) developed by

DARPA provided a degree of semantic unification

by producing a set of performatives or conversation

rules that the various agents must agree upon (Finin et

al. 1992). Petrie used a subset of REDUX to add

semantics to the KQML primitives to provide

functionality with a decision maintenance server. It

was subsequently recognised that the Redux model

could be regarded as a reusable ontology of a similar

kind as that represented by Ontolingua (Gruber 1992),

and with a similar notion as that developed with the

Agent Building Shell (Barbuceanu 1996a). It differed,

however, in that it was not an ontology of design

domain objects, but an ontology that could be used to

encapsulate such objects. The Redux’ ontology

essentially described a design decision as consisting

of a goal (or objective or task) that it reduced

(satisfied or accomplished) and a result.

Petrie et al. recognised that traditional project

management techniques were not sufficient for

managing the many tasks in the design and develop-

ment process (Petrie et al. 1998). The most significant

54 R. I. Whitfield et al.



concern of Petrie’s was that these systems did not

provide the proper mechanisms for notifying the

correct people of the effects of change at the correct

time in the process. Petrie noticed that even in small

design projects, people lose their ability to maintain a

comprehensive picture of the history and interplay of

design decisions, constraints and rationales.

In an attempt to maintain a comprehensive

representation of the design problem, many more

people are often notified of a design change than is

actually necessary, thus burdening the whole design

process. This philosophy of excessive communication

may be seen within the PACT experiments. Here the

focus was aimed more towards cooperation than

coordination, with the notification of a design change

being broadcast to all of the agents within the

community. The agents that were then responsible

for undertaking design activity based upon the

decision could subsequently carry out their activity,

however, for larger teams of multi-disciplinary design

agents, the method would result with excessive

unnecessary communication. This problem was

tackled within the SHADE project (McGuire et al.

1993) with content based routing, which was a

mechanism to ensure that only the people interested

in the information would receive it.

A subset of the REDUX model, called Redux’ was

used to manage the propagation of change to facilitate

the development of an integrated project management

system called Procura (Goldmann 1996; Petrie et al.

1998). The methodology differed from general work-

flow management systems due to the interleaving of

the design and construction planning, allowing both

the design and plan to be changed as necessary. The

requirement for this ability resulted from the

possibility of a design change affecting the design,

as well as the design plan and schedule. The Procura

model of process coordination shared some simila-

rities with workflow management, but it did not

require the identification of all of the tasks and ways of

doing them before process execution. The techniques

used to develop Procura were further developed

within CoMoKit (Dellen and Maurer 1996).

Petrie et al. (1995) also demonstrated the use of

Redux’ to coordinate the design process using the

concept of Pareto optimality within a framework

called Next-Link. Petrie recognised the need to

provide a method that would enable the quality of

the design artefact to be measured. This need would

be increased within a design scenario that included

multiple designers and engineers working within

multiple domains of a single design artefact. Such a

method would enable the designer to determine

whether a particular design change has improved or

reduced the quality of the design. The concept of

Pareto optimality was used since it was a general

technique that enabled multiple, often conflicting

objectives and constraints to be considered. The

Redux’ design model provided a formal notion of an

objective that would be required to implement such a

principle. Pareto optimality moved away from having

a single ‘weighted’ objective that was a function of all

of the objectives, to providing a measurement of how

close the solution was to the ideal scenario. The

tracking of Pareto optimality enabled some aspects of

dependency-directed backtracking to be incorporated.

‘Tracking’ meant that the problem solver would be

automatically notified of Pareto optimality loss and of

the particular opportunity to improve the design.

Providing such functionality enabled opportunities to

improve local solutions that otherwise might have

been lost, and reduced ‘thrashing’ or performing

design activity that would return to previously

explored designs that were known to be sub-optimal.

Three strategies were adopted to facilitate Con-

current Simultaneous Engineering (CSE) of the

product development process within the CONSENS

project; parallelization, standardization and integra-

tion (Bullinger and Warschat 1996). Parallelization

was achieved by allowing succeeding processes to be

started prior to the completion of preceding processes.

