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Abstract

Two particle interference phenomena, such as the Hong–Ou–Mandel (HOM) effect, are a direct

manifestation of the nature of the symmetry properties of indistinguishable particles as described

by quantum mechanics. The HOM effect has recently been applied as a tool for pure state

tomography of a single photon. In this article, we generalize the method to extract additional

information for a pure state and extend this to the full tomography of mixed states as well. The

formalism is kept general enough to apply to both boson and fermion based interferometry. Our

theoretical discussion is accompanied by two proposals of interferometric setups that allow the

measurement of a tomographically complete set of observables for single photon quantum states.
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1. Introduction

The concept of indistinguishable particles lies at the heart of

quantum mechanics and quantum statistics. Two particle inter-

ference phenomena such as the Hong–Ou–Mandel effect

(HOM) [1] are a direct manifestation of the quantum mechanical

description of indistinguishable particles. As such two particle

interference effects provide fundamental tests of the foundations

of quantum mechanics. In recent years the HOM effect has

become a very useful tool throughout quantum optics. It has

been used for generating entangled states [2], performing Bell

state measurements [3] and testing the preparation of indis-

tinguishable photon pairs [4] amongst other things. These effects

emerge for example when two identical particles are incident on

distinct input ports of a balanced beam splitter. Two identical

bosonic particles such as photons will always leave in the same

output port, this is known as HOM effect [1], while two identical

fermions in the same scenario always leave in distinct output

ports [5].

HOM interference for identical bosons and for identical

fermions contrasts the behavior of states symmetric and anti-

symmetric (respectively) under the exchange of entrance or exit

port mode numbers [6]. This effect can be used to interrogate

the exchange symmetry of the state of a second degree of

freedom of the particle pair [7]. This has been demonstrated for

polarization, [8] and forms the basis of partial Bell state ana-

lysis, and for the orbital angular momenta of photons [9] where

it has been used to sort the entangled state resulting from down

conversion according to the parity of the angular momenta.

A recent experiment by Chrapkiewicz et al [10] applies

HOM interference as a quantum imaging technique for a pure

single photon state. The unknown photon and a reference

photon (known entirely and under experimental control) are

interfered on a beam splitter and imaged onto a detector array.

In this case, the interrogated degree of freedom is the transverse

spatial profile of the photons. For a given pair of transverse

spatial modes, the difference in count rates between the photons

being detected in the same output port and the photons being

detected in distinct output ports provides information about the
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relative phase of the amplitudes related by the exchange of said

transverse spatial modes. As the state of the reference photon is

known entirely this translates into obtaining information about

the relative phase between two spatial modes of the unknown

photon. The technique of Chrapkiewicz et al, which we gen-

eralize here, is in a sense complementary to the use of down-

converted photon pairs for transmission measurements [11] or

for the absolute calibration of photon counters [12, 13]. In these

it is the quantum intensity correlations between the photon pairs

that is used for accurate measurement for situations in which it

is not possible to use intense fields. The method we investigate

here depends rather on phase information imprinted on one of

the two photons and measuring this using non-classical HOM

interference to reconstruct image information imprinted on one

of the pair-photons. As with the intensity correlated schemes

[11–13], one may expect the technique to find application for

those situations in which low light-level illumination is

required.

This approach to characterizing an unknown quantum

state and its generalization presented herein differ fundamen-

tally from conventional tomographic methods [14–17] in that

neither is the state to be reconstructed encoded in a particle

number superposition nor is the local oscillator a bright beam.

The state to be reconstructed is encoded instead in the trans-

verse spatial profile of a single particle. As the local oscillator

also contains exactly one particle this technique relies explicitly

on the intrinsically non-classical HOM interference. This is

also in contrast to techniques aimed at characterizing the

transverse spatial profile of a single particle in which a single

particle is present in the entire interferometric setup [18–21].

In this article, we provide an in-depth analysis of the ima-

ging technique applied in [10] and we generalize it by showing

that with carefully engineered loss or the inclusion of additional

degrees of freedom, such as polarization, one can gain access to

observables the measurement of which provides tomographically

complete information about mixed single particle quantum

states. We work in the second quantized formalism keeping the

analysis open enough to apply to both bosonic and fermionic

particles. Our theoretical discussion of the protocol is accom-

panied by two proposals of interferometric setups for performing

the image reconstruction for mixed single photon states.

