
This version is available at https://strathprints.strath.ac.uk/63886/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Visualising Speech: Identification of Atypical Tongue-Shape Patterns in the Speech of Children with Cleft Lip and Palate Using Ultrasound Technology

Susan Lloyd, Joanne Cleland, Lisa Crampin, Linsay Campbell, Natalia Zharkova, & Pertti Palo

1University of Strathclyde, UK, 2NHS Greater Glasgow & Clyde 3Queen Margaret University, UK
joanne.cleland@strath.ac.uk
@DrJoanneCleland @SusieSpeechie

Background
Gibbon (2004) identifies 8 distinct error types in the speech of people with cleft lip and palate (CLP) using electropalatography (EPG) 1.

EPG measures tongue-palate contact, but is expensive and logistically difficult. In contrast, ultrasound tongue imaging (UTI) is cheaper, and can image the posterior articulations (such as pharynges) not visible with EPG which are common in CLP.

Can the eight error types made visible with EPG in CLP speech also be identified with ultrasound?

Method

To date, data has been collected from 35 children aged 3 to 12 with CLP.

Data are spoken materials from the CLEFTNET protocol2:

• /AC/ x 10
• Minimal sets (e.g. a sip, a ship, a kip, a tip)
• Sentences from the GOS.SP.ASS. 983 (e.g. (Happy) Karen is making a cake)

Analysis using ultrasound-assisted transcription to identify Gibbon’s 8 error-types:

• Live by the clinician collecting the data
• Offline but in Real-time by two ultrasound trained clinicians
• Offline in slow motion by two ultrasound trained clinicians

Quantitative Ultrasound Analysis using indices from the literature.

Results: Errors Revealed by Ultrasound

Target sounds indicated in /brackets/. Mid-sagittal views show the tongue tip to the right. Abnormal timing and increased variability are also identifiable with UTI, but not shown here.

RATIO OF CORRECT, IMAGEABLE (UTI), AND NON-IMAGEABLE ERRORS BY CHILD, ORDERED BY AGE

IMAGEABLE CONSONANTS IN ERROR

Results: Aided Transcription

From early analysis of data gathered so far:

• 60.3% of consonants were produced correctly
• 60.1% of consonants in error were imageable by ultrasound
• Non-imageable errors were non-lingual: e.g. nasalised, fricated/loss of pressure, glottal reinforcement

Inter-rater reliability for offline real-time transcription was “good” using Cohen’s kappa (k=.716, p<.0005).

Discussion

• All of Gibbon’s errors have been identified in our data using ultrasound aided transcription
• Additionally, retroflex errors were identified using UTI
• Identification of some error types may change diagnosis and therefore intervention choice
• Ultrasound is cheaper and more convenient than EPG as it does not require individualised appointments or advanced planning.

All children were able to opt in to the project while at routine appointments.

References