The authors recognized however that providing

concurrency in this manner would increase the

amount of uncertain and incomplete information.

Improved coordination was achieved through stan-

dardisation by avoiding repetition and needless work.

Integration within CONSENS allowed interdisciplin-

ary teams to cooperate to solve a common objective.

To facilitate parallelization, standardization and

integration within a CSE context the authors proposed

a framework to model, support, control and integrate

processes and teams, an information management

system to manage, change and release product data,

and a product information archive to store and access

a common product model. A number of systems were

developed to realize these aspects of CSE including a

STEP based PDM system, a design management

system and a process modelling system. The authors,

however, realised that an implementation of CSE

would require more than just a set of supporting tools,

but ‘‘a new orientation of the complete product-

development process’’. The CONSENS framework

was implemented within a number of European

companies.

Van Den Hamer and Lepoeter (1996) identified

‘five orthogonal dimensions’ that are fundamental to

Design Data Management. The authors suggest that

each dimension, when considered separately is

Coordination Approaches and Systems I 55



relatively simple to implement, however two or more

need to be considered to solve real-world applica-

tions. A discussion follows of the version, views,

hierarchy, status and variants dimensions, and the

interactions between them and the systems developed

within two dimensions. The authors argue that the

systems that have been developed to consider more

than three dimensions have had the other dimensions

tagged on as an afterthought, and that systems may

have limited applicability across disciplines due to the

variation in the importance of the dimensions.

Bilgiç and Rock (1997) discussed the state-of-the-

art of Product Data Management (PDM) systems and

described the development of a knowledge aided

design system that was used to manage data and

processes related to the product development life-

cycle. The PDM system view of the design process

was described as ‘‘providing the mechanisms that

enable the right data to be made available to the right

person at the right time’’. Bilgiç identified a number

of the weaknesses of PDM systems resulting from the

management of documents and data, and described

how the management of knowledge would provide a

more suitable and flexible solution for systems

management.

A discussion of the practicalities of using classical

data models (e.g. relational, network, and hierarchi-

cal) for the modelling of complex product and process

data lead to the conclusion that these types of model

were too simple and due to their levels of abstraction

were limited in their ability to capture the diversity of

information within engineering applications (Chen

and Hsiao 1997). The authors describe the develop-

ment of an object-oriented framework for the

management and coordination of concurrent engi-

neering processes. After reviewing the product

delivery process, the functional requirements for

team data management were identified as:

� a structure to define the components within a

product and their relationships,

� methods that enable a project to be configured with

respect to members, activities, roles etc.,

� the ability for team members to manage product

and process items,

� the management of release, change and notifica-

tion.

The authors finally discuss the application of the

framework within the collaborative data management

of a transmission system.

Peng and Trappey (1998) also mention the

limitations of a number of Engineering Data Manage-

ment (EDM) modelling systems with respect to

support for decision making, data and process

representation and life-phase modelling. The authors

describe the use of the STEP product data representa-

tion and exchange standard within the development of

a number of data models of an EDM system whilst

attempting to overcome the limitations of the other

modeling systems. The STEP data exchange standard

uses the EXPRESS object-oriented language to enable

product data to be represented within a neutral format

facilitating the integration of existing legacy software.

Six main functions were identified for an EDM

system to successfully manage product-related in-

formation throughout the lifecycle; engineering

drawing management, material specification manage-

ment, product structure management, production

schedule management, technical document manage-

ment, and engineering change management. The

system enabled distributed CAD/CAM applications

to have controlled access to the relevant information

within the EDM system.

2.5. Workflow Management

Workflow management systems have generally been

developed for application within business processes

by modelling the activities, flow of data, organiza-

tional structure and tools available within a business.

Mohan et al. (1995) described the Exotica work-

flow management research project, part of which was

based on the development of mechanisms that would

allow a distributed workflow to continue in the event

of a failure. Workflows have typically been defined in

advance which has meant that many error conditions

have had to be defined to enable the system to

continue in the event of failure. Mohan dealt with

errors using ‘forward recovery’ enabling the process

to progress. Distributed and mobile computing were

also discussed enabling disconnected clients to

execute parts of the process without being connected

to a centralized server.