This paper is organized as follows. In section 2 the model

of an interferometric setup for two particle interference is

presented. The technique for performing the state tomography

for pure single particle states is discussed in section 3. We

analyze the conditions for generalizing the scheme to provide a

protocol for performing the state tomography for mixed states

in section 4. In section 5 we show that these conditions can be

satisfied by proposing two interferometric setups for perform-

ing the image reconstruction for mixed single photon states.

2. Physical model

We are considering two degrees of freedom. In the schematic

model of the experiment the first degree of freedom consists

of two spatial paths that interfere in a suitable imaging

apparatus. The second degree of freedom, the one to be

imaged, is the transverse spatial profile of the particles. Note

that the underlying principle of the imaging technique dis-

cussed herein does not depend on what the two degrees of

freedom are physically. While we keep the second degree of

freedom as the transverse spatial profile throughout this text,

the role of the first degree of freedom is performed by

polarization modes in the implementation presented in

section 5.2 and by the four-mode degree of freedom formed

by the port and polarization modes in the implementation

presented in section 5.1.

The annihilation operator at input port α is denoted a xaˆ ( )

and the annihilation operator at output port α is denoted

b xâ ( ), with x referring the transverse position of the particle.

We restrict our analysis to one transverse dimension for

notational simplicity, but introducing both transverse dimen-

sions represents no inherent difficulty. The corresponding

creation operators are used to describe quantum states in port

1 or 2 respectively as

x a x 0 , 11 2 1 2 1 2ñ = ñ∣ ˆ ( )∣ ( )†

where 0 1 2ñ∣ denotes the vacuum in port 1 or 2. We can
describe the imaging system using the relation
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where the matrix U characterizes the specific properties of the

imaging system. In the absence of particle loss U is a unitary
matrix, i.e. UU =† . Losses can be described by introducing

additional degrees of freedom to produce an effective non-uni-

tary matrix [22]. We shall return to this in section 5. The input

state consists of a particle prepared in an unknown state in port 1

and a reference particle in port 2 characterized by normalized

transverse spatial profiles xuy ( ) and xry ( ) respectively

3u rin 1,2 1 2y y yñ = ñ Ä ñ∣ ∣ ∣ ( )

with

x x xd , 4u u1 1
òy yñ = ñ∣ ( )∣ ( )

x x xd . 5r r2 2
òy yñ = ñ∣ ( )∣ ( )

Information is gathered about this input state by joint spatially

resolved detections at the output ports. The quantity of interest is

p x y, , 6x y, 1,2 ,
,

in 1,2
2y y= á ña b

a b( ) ∣ ∣ ∣ ( )

where p x y x y, d d,a b ( ) is the joint probability of detecting a

particle in port α between x and x+dx and of detecting a

particle in port β between y and y+dy. The state x y,
,y ña b∣ is the

two particle state corresponding to this detection event

b x b y 0 7x y,
,

1,2 1,2y ñ = ña b
a b∣ ˆ ( ) ˆ ( )∣ ( )
† †

and hence shall be referred to as the detection state. The prob-

abilities p x y,,a b ( ) need to be treated with some care as they

include, implicitly, the physically indistinguishable possibilities

p y x,,b a ( ). The sum of the probabilities for exclusive events

must be unity and so it is necessary to count these two con-

tributions only once. The easiest way to do this is to require that

2
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Careful calculation (as shown in section 3) confirms that this is

indeed the case for the probabilities (6).

At this point the problem is to reconstruct a two-particle

state based on the detection probabilities (6). However, we

can consider the reference particle as part of the detection

mechanism so that we are left with the problem of performing

tomography on a single particle state u 1y ñ∣ . Formally this can

be achieved by writing the detection state in terms of the input

modes, using equation (2), and taking the overlap of the state

across the two input ports so obtained with the state of the

reference particle in single input port 2. This gives the bra

state

9x y x y r1 ,
,

1,2 ,
,

2y y yá = á ña b a b∣ ∣ ( )

U U a y a x z z a z0 d 0

10

r1,2

, 1,2

2 2
òå y= á ñ

m n
bm an m n

Î

∣ ˆ ( ) ˆ ( ) ( ) ˆ ( )∣

( )

{ }

†

U U x a y U U y a x0 , 11r r1 1 2 1 2 1 1y y= á b a b a∣( ( ) ˆ ( ) ( ) ˆ ( )) ( )

by turning all components of the detection state in port 2 into

complex numbers and resulting in a state purely in port 1.

