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Abstract The behaviour of microchannel flow of a nanofluid between two parallel flat plates

in the presence of the electrical double layer (EDL) is investigated in this paper. The problem

is formulated based on the Buongiorno nanofluid model with the electrical body force due to

the EDL being considered in the momentum equation. As one of the highlights of the present

investigation, the unphysical assumption introduced in previous studies often leading to the

discontinuities of flow field that the electrostatic potential in the middle of the channel has

to be equal to zero is eliminated. In addition, the inappropriate assumption that the pressure

constant is treated as a known condition is also rectified. The new model is developed with

the governing equations being reduced by a set of dimensionless quantities to a set of coupled

ordinary differential equations. Based on the analytical approximations, the influences of

various physical parameters on the flow field and temperature field, and the important phys-

ical quantities of practical interests are analysed and discussed in detail.
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Nomenclature

A1, A2

Ac

c

C

C0

Cw

Cf2

DB

DT

e

Ec

Es

Ēs

Ex

F

G1

G2

G3

H

Ic, Is

constants

cross-sectional area of the microchannel [m]

specific heat at constant pressure[J kg−1K−1]

nanoparticle volume fraction [kg m−3]

nanoparticle volume fraction at the microchannel entrance [kg m−3] 

nanoparticle volume fraction on the microchannel wall surface [kg m−3] local 

skin friction coefficients on the lower wall of the microchannel [kg m−3] 

Brownian diffusion coefficient [m2s−1]

thermophoretic diffusion coefficient [m2s−1]

charge of a proton [C]

Eckert number

streaming potential[V]

non-dimensional streaming potential

electric field strength[V m−1 or N C−1]

electrical body force [N m−3]

non-dimensional parameter, represents the ratio of the mechanical force to 

viscous force

non-dimensional parameter, represents the ratio of EDL force to viscous force 

non-dimensional parameter, represents the ratio of streaming current to 

conduction current

half distance between the upper and lower microchannel walls [m] conduction 

and streaming currents, respectively [A]
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k

kb

kf

L

Le

ni

n0i

Nb

Nt

Nu2

p

Pr

qwT2

qwC2

Re

Sh2

T

T0

Tw

T̂

u

U

Um

x, y, z

X, Y

Debye-H¨uckel parameter [m−1]

Boltzmann constant [J mol−1K−1]

thermal conductivity of the fluid [W m−1K−1]

length of the microchannel [m]

Lewis number

ionic number concentration of the ith species

the bulk ionic concentration of type i ions [m−3]

Brownian motion parameter

thermophoresis parameter

local Nusselt number on the lower wall of the microchannel

pressure [Pa]

Prandtl number

wall heat flux on the lower wall of the microchannel [W m−2]

local wall flux of nanoparticles on the lower wall of the microchannel [kg m−2s−1] 

Reynolds number

local Sherwood number on the lower wall of the microchannel

temperature [K]

temperature at the microchannel entrance [K]

temperature on the microchannel wall surface [K]

absolute temperature [K]

velocity of the fluid [m s−1]

non-dimensional velocity of the fluid

average velocity of the fluid [m s−1]

Cartesian coordinates [m]

non-dimensional Cartesian coordinates
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ẑi the valence of type i ions

Greek symbols 

α

ε

ε0

κ

λ0

µ

ν

Θ

Φ

ρe

ρf

τ

τw2

ζ

ψ

Ψ

thermal diffusivity of the nanofluid [m2s−1]

dielectric constant of the medium

permittivity of vacuum [C V −1m−1]

non-dimensional electrokinetic separation distance between the upper 

and lower wall of the microchannel

electrical conductivity of the fluid [Ω−1m−1]

dynamic viscosity of the fluid [kg m−1s−1]

kinematic viscosity of the fluid [m2s−1]

non-dimensional temperature distribution

non-dimensional nanoparticle volume fraction

charge density [C m−3]

density of the fluid [kg m−3]

ratio of the heat capacity of the nanoparticle to that of the fluid shear 

stress on the lower wall of the microchannel [Pa]

zeta potential [V]

electrostatic potential [V]

non-dimensional electrostatic potential

1 Introduction

The research of fluid flow and heat transfer in microchannel is of significant interest to

engineers and scientists in industrial applications such as microchannel heat sinks for cool-

ing high power very large scale integration circuitry and laser diode arrays, heat transfer
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augmentation in aerospace technology, micro-reactors for the analysis of biological cells and 

micro fluid pumps [1,2]. However, conventional transport theories are insufficient to explain 

many phenomena associated with microscale flow. Experimental observations [3–5] have 

shown that flow and heat transfer behaviours in microscale are quite different from those 

in macroscale. Particularly, Wang and Peng [5] noticed that transition and laminar heat 

transfer in microchannels are highly strange and complicated compared with the conven-

tionally sized situation. They conjectured that this unusual behavior of microchannel flow 

may be largely due to electrical double layer (EDL) effects. If the liquid contains very small 

number of ions, the electrostatic charges on the solid surface will attract the counterions in 

the liquid to establish an electrical field. The rearrangement of the electrostatic charges on the 

solid surface and the balancing charges in the liquid is called the EDL [6]. When a liquid is 

forced through a microchannel under hydrostatic pressure, the ions in the diffuse layer of the 