Jennings et al. (1996) described the ADEPT agent-

based framework for managing business processes.

The agents within ADEPT were based upon the

GRATE and ARCHON agent models, hence the

enactment of the workflow model was again

distributed rather than centralized. The use of an

agent architecture for workflow management was

qualified by the inherent distribution of data and

problem solving capabilities within organizations, the

need for sophisticated interaction and negotiation, and

the inability to prescribe the problem from start to

finish. The contract net protocol was used as the

foundation for its negotiation mechanism which was

extended to enable business process management

interactions to be expressed more clearly.

56 R. I. Whitfield et al.



The ADEPT workflow model was extended within

ADEPTflex which provided the functionality to

change the structure of a workflow model during

execution (Reichert et al. 1998).

The use of workflow scripts within distributed

systems has been the focus of a number of research

groups (Ranno et al. 1997; Dellen et al. 1997) with the

realization that the scripts, like the systems, need to be

dynamic in nature. Ranno et al. developed and

implemented a coordination language for expressing

the composition and dependencies of distributed

applications. Workflow scripts were defined using

the coordination language which specified the tasks to

be undertaken according to their dependencies. The

dynamic nature of distributed systems was dealt with

by providing mechanisms that allowed the workflow

systems to adapt and change their internal structures

by the addition or removal of tasks and dependencies.

Dellen et al. produced a workflow management

methodology that could be applied within a dynamic

environment such as an engineering project. One of

the shortcomings of workflow methods that was

tackled was to allow the model to change as the

design process progresses. The need to manage

change was also identified as a requirement for a

system to support engineering projects which was

supported with an application of the Redux’ model

(Petrie 1993).

2.6. Task Models

The TÆMS framework enables complex, computa-

tionally intensive task environments to be modelled

and simulated such that computational theories of

coordination may be built and tested (Decker 1996).

TÆMS differs from other coordination representa-

tions that are concerned with a single decision, by

representing the possible outcomes of many se-

quences of interrelated choices. Decker recognised

that TÆMS provided much of the information that

would enable the framework to be used as a

scheduling device, and would provide that function-

ality when working with the GPGP framework,

however this was not its intended purpose.

Coordination theories may be developed using

TÆMS by providing information regarding the

structure and other characteristics of tasks in an

environment and the information that is known and

actions that can be undertaken by agents in certain

organizational roles.

A multi-agent framework called MADEsmart

demonstrated the use of Decker’s Generalised Partial

Global Planning algorithms (Decker and Lesser 1995)

to coordinate the design activity of a number of

design groups during the preliminary design process

(Jha et al. 1998). A number of different agent types

were developed to manage particular aspects of the

design process. The results of the DARPA work was

again used as the basis of the development of the

communication of knowledge between the agents.

MADEsmart also utilized the TÆMS representation

of task structures to enable the formal coordination of

design activity.

Barrett et al. (1997) also described the development

of the MADEsmart environment which provided task

coordination, multi-disciplinary optimization and

easy access to information. The goal of this research

was to enable the rapid exploration of design

alternatives within the aircraft industry. The MA-

DEsmart environment used an intelligent agent

architecture to automate processes and coordinate

tasks. Natural language processing was used to

capture text-based design requirements and specifica-

tions and ensure that this information would be

distributed to the users that required it. Such a

mechanism could also be used to inform users of any

conflicts as they arise between requirements and

specifications, and proposed design solutions. The

coordination structure used within the agents was

again centred on the TÆMS and GPGP paradigms.

Evaluation mechanisms were produced based upon

the reduction in time required to produce engineering

drawings and the number of drawings.

Bilgiç described the development of the Systems

Design Management Agent (SDMA) within the

MADEsmart framework which was concerned with

reasoning about agent interaction, the design process,

or the environment (Bilgiç 1997). Risks were broadly

defined by Bilgiç as events that cause a delay in the

project, events that cause cost overruns, and, events

that cause deficiencies in technological performance.

Bilgiç subsequently described the requirements for a

technology to be able to acquire, represent and reason

on knowledge about different types of risk.