Thus the problem is reduced to probing the unknown state in

port 1

p x y, 12x y u, 1 ,
,

1
2y y= á ña b

a b( ) ∣ ∣ ∣ ( )

with the detection state, now also in only port 1, taking the

form

U U x y U U y x . 13x y r r,
,

1 1 2 1 2 1 1* * * * * *y y yñ = ñ  ña b
b a b a∣ ( )∣ ( )∣ ( )

In arriving at result (11) the (anti)commutation relations

a x a y a y a x x y 14d d= -a b b a abˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( ) ( )† †

have been used with the upper sign describing bosons and the

lower sign describing fermions.

3. State tomography for pure states

The resulting probability densities (12), to be used throughout

the following, are

p x y U U x y U U y x
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Note that the probability density (prior to taking the modulus

squared) is composed of a linear combination of the ampli-

tudes of the position exchanged alternatives of the particle

pair each of which is multiplied by the appropriate transition

amplitudes. For a balanced beam splitter, described by [23]

U
1

2

1 1

1 1
, 16=

-( ) ( )

the transition amplitudes U Uag bd( ) in all cases have an abso-

lute value of 1/2 and the probabilities (15) take on the rather

simple form

p x y x y y x,
1

4
1 . 17r u r u,

2y y y y=  -a b
a b-( ) ∣ ( ) ( ) ( ) ( ) ( )∣ ( )

When (17) is expanded and summed over the port mode

labels the cross terms cancel as there are exactly two sets of

cross terms where α and β are equal and exactly two sets

where α and β differ by 1. Hence

x y p x y

x y x y y x
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d d
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where we have used the fact that the two input particles are

each normalized.

We see from (17) that, for bosons, the probabilities of

ending up in the same port are determined by the symmetric

combination of the position exchanged amplitudes and the

probabilities for ending up in different ports are determined

by the antisymmetric combination of the position exchanged

amplitudes. The converse is true for fermions. If we are

dealing with a reference particle with a flat profile in the

relevant region of space, i.e.

x c 19ry =( ) ( )

then the two position exchanged two-particle amplitudes in

(17) become proportional to simply the amplitude of the

unknown particle at different spatial modes yuy ( ) and xuy ( )

and the joint detection probabilities provide information on

the symmetric and antisymmetric combinations of these.

By expanding (17)

p x y
c

y x

c
x y

,
4

2
1 Re 20

u u

u u

,

2
2 2

2

*

y y

y y

= +

 -

a b

a b-

( )
∣ ∣

(∣ ( )∣ ∣ ( )∣ )

∣ ∣
( ) [ ( ) ( )] ( )

and writing the position dependent amplitude of the unknown

particle as

x x e 21u u
xiy y= j( ) ∣ ( )∣ · ( )( )

with xj ( ) representing the local phase profile, we can get

access to xuy∣ ( )∣ and xj ( ) using the relations

x
c

p x x p x x
1

, , 22u ,1 ,2y = +a a∣ ( )∣
∣ ∣

( ) ( ) ( )

x y
p x y

c x y
cos

1 ,
23

u u1,2

,

2åj j
y y

- = 
-

b

a b
a b

Î

-

[ ( ) ( )]
( ) ( )

∣ ∣ ∣ ( )∣∣ ( )∣
( )

{ }

for 1, 2a Î { } where by p x x,,a b ( ) we mean p x ylim ,y x ,a b ( ).

Using these relations, we can learn a lot about the unknown

quantum state as represented by xuy ( ). Of course it is not

possible to access the global phase of the state (as all states

which are identical up to a global phase are physically equiva-

lent). The only missing information is connected to the fact, that

3

J. Opt. 19 (2017) 054005 N Trautmann et al



x yj j-( ) ( ) is not uniquely determined by equation (23). For

example
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are both valid solutions of equation (23). As a consequence the

states

x x e , 26u u
xiy y= j( ) ∣ ( )∣ · ( )( )

x x e 27u u
xi*y y= j-( ) ∣ ( )∣ · ( )( )

for example are indistinguishable by the interferometric experi-

ment described above.

Of course, the above considerations were based on the

assumption that we were using a balanced beam splitter and a

reference particle of the form x cry =( ) . However, it is possible

to prove, that a similar problem arises for all possible unitary

matrices and for all possible reference photons as described

by r 2y ñ∣ .

