
This version is available at https://strathprints.strath.ac.uk/63886/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Visualising Speech: Identification of Atypical Tongue-Shape Patterns in the Speech of Children with Cleft Lip and Palate Using Ultrasound Technology

Susan Lloyd¹, Joanne Cleland¹, Lisa Crampin¹, Linsay Campbell⁲, Natalia Zharkova¹, & Pertti Palo¹
¹University of Strathclyde, UK, ²NHS Greater Glasgow & Clyde ³Queen Margaret University, UK
joanne.cleland@strath.ac.uk
@DrJoanneCleland @SusieSpeechie

Background

Gibbon (2004) identifies 8 distinct error types in the speech of people with cleft lip and palate (CLP) using electropalatography (EPG)¹. EPG measures tongue-palate contact, but is expensive and logistically difficult. In contrast, ultrasound tongue imaging (UTI) is cheaper, and can image the posterior articulations (such as pharynges) not visible with EPG which are common in CLP.

Can the eight error types made visible with EPG in CLP speech¹ also be identified with ultrasound?

Method

To date, data has been collected from 35 children aged 3 to 12 with CLP.

Data are spoken materials from the CLEFTNET protocol²:

• /aCa/ x 10
• Minimal sets (e.g. a sip, a ship, a kip, a tip)
• Sentences from the GOS.SP.ASS. 98

Analysis using ultrasound-assisted transcription to identify Gibbon’s 8 error-types:

• Live by the clinician collecting the data
• Offline but in Real-time by two ultrasound trained clinicians
• Offline in slow motion by two ultrasound trained clinicians

Quantitative Ultrasound Analysis using indices from the literature.

Results: Aided Transcription

From early analysis of data gathered so far:

• 60.3% of consonants were produced correctly
• 60.1% of consonants in error were imageable by ultrasound
• Non-imageable errors were non-lingual: e.g. nasalised, fricated/loss of pressure, glottal reinforcement

Inter-rater reliability for offline real-time transcription was “good” using Cohen’s kappa (k=.716, p<.0005).

Discussion

• All of Gibbon’s errors have been identified in our data using ultrasound aided transcription
• Additionally, retroflex errors were identified using UTI
• Identification of some error types may change presentation and therefore intervention choice
• Ultrasound is cheaper and more convenient than EPG as it does not require individualised plates or advance planning; children were able to opt in to the project while at routine appointments

References