3 Concluding Remarks

It is apparent that one of the major driving forces for

coordination is the increased use of distributed design

activity. This has been duplicated within the computer

domain with the development of distributed agents

operating within distinct disciplines performing tasks

which may be viewed as being part of an encom-

passing design process. One of the benefits of

providing a distributed agent architecture within a

computerised environment is that the entire design

problem need not be encompassed within a single

Coordination Approaches and Systems I 57



piece of software, rather, existing legacy code may be

used to perform pre-defined tasks under the super-

vision of a software agent. Managing a number of

these software agents however requires a formalised

approach such that the activity is performed in a

coordinated and efficient manner.

Coordination has been reviewed from a number of

different perspectives. Various mechanisms have

been described with the general purpose of managing

and representing generic coordination knowledge

whilst being sufficiently expressive to manage

domain specific knowledge. Experimental testbeds

have been developed to enable fundamental coordina-

tion mechanisms to be tested for validity by observing

the activity of a given simulated environment. No

indication is given, however, of how applicable these

mechanisms may be within a domain such as

engineering design and it is believed that such an

application may require domain specific coordination

information for the process to operate correctly.

Various languages have been developed which

contain coordination knowledge as their content, to

enable agents to schedule their activities based upon

the requests of other agents. The agents tend to start

with only local knowledge and gradually build up their

representation such that they may perform acceptably

within a community. This seems to rely on the

assumption that it is not clear what is happening

from the start, and it is up to the agents to try to work it

out, an assumption that would seem to be unacceptable

within an engineering environment.

What is apparent, from the research reviewed is

that there is no clear way of managing coordination,

and despite the many attempts to generalise it, such

that it may be applied to any domain, it is debatable

whether the rules obtained and used within one

domain may be of any use within another.

Acknowledgements

The authors gratefully acknowledge the support given by

the Engineering and Physical Science Research Council

who provided the grant RES/4741/0929 that enabled this

work to be undertaken.

References

Andreasen MM, Duffy AHB, MacCallum KJ et al. (1996) The
Design Co-ordination Framework: key elements for
effective product development. International engineering
design debate: The design productivity debate, Glasgow, pp
151–174

Barbuceanu M (1995) COOL: A Language for Representing
and Executing Coordinated Behaviour in Multi- Agent
Systems. ICMAS Proc., San Francisco, CA, pp 17–24

Barbuceanu M, Fox MS (1996a) The Agent Building Shell: A
Tool for Building Enterprise Multi-Agent Systems. Cana-

dian Artificial Intelligence, 40:9–11
Barbuceanu M, Fox MS (1996b) The Design of a Coordination

Language for Multi-Agent Systems. Lecture Notes in
Computer Science, European Conference on Artificial
Intelligence, Budapest, pp 341–356

Barrett T, Coen G, Hirsh J et al. (1997) MADEsmart An
Integrated Design Environment. Proceedings of DETC97,
ASME Design Engineering Conferences, Sacramento, CA

Bilgiç T, Rock D (1997) Product Data Management Systems:
State-Of-The-Art and the Future. Proceedings of DETC’97,
ASME Design Engineering Conferences, Sacramento, CA

Bilgiç T (1997) Systems Management in Concurrent Engineer-
ing using Intelligent Software Agents. Proceedings of
ISCIS’97, 12th International Symposium on Computer and
Information Sciences, Antalya, Turkey

Bullinger H-J, Warschat J (1996) Concurrent Simultaneous
Engineering Systems: The way to successful development.
Springer-Verlag, London

Chen Y-M, Hsiao, Y-T (1997) A collaborative data manage-
ment framework for concurrent product and process
development. International Journal of Computer Integrated
Manufacturing, 10(6):446–469

Coates G, Whitfield RI, Duffy AHB et al. (2000) A review of
coordination approaches and systems – Part II: An
operational perspective. To be published in Res Eng
Design Vol 12

Cutkosky MR, Engelmore RS, Fikes RE et al. (1993) PACT:
An experiment in integrating concurrent engineering
systems. Computer, 20:28–37