We can show that

U U U U for , 1, 2 , 281 2 2 1
* *  a bÎ Îb a b a { } ( )

for every unitary matrix U. This can be done by the relation
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Using (28) and equation (15), we find that the probability

p x y,,a b ( ) only depends on the absolute value of uy and ry and

the real part of x x y yr u u r
* *y y y y( ) ( ) ( ) ( ) but not on its imaginary

part. Hence as long as there is no loss in the system (that is U

acting on the port and transverse spatial degrees of freedom is

unitary), we can only access x x y yRe r u u r
* *y y y y[ ( ) ( ) ( ) ( )] and

xu
2y∣ ( )∣ , which is insufficient to reconstruct the full quantum

state. For reconstructing the quantum state xuy ( ), we have to use

either at least two different kinds of reference particles or we

require additional information on xuy ( ) not accessible by the

interferometric setup described above.

4. State tomography for mixed states

In the previous section, we have seen that by using only one

kind of reference particle xry ( ), we cannot gain full knowl-

edge of the quantum state xuy ( ). In this section, we show how

to overcome this restriction and how to reconstruct the full

quantum state of the unknown particle. Here, we go beyond

the assumption of the unknown particle being in a pure state

and consider mixed quantum states as well. In order to model

the corresponding physical situations, we assume that the

quantum state of the two particles at the input ports is of the

following form

, 30u rinr r r= Äˆ ˆ ˆ ( )

with the reference particle being again prepared in the pure

state

. 31r r r2 2r y y= ñ áˆ ∣ ∣ ( )

We can generalize our previous results for pure states to

mixed quantum states and obtain the following expression

describing the probability of detecting the two particles at the

output ports

p x y, . 32x y u x y, 1 ,
,

,
,

1y r y= á ña b
a b a b( ) ∣ ˆ ∣ ( )

Here the detection state is of the same form (13) as in the pure

state tomography case and again the joint detection prob-

abilities are expressed in terms of states in only port 1. Hence

for the rest of section 4 we drop the index specifying states

being in port 1 in order to minimize visual clutter.

Again we consider a balanced beam splitter (figure 1) and

a reference particle with a flat profile

x c, 33ry =( ) ( )

so that the detection state is

x y1 . 34x y,
,

1y ñ µ ñ  - ña b a b-∣ ∣ ( ) ∣ ( )

For the probability densities we obtain

p x y
c

x x y y

c
x y

,
4

1
2

Re . 35

u u
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,

2

2

r r

r

= á ñ + á ñ

 - á ñ
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∣ ∣
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( )
∣ ∣

[ ∣ ˆ ∣ ] ( )

Figure 1. Basic setup for a two particle interferometer. We assume
that the reference particle (known entirely and under experimental
control) is entering the beam splitter at input port 2 and the particle
with the unknown transverse spatial profile is entering the beam
splitter at input port 1. The output ports are imaged onto two detector
arrays and the resulting coincidence counts on the detectors are
measured. The annihilation operators at input port α are denoted

a xaˆ ( ) and the annihilation operators at output port α are denoted

b xâ ( ), with x referring to the transverse position of the particle.
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We can use this to extract the real part of the matrix elements

of the density matrix

x y
c

p x y p x y

c
p x y p x y
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1
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2 2,2 1,2
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[ ( ) ( )] ( )

However, x yRe urá ñ[ ∣ ˆ ∣ ] does not suffice to reconstruct the full

quantum state ur̂ , we require information on x yIm urá ñ[ ∣ ˆ ∣ ] as
well. This is connected to the fact that the parallelogram law

for a complex Hilbert space is given by

x y x y x y

x y x y

x y x y

x y x y

4

i i i

i i i . 37
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However, this requires not only states x y,
,

1y ña b∣ of the form (34)

but also states of the form

x yi 1 . 38x y,
,

1y ñ µ ñ  - ña b a b-∣ ∣ ( ) ∣ ( )

Unfortunately, the states described above correspond to

U U U U i . 391 2 2 1
* * Îb a b a ( )

As outlined in the previous section for a unitary matrix U, the

above quantity is always real which is in contradiction to the

condition (39). Hence, we have to go beyond unitary matrices

U in order to get access to x yIm .urá ñ[ ∣ ˆ ∣ ] We can do that by
implementing loss or by including an additional degree of

freedom, such as polarization.

5. Photonic implementation of mixed state

tomography

In the previous section, we found that in order to get full

information on the quantum state of the unknown particle, we

have to go beyond unitary matrices U. In this section, we show

how this can be achieved in the case of photons. However,

similar considerations also apply to other types of bosonic or

fermionic particles. We present two methods by which to

obtain a non-unitary matrix U, which we describe in the fol-

lowing subsections.