EDL are carried towards the downstream end. This causes an electrical current, called 

streaming current. The accumulation of ions downstream sets up an electrical field with an 

electrical potential called the streaming potential. This field causes a current, called 

conduction current, to flow back in the opposite direction. When conduction current is equal 

to the streaming current a steady state is reached. It is easy to understand that, when the ions 

are moved in the diffuse double layer, they pull the liquid along with them. However, the 

motion of the ions in the diffuse double layer is subject to the electrical potential of the double 

layer. Thus the liquid flow and associated heat transfer are affected by the presence of the 

EDL.

Generally, for macrochannel flow the EDL effects can be neglected since the EDL thick-

ness is very small as compared to the channels’ characteristic length. While for microchannel

flow, the thickness of the EDL is comparable to the characteristic length of channels and its

effect has to be considered. It is noted that the EDL effects originated from the interfacial
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electrokinetic effects [7] by the variation of electric potential near a surface and could have a

significant influence on the behaviour of fluid flow. Therefore, it is necessary to investigate

the fundamental characteristics of these phenomena in order to develop the high quality

products. Recently, Mala et al. [8] analyzed the effects of the EDL at the solid-liquid inter-

face on liquid flow and heat transfer through a microchannel between two parallel plates.

Mala et al. [9] reported experimental results on flow of distilled water and aqueous solutions

through silicon and glass microchannels between two parallel plates. Ren et al. [10] further

investigated the electro-viscous effect caused by the EDL near a solid-liquid interface in

microchannels. Zhang et al. [11] experimentally studied the streaming potentials across a

porous membrane in various organic-aqueous solutions.

On the other hand, increasing research effort has been devoted to study the mechanism

of nanofluids owing to their great potentials in thermal engineering [12–14]. Many experi-

ments were carried out to investigate convective flow and heat transfer features of various

nanofluids [15–17]. Among those studies, Wen and Ding [15] experimentally confirmed that

the heat transfer enhancement is prominent when pure heat transfer fluids are replaced

by nanofluids. Similar conclusions were drawn by other researchers [18, 19]. Theoretically,

several mathematical models such as the homogenous flow model [20], the dispersion mod-

el [21], the Buongiorno’s model [22] have been suggested to predict nanofluids’ behaviours.

Among these models, the Buongiorno’s model received great attention [23] since it explains

well the slip mechanisms between the nanoparticles and the base fluid. Since the volumetric

distributions of nanoparticles can be altered by virous physical processing, such as fluid

flow, heat transfer, electric field, it is very attractive to investigate such multiple physical

phenomena with consideration of how these physical processing interacts each other. For

example, the EDL modifies the fluid motion obviously, which could affect heat transfer, and

also play an important role in the volumetric distribution of the nanoparticles. Therefore,
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it is necessary to investigate the influence of EDL on liquid flow of nanofluids.

This paper is to examine a steady-state, fully-developed, laminar nanofluid flow in a 

horizontal microchannel with the interfacial electrokinetic effects. The electrical body force 

resulting from the electrical double layer (EDL) and the electrokinetic fields are considered in 

the momentum equation. The energy and the volumetric concentration of the nanoparticles 

equations are established based on the Buongiorno’s model. One nonphysical assumption 

by Mala et al. [8, 9] that the electrostatic potential in the middle of the channel has to be 

equal to zero is corrected since it can lead to the discontinuities of the flow field. The other 

inappropriate assumption by Mala et al. [8,9] and Ren et al. [10] that the pressure constant is 

a known condition is also rectified, which ensure our model to agree with commonly-accepted 

models in the field of fluid mechanics. The governing equation is reduced by non-dimensional 

variables to a set of coupled nonlinear ordinary equations. Particularly, an analytical solution 

for the electrical field is presented. Analytical approximations for other fields are obtained by 

the homotopy analysis method. The influences of various physical parameters on important 

physical quantities of practical interests are analysed and discussed. The studies of these 

fundamental phenomena and their mechanisms are helpful f or the optimal design, inproved 

performances and broad applications of micro/nanofluidic systems.

