Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

A methodology for prospective operational design co-ordination

Coates, G. and Duffy, A.H.B. and Whitfield, R.I. and Hills, W. (2003) A methodology for prospective operational design co-ordination. In: 14th International Conference on Engineering Design (ICED '03), 2003-08-19 - 2003-08-21.

[img]
Preview
Text (strathprints006379)
strathprints006379.pdf
Accepted Author Manuscript

Download (58kB) | Preview

Abstract

Engineering companies are continually faced with the challenge of how best to utilise their design team given some design project. Decisions regarding how to distribute the project workload amongst the members of the design team are the responsibility of a project manager who, in order to do this, often relies upon previous experience and/or the support of some planning tool. Furthermore, a project manager rarely has the opportunity to assess the capability of the design team against the current work load in order to determine what, if any, alterations couldbe made to the team to facilitate appropriate reductions in project time and cost.This paper proposes a mathematical-based methodology aimed at identifying shortfalls in design teams, which if remedied would result in a more efficient project in terms of time and cost. The methodology provides a means of identifying those skills within the design team,with respect to the outstanding work load, in which improvements would have the greatest influence on reducing time and cost. In addition, the methodology employs a genetic algorithm for the purpose of scheduling tasks to be undertaken by potential design teams. The methodology is applied to two practical case studies provided by engineering industry.The first case study involves the assessment of a multi-disciplined design team consisting of single-skilled engineers. In contrast, the second case study entails the assessment of multiskilled engineers within a multi-disciplined design team. As a result of applying the methodology to the case studies, potential improvement to the design teams are identified and, subsequently, evaluated by observing their effects.