5.1. Implementation using an additional degree of freedom

In this subsection, we explore the possibility of imple-

menting a non unitary matrix U by including an additional

degree of freedom, such as polarization and performing a

suitable post-selection. In the following, we assume that the

photons at one of the input ports of the beam splitter are

prepared in a state of circular polarization and at the other

input port the photons are prepared in a state of diagonal

polarization while detection at the output ports of the

beam splitter happens in the horizontal–vertical basis. The

corresponding setup is depicted in figure 2. In order to

describe the new setup and include the polarization of the

photons we have to extend the matrix to a 4×4 matrix

b x
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with the indices h and v referring to the horizontal and

vertical polarizations at the input ports. In the following we

assume that the unknown photon at input port 1 is clockwise

circularly polarized and that the reference photon at input

port 2 is linearly polarized but with a polarization axis which

is tilted by 45° with respect to horizontal axis. We take this

into account, by defining a new set of input modes. The

corresponding annihilation operators are connected to the

annihilation operators of the horizOntally and vertically

polarized modes by the relation

ð41Þ

Figure 2. Interferometric setup for performing the mixed state
tomography of the photon with the unknown transverse spatial
profile by using polarization as additional degree of freedom. In the
following we assume that the reference photon at input port 1 is
clockwise circularly polarized and that the unknown photon at input
port 2 is linearly polarized but with a polarization axis which is tilted
by 45 with respect to horizontal axis. The polarization filters at the
output ports allow us to select and measure observables from a
tomographically complete set of observables.
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Hence we obtain

ð42Þ

with

U
1

2

1 1 1 1

i i 1 1

1 1 1 1

i i 1 1

. 43c =
- -

- -
- -

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( )

By using our initial condition, we can identify

ð44Þ

Furthermore, we assume that the modes associated to a x1ˆ ( )

and are in the vacuum state. For one set of prob-

ability densities we obtain

p x y
c

x x y y

x y

,
16

2Re , 45

h h u u u u u u

u u u

1 ,1

2

r r

r

= á ñ + á ñ

+ á ñ

( )
∣ ∣

( ∣ ˆ ∣ ∣ ˆ ∣

[ ∣ ˆ ∣ ]) ( )

p x y
c

x x y y

x y

,
16

2Re , 46

h h u u u u u u

u u u

1 ,2

2

r r

r

= á ñ + á ñ

- á ñ

( )
∣ ∣

( ∣ ˆ ∣ ∣ ˆ ∣

[ ∣ ˆ ∣ ]) ( )

p x y
c

x x y y

x y

,
16

2 Im , 47

h v u u u u u u

u u u

1 ,2

2

r r

r

= á ñ + á ñ

+ á ñ

( )
∣ ∣

( ∣ ˆ ∣ ∣ ˆ ∣

[ ∣ ˆ ∣ ]) ( )

p x y
c

x x y y

x y

,
16

2 Im . 48

h v u u u u u u

u u u

1 ,1

2

r r

r

= á ñ + á ñ

- á ñ

( )
∣ ∣

( ∣ ˆ ∣ ∣ ˆ ∣

[ ∣ ˆ ∣ ]) ( )

There are three more such sets of probability densities.

These can be obtained by I) replacing h with v and vice versa

II) replacing 1 with 2 and vice versa and III) joint application

of I) and II). These however contain exactly the same

tomographic information as the set written out explicitly

above. If the polarization measurements at each output of the

beam splitter are done with a polarizing beam splitter with a

detector at each of its outputs then one has access to all four

of the above output probability densities. In this case one

can combine them rather straightforwardly to obtain an

expression for the matrix element

c
x y p x y p x y

p x y p x y
4

, ,

i , i , . 49

u u u h h h h

h v h v

2

1 ,1 1 ,2

1 ,1 1 ,2

rá ñ = -

- +

∣ ∣
∣ ˆ ∣ ( ) ( )

( ) ( ) ( )

If, however, for some reason one can only do the polariza-

tion measurements with a polarizer and a detector at each of

the outputs of the beam splitter then access to the last

probability density is not possible. Even in this case com-

plete tomography is possible as the first three relations

already provide enough information for the reconstruction of

the density matrix element

50

c
x y p x y p x y

p x y

4
1 i , 1 i ,

2i , .

u u u h h h h

h v

2

1 ,1 1 ,2

1 ,2

rá ñ = - - +

+ ( )

∣ ∣
∣ ˆ ∣ ( ) ( ) ( ) ( )

( )