Cutkosky MR, Tenenbaum JM, Glicksman J (1996) Madefast:
An exercise in collaborative engineering over the Internet.
Comm ACM, 39(9):78–87

Decker K (1996) Task environment centred simulation. In:
Prietula M, Carley K, Gasser L (eds), Simulating
Organizations: Computational Models of Institutions and
Groups. AAAI Press/MIT Press

Decker K, Lesser V (1992) Generalising the partial global
planning algorithm. Int J Intelligent Cooperative Infor Syst
1(2):319–346

Decker K, Lesser V (1994) Task environment centred design
of organizations. AAAI Spring Symposium on Computa-
tional Organization Design, Stanford, CA

Decker K, Lesser V (1995) Designing a family of coordination
algorithms. Proceedings of the First International Con-
ference on Multi-Agent Systems, ICMAS-95, San Francis-
co, CA

Dellen B, Maurer F (1996) Dynamic modelling of design
processes. 2nd Knowledge Engineering Forum, in Bericht
01/96 des SFB

Dellen B, Maurer F, Pews G (1997) Knowledge based
techniques to increase the flexibility of workflow manage-
ment. Data & Knowledge Eng J

Duffy AHB, Andreasen MM, MacCallum KJ et al. (1993)
Design coordination for concurrent engineering. J Eng
Design 4(4):251–265

Durfee EH, Lesser VR, Corkill DD (1989) Trends in
cooperative distributed problem solving. IEEE Trans on
Knowledge and Data Eng 1(1):63–83

Durfee EH, Montgomery TA (1989) MICE: A Flexible
Testbed for Intelligent Coordination Experiments. Proceed-
ings of the Ninth Workshop on Distributed Artificial
Intelligence, Eastsound, WA, pp 25–40

Durfee EH, Lesser VR (1991) Partial global planning: A
coordination framework for distributed hypothesis forma-

58 R. I. Whitfield et al.



tion. IEEE Trans Systems, Man and Cybernetics
21(5):1167–1183

Durfee EH (1993) Organisations, plans, and schedules: An
interdisciplinary perspective on coordinating AI systems. J
Intelligent Systems, Special Issue on the Social Context of
Intelligent Systems, 3(2–4)

Finger S, Fox MS, Prinz FB et al. (1992) Concurrent design.
Applied Artificial Intelligence 6:257–283

Finin T, Weber J, Wiederhold G et al. (1992) DRAFT
Specification of the KQML Agent Communication Langu-
age. Official Document of the DARPA Knowledge Sharing
Initiative’s External Interfaces Working Group, Enterprise
Integration Technologies, Inc. Tech. Report 92–04

Fox MS, Barbuceanu M, Gruninger M (1996) An organization
ontology for enterprise modelling: preliminary concepts for
linking structure and behaviour. Computers in Industry
29:123–134

Goldmann S (1996) Procura: A Project Management Model of
Concurrent Planning and Design. Proceedings of WETICE-
96, Stanford, CA

Gruber TR (1992) Ontolingua: A Mechanism to Support
Portable Ontologies. Stanford University, Knowledge
Systems Laboratory, Technical Report KSL 91–66

Gruber TR, Tenenbaum JM, Weber JC (1992) Toward a
knowledge medium for collaborative product development.
In: Gero JS (ed), Artificial Intelligence in Design’92,
Kluwer Academic, Boston, pp 413–432

Gupta L, Chionglo J, Fox MS (1996) A constraint based model
of coordination in concurrent design projects. Proceedings
of WETICE-96, Stanford, CA

Hogg T, Huberman BA (1991) Controlling chaos in distributed
systems. IEEE Trans Systems, Man and Cybernetics
21(6):1325–1332

de Hoog R, Benus B, Metselaar C et al. (1994a) Organisation
model: Model definition document. Deliverable DM6.2c,
ESPRIT Project P5248 KADS-II/M6/M/UvA/041/3.0, Uni-
versity of Amsterdam and Cap Programmator

de Hoog R, Martil R, Wielinga B et al. (1994b) The Common
KADS model set. Deliverable DM1.1c of ESPRIT Project
P5248 KADS-II, University of Amsterdam and Cap
Programmator