2 Analytical solution to the electrostatic potential

According to the theory of electrostatics, the relation between ψ and ρe is given by the

Poisson’s equation near a flat surface as [6, 24]

d2ψ

dy2
= − ρe

ε0ε
, (1)

where ε is the dielectric constant of the fluid and ε0 is the permittivity of vacuum.
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Using the assumption of the equilibrium Boltzmann distribution about uniform dielectric

constant and neglecting fluctuation, the number of ion distribution in a symmetric electrolyte

solution takes the form

ni = n0i exp

(
− ẑieψ

kbT̂

)
, (2)

where n0i and ẑi denote the bulk ionic concentration and the valence of type i ions, respec-

tively, e the charge of a proton, ψ the electrical potential, kb the Boltzmann’s constant and

T̂ the absolute temperature. The net charge density in a unit volume of the fluid is given

by

ρe = (n+ − n−)ẑe = −2n0ẑe sinh

(
ẑeψ

kbT̂

)
(3)

Substituting Eq.(3) into the Poisson equation (1), we obtain the well-known Poisson-Boltzmann

equation

d2ψ

dy2
=

2n0ẑe

ε0ε
sinh

(
ẑeψ

kbT̂

)
. (4)

Eq.(4) can be non-dimensionalized, via the similarity variables

X =
x

H
, Y =

y

H
, Ψ(Y ) =

ẑeψ

kbT̂
, ρ∗(Y ) =

ρe
n0ẑe

, (5)

in the following forms

d2Ψ(Y )

dY 2
= κ2 sinh(Ψ(Y )). (6)

d2Ψ(Y )

dY 2
= −κ

2

2
ρ∗(Y ). (7)

where κ = H k in which k2 = 2n0ẑ
2e2/(ε0εkbT̂ ) is the Debye-Hückel parameter, and 1/k is

normally regard as the EDL thickness.

The appropriate boundary conditions for Eqs.(6) and (7) are

Ψ(±1) = ζ̄ =
ẑeζ

kbT̂
, (8)
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where ζ is the zeta potential measuring the electrical potential at the shear plane, i.e., the

boundary between the compact layer and the diffuse layer [6].

If the electrical potential is small compared to the thermal energy of the ions, i.e.,

(|ẑeψ| < |kbT̂ |), using the Debye-Hückel linear approximation, Eq.(6) takes the form

d2Ψ(Y )

dY 2
= κ2Ψ(Y ), (9)

which has the analytical solution

Ψ(Y ) =
ζ

1 + e2κ

[
eκ(1+Y ) + eκ(1−Y )

]
. (10)

3 Mathematical formulation for other fields

The nanofluid flow and heat transfer through a horizontal rectangular microchannel in the

presence of the effects of EDL is investigated. The physical sketch is shown in Fig.1. Here

x-axis is paralleled to the channel walls and y-axis is perpendicular to the walls. The origin

of the coordinates is fixed at the centerline of the microchannel. H is the half distance

between the upper and lower walls, L is the length of the microchannel, W is the width of

the microchannel. To simplify the model without violating real physical circumstances, we

assume thatW ≫ H, so that the problem can be formulated as a two-dimensional nonlinear

microchannel flow problems in the presence of EDL effects.

The governing equations including the conservations of the total mass, the momentum,
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the thermal energy and the nanoparticle volumetric fraction are expressed by

∇ ·V = 0, (11)

ρ(V · ∇)V = −∇p+ µ∇2V+ F, (12)

(V · ∇)T = α∇2T + τ

[
DB∇T · ∇C +

(
DT

T0

)
∇T · ∇T

]
+
µ

ρc
Φ, (13)

(V · ∇)C = DB∇2C +

(
DT

T0

)
∇2T, (14)

where F is the electrical body force. Φ is the viscous dissipation term, defined by

Φ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]
+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2

− 2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

. (15)

For parallel flow in channels, it is known that only one velocity component is not equal

to zero, that means all fluid particles moving in the same direction. If, for example, only the

velocity component u is nonzero, and thus v is everywhere zero, it follows immediately from

the continuity equation that ∂u/∂x = 0 and therefore u is independent of x. Similarly, the

hydraulic pressure p is only dependent on the fluid motion, which indicates that it is only

a function of x and therefore the pressure gradient dp/dx is constant. It is assumed that

the temperature and the nanoparticle volumetric fraction on both walls increase or decrease

linearly with x, namely, Tw(x) = T0 + A1x and Cw(x) = C0 + A2x, where T0 and C0 are

the reference temperature and the reference nanoparticle volumetric fraction at the channel

entrance, respectively. Since the temperature T and the nanoparticle volumetric fraction C

vary linearly with x [25, 26], we obtain
∂2T

∂x2
=
∂2C

∂x2
= 0.