5.2. Implementation using loss

The second possibility to reconstruct the quantum state, is to

introduce losses to the system, which are described by a

suitable non unitary matrix U. This possibility is explored in

this subsection. In order to obtain a suitable matrix U the

losses introduced to the system have to be engineered care-

fully. A possible implementation is depicted in figure 3. In the

following, we choose the basis element e1 to represent the

horizontal polarization and e2 for the vertical polarization. A

rotation is described by the following matrix

U
cos sin

sin cos
51rot q

q q
q q

=
-( )( ) ( )

the 4l -plate is modeled by the matrix

U
1 0

0 i
524 =l ( ) ( )

and the Brewster window [23] is represented by the non-

unitary matrix

U
1 0

0
53B h h= ⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( )

with η being the damping factor of the vertical polarized

component of the beam. In order to get full information on the

quantum state we will see, that 0 1h< < . The damping

factor η can be tuned by varying the angle of the Brewster

window. The setup in figure 3 is described by

U U
1 0

0 i
. 54B 4h h=l ⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( )

By choosing a x1ˆ ( ) and a x2ˆ ( ) to represent the annihilation

operators of the input modes with respect to the polarizations

Figure 3. Interferometric setup for performing the mixed state
tomography of the photon with the unknown transverse spatial
profile by carefully engineering loss in the system. Note that here
both the unknown and reference photons enter in the same port but
different polarization modes. The loss in the system can be tuned by
varying the orientation of the Brewster window. The Brewster
window allows us to choose different loss rates for two orthogonal
polarizations.
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as depicted in figure 3 and b x1
ˆ ( ) and b x2

ˆ ( ) to be the output

ports of the beam splitter, we obtain

b x

b x
U U U U

a x

a x
4 4 . 55

1

2

rot B 4 rot
1

2

p h p= -l

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

ˆ ( )

ˆ ( )
( ) ( ) ( )

ˆ ( )

ˆ ( )
( )

For 2 1h = - we obtain

U U U U U4 4

1

2
i 2 1 i

1 i 1 2

i 1 2 1
.

56

rot B 4 rotp h p= -

= + - -
-

-

l

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) ( ) ( )

( ( ))
( )

( )
( )

As it turns out, the above matrix satisfies condition (39) and

allows us to get access to x yIm u1 1rá ñ[ ∣ ˆ ∣ ].

By rotating the 4l -plate or by changing η of the

Brewster window, we can measure a complete set of obser-

vables for performing the state tomography. For example, by

removing the Brewster window or choosing an angle such

that 1h = we recover the lossless case obtaining

U U U U U4 1 4
1 i

2

1 i

i 1
.

57

rot B 4 rotp p= - =
+

l ( )( ) ( ) ( )

( )

This U indeed satisfies (28) and thus allows us to get access

to x yRe u1 1rá ñ[ ∣ ˆ ∣ ]. By combining the information on

x yRe u1 1rá ñ[ ∣ ˆ ∣ ] and x yIm u1 1rá ñ[ ∣ ˆ ∣ ], we can reconstruct the full
density matrix ur̂ .

6. Conclusion

In summary, we have analyzed the application of two particle

interference as a tool for single particle tomography. We

focused in particular on the transverse spatial profile of single

particles. By using two particle interference, we have char-

acterized the amplitude as well as the local phase variations of

single particle states. Retrieving local phase variations of

single particle states constitutes a challenging task, as the

global phase of single particle states is undefined. Tomo-

graphic methods based on two particle interference, help to

overcome this obstacle and allow us to extract full informa-

tion about the local phase variations.

Our theoretical discussion is based on the framework of

second quantization. This enabled us to develop protocols for

the tomography of bosonic or fermionic particles. Hence, our

protocols can be used to perform single particle tomography

on bosonic particles such as photons and bosonic atoms

[24, 25] as well as fermionic particles such as neutrons and

fermionic atoms. This allowed us to go beyond the imaging

technique applied in [10] for reconstructing the phase profile

of a pure single photon state. Furthermore, we have gen-

eralized the method to the tomography of mixed states. We

have shown that by carefully engineering loss or taking

additional degrees of freedom into account our method can be

used to gain access to observables whose measurements

provide tomographically complete information about mixed

single particle quantum states.

In addition to our theoretical discussion, we have

developed two proposals of interferometric setups for per-

forming the tomography of the transverse spatial profile of

mixed single photon states. However, similar considerations

can also be applied to other types of indistinguishable parti-

cles such as bosonic or fermionic atoms or neutrons.
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