Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Short-term wind power forecasting based on clustering pre-calculated CFD method

Wang, Yimei and Liu, Yongqian and Li, Li and Infield, David and Han, Shuang (2018) Short-term wind power forecasting based on clustering pre-calculated CFD method. Energies, 11 (4). ISSN 1996-1073

[img]
Preview
Text (Wang-etal-Energies-2018-Short-term-wind-power-forecasting-based-on-clustering)
Wang_etal_Energies_2018_Short_term_wind_power_forecasting_based_on_clustering.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (25MB)| Preview

    Abstract

    To meet the increasing wind power forecasting (WPF) demands of newly built wind farms without historical data, physical WPF methods are widely used. The computational fluid dynamics (CFD) pre-calculated flow fields (CPFF)-based WPF is a promising physical approach, which can balance well the competing demands of computational efficiency and accuracy. To enhance its adaptability for wind farms in complex terrain, a WPF method combining wind turbine clustering with CPFF is first proposed where the wind turbines in the wind farm are clustered and a forecasting is undertaken for each cluster. K-means, hierarchical agglomerative and spectral analysis methods are used to establish the wind turbine clustering models. The Silhouette Coefficient, Calinski-Harabaz index and within-between index are proposed as criteria to evaluate the effectiveness of the established clustering models. Based on different clustering methods and schemes, various clustering databases are built for clustering pre-calculated CFD (CPCC)-based short-term WPF. For the wind farm case studied, clustering evaluation criteria show that hierarchical agglomerative clustering has reasonable results, spectral clustering is better and K-means gives the best performance. The WPF results produced by different clustering databases also prove the effectiveness of the three evaluation criteria in turn. The newly developed CPCC model has a much higher WPF accuracy than the CPFF model without using clustering techniques, both on temporal and spatial scales. The research provides supports for both the development and improvement of short-term physical WPF systems.