Jennings NR, Mamdani EH, Laresgoiti I et al. (1992) GRATE:
A general framework for cooperative problem solving. IEE-
BCS J Intelligent Systems Eng 1(2):102–114

Jennings NR (1992) Towards a cooperation knowledge level
for collaborative problem solving. Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI-92),
Vienna, Austria, pp 224–228

Jennings NR, Pople JA (1993) Design and implementation of
ARCHON’s Coordination Module. Proceedings of the
Workshop on Cooperating Knowledge Based Systems,
Keele, UK, pp 61–82

Jennings NR (1996) Coordination techniques for distributed
artificial intelligence. In: O’Hare GMP, Jennings NR (eds),
Foundations of Distributed Artificial Intelligence, Wiley, pp
187–210

Jennings NR, Faratin P, Johnson MJ et al. (1996) Agent-based
business process management. Int J Cooperative Infor Syst
5(2&3):105–130

Jha KN, Morris A, Mytych E et al. (1998) Agent support for
collaborative design. Proceedings of DETC98, 1998 ASME
Design Engineering Conferences, Atlanta, GA

Klein M (1995) iDCSS: Integrating workflow, conflict and
rationale-based concurrent Engineering coordination tech-

nologies. J Concurrent Eng Res and Applic 3(1):21–29

Lesser VR, Corkill DD (1983) The Distributed Vehicle
Monitoring Testbed: A tool for investigating distributed
problem solving networks. AI Magazine 4(3):15–33

Lesser V, Decker N, Carver A et al. (1998) Evolution of the
GPGP Domain-Independent Coordination Framework. Uni-
versity of Massachusetts Computer Science Technical
Report 1998–05

Lesser V (1998) Reflections on the Nature of Multi-Agent
Coordination and its Implications for an Agent Architecture.
Autonomous Agents and Multi-Agent Systems, Kluwer
Academic, 1:89–111

McGuire JG, Kuokka DR, Weber JC et al. (1993) SHADE:
Technology for knowledge-based collaborative engineering.
J Concurrent Eng Res and Applic 1(2)

Mohan C, Alonso G, Guenthoer R et al. (1995) An overview of
the Exotica Research Project on workflow management
systems. Proceedings of the 6th International High
Performance Transactions Systems Workshop (HPTS),
Asilomar, CA

Nagendra Prasad MV, Decker K, Garvey A et al. (1996)
Exploring organizational designs with TAEMS: A case
study of distributed data processing. Proceedings of the
Second International Conference on Multi-Agent Systems,
AAAI Press, Kyoto, Japan

Patil RS, Fikes RE, Patel-Schneider PF et al. (1992) The
DARPA Knowledge Sharing Effort: Progress Report. In:
Nebel B, Rich C and Swartout W (eds), Principles of
Knowledge Representation and Reasoning. Morgan Kauf-
mann, Cambridge, MA, pp 777–788

Peng T-K, Trappey AJC (1998) A step toward STEP-
compatible engineering data management: the data models
of product structure and engineering changes. Robotics and
Computer-Integrated Manufacturing 14:89–109

Petrie C (1993) The Redux’ Server. Proceedings of the First
International Conference on Intelligent and Cooperative
Information Systems (ICICIS),Rotterdam, Netherlands, pp
134–143

Petrie C, Webster TA, Cutkosky MR (1995) Using Pareto
Optimality to coordinate distributed agents. Artificial
Intelligence for Engineering Design, Analysis and Manu-
facturing 9:261–281

Petrie C, Jeon H, Cutkosky M (1997) Combining constraint
propagation and backtracking for distributed engineering.
ECAI-96 Workshop on Non-Standard Constraint Proces-
sing, Budapest, August (revised for AAAI-97 Workshop on
Constraints and Agents, Providence, RI, July 1997)

Petrie C, Goldmann S, Raquet A (1998) Agent based project
management. Proceedings of the International Workshop on
Intelligent Agents in CSCW, Dortmound, pp 1–17

Ranno F, Shrivastava SK, Wheater SM (1997) A system for
specifying and coordinating the execution of reliable
distributed applications. Conference on Distributed Appli-
cations and Interoperable Systems (DAIS’97), Cottbus,
Germany

Reichert M, Dadam P (1998) ADEPTflex – Supporting
Dynamic Changes of Workflows Without Losing Control.
J Intelligent Infor Syst (JIIS), Special Issue on Workflow
Management Systems, 10(2):93–129

Smith RG (1980) The Contract Net Protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans Computers C-29(12):1104–1113

So YP, Durfee EH (1994) Modelling and designing computa-
tional organizations – An organizational self- design model

Coordination Approaches and Systems I 59



for organizational change. Proceedings of the 1994 AAAI
Computational Organisation Design Symposium, Stanford,
MA

So YP, Durfee EH (1996) Designing tree-structured organiza-
tions for computational agents. Computational and Mathe-
matical Organization Theory 2(3):219–246

Toye G, Tenenbaum JM, Cutkosky MR et al. (1994) SHARE:
A methodology and environment for collaborative product
development. Int J Intelligent and Cooperative Infor Syst

Van Den Hamer P, Lepoeter K (1996) Managing design data:

The five dimensions of CAD frameworks, configuration
management, and product data management. Proc IEEE
84(1):42–56

Weih HP, Schü J, Calmet J (1994) CommonKADS and
cooperating knowledge based systems. Proceedings of the
4th KADS User Meeting, Bonn

Wittig T, Jennings NR, Mamdani EH (1994) ARCHON – A
Framework for Intelligent Co-operation. IEE-BCS J
Intelligent Syst Eng, Special Issue on Real-time Intelligent
Systems in ESPRIT, 3(3):168–179

Appendix A

Table 1. Coordination systems – summary of features.

System Coordination
Type

Knowledge Type Techniques Used Application

ADEPT Federated
architecture.

General. As GRATE & ARCHON,
negotiation.

Management of business
processes.

ARCHON Federated
architecture.

Generic knowledge of
cooperation and situation
assessment.

Social interaction
management, tracking of
cooperative activities,
cooperative reasoning.

Electricity distribution and
transportation management,
cement factory control.

CommonKADS Organisational. Organisation, task, agent,
communication, expertise.

Knowledge acquisition,
Contract Net protocol.

Not stated.

COOL Language Domain, environment and
self.

Knowledge management,
cooperative conflict
management, ontologies.

Supply chain integration.

GPGP Algorithm – Coordination algorithms used within PGP generalised and applied to the same problem. –

GRATE Federated
architecture.

State, capability, intention &
evaluation.

Integrative (uses pre- existing
intelligent systems),
knowledge bases.

Industrial process control.

iDCSS Environment Rationale, workflow,
conflicts.

Process management, conflict
management, rationale
capture.

Concurrent engineering.

MADEsmart Federated
architecture.

Task-structure TÆMS & GPGP, scheduling. Design of aircraft wing parts.

MICE Testbed Environmental constraints
and characteristics.

Experimental testbed,
artificial intelligence.

Forest-fire fighting,
cooperative robotic
reconnaissance.

PACT Federated
architecture.

Shared design knowledge. Development of
communication protocols,
knowledge sharing,
negotiation.

Design and simulation of a
robotic manipulator.

PGP Algorithm Local and partially global
activities.

Group problem solving,
planning, contracting, result
sharing.

Simulated vehicle
monitoring.

Redux’ Enables
federated
architectures.

General. Decision maintenance,
management of the
propagation of change,
optimality and backtracking.

Re-implementation of PACT
example.

SHADE Federated
architecture.

Shared design knowledge. Shared knowledge
communication medium,
knowledge encapsulation,
content-based routing.

General engineering design
applicability.

SHARE Environment. Shared design knowledge. Internet-based knowledge
capture and management.

General engineering design
applicability.

TÆMS Algorithm Task environments,
structures and interrela-
tionships, environmental
constraints

Modelling of task quality and
time taken.

Distributed situation
assessment, hospital patient
scheduling, airport ground
services management.

TOVE Organisational. Agent, role, position, goal,
communication, authority,
commitment.

Ontology design. Not stated.

60 R. I. Whitfield et al.