Under those assumptions, the continuity equation is automatically satisfied, and other
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governing equations are reduced to

µ
∂2u

∂y2
− ∂p

∂x
+ Exρe = 0, (16)

u
∂T

∂x
= α

∂2T

∂y2
+ τDB

(
∂T

∂x

∂C

∂x
+
∂T

∂y

∂C

∂y

)
+
τDT

T0

[(
∂T

∂x

)2

+

(
∂T

∂y

)2
]
+
µ

ρc

(
∂u

∂y

)2

, (17)

u
∂C

∂x
= DB

∂2C

∂y2
+
DT

T0

∂2T

∂y2
, (18)

subject to the boundary conditions

u(±H) = 0, Tw(±H) = T0 +A1 x, Cw(±H) = C0 +A2 x. (19)

It is a common practice in channel flow studies to assume the mass flow rate as a prescribed

quantity. We thus obtain

Um =
1

2H

∫ +H

−H
u(y)dy =

1

H

∫ +H

0

u(y)dy, (20)

where Um is the average fluid velocity in the channel section.

Define the dimensionless quantities

U(Y ) =
u

Um
, Θ(Y ) =

T − Tw
A1H

, Φ(Y ) =
C − Cw
A2H

. (21)

Non-dimensionalize the momentum equation (16) by similarity transformations (5) and

(21), we obtain

d2U(Y )

dY 2
+G1 − 2G2ĒsΨ(Y ) = 0, (22)

subjected to the boundary conditions

U(±1) = 0,

∫ 1

0

U(Y )dY = 1, (23)

where

G1 =
H2

µUm
Px, G2 =

n0ẑeζH
2

µUmL
,
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in which Px = −dp
dx

is the pressure constant, Ēs = Es/ζ is the stream potential, and

Ex = Es/L.

Substituting the non-dimensional variables (21) into Eqs.(17) and (18), we obtained the

reduced energy equation and concentration of nanoparticles equation as

Θ′′ +Nb(1 + Θ′Φ′) +Nt
(
1 + Θ′2)+ PrEcU ′2 −RePrU = 0, (24)

Φ′′ +
Nt

Nb
Θ′′ −RePrLeU = 0, (25)

subject to following boundary conditions

Θ(±1) = 0, Φ(±1) = 0, (26)

where Nb =
τDBA2H

α
is the Brownian motion parameter, Nt =

τDTA1H

αT0
is the ther-

mophoresis parameter, Pr =
ν

α
is the Prandtl Number, Re =

UmH

ν
is the Reynolds Num-

ber, Ec =
U2
m

cA1H
is the Eckert number, Le =

α

DB
is the Lewis number, respectively.

The physically important quantities of practical interests are the local skin friction,

the local Nusselt number, the local Sherwood number. Since the flow is symmetric in the

channel, we only need to consider them on the lower wall. In this case, they are defined by

Cf2 =
τw2

ρ
f
U2
m

, Nu2 =
x q

wT2

kf (Tw − T0)
, Sh2 =

x q
wC2

DB(Cw − C0)
, (27)

where

τw2 = µ

(
∂u

∂y

)
y=−H

, qwT2 = −kf
(
∂T

∂y

)
y=−H

, qwC2 = −DB

(
∂C

∂y

)
y=−H

. (28)

Substituting Eq.(21) into Eq.(27), we obtain

Cf2 =
1

Re
U ′(−1), Nu2 = −Θ′(−1), Sh2 = −Φ′(−1). (29)
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4 Explicit solution for the flow field

From Eq.(22) and its boundary conditions (23), the analytical solution for the reduced

velocity field is obtained as

U(Y ) =
G1

2
(1− Y 2) +

2ĒsG2ζ̄

κ2

[
cosh(κY )

cosh(κ)
− 1

]
. (30)

It is noted that the pressure constant G1 and the dimensionless streaming potential Ēs are

not known yet, which will be determined as follow. Using the integral boundary conditions

for U(Y ) denoted in Eq.(23), the relationship between G1 and Ēs are obtained:

G1

3
− 2ĒsG2ζ̄

κ2
+

2ĒsG2ζ̄ sinh(κ)

κ3 cosh(κ)
= 1. (31)

Physically, it is known that the electrical field is generated as an electrolyte is driven

by a hydrostatic pressure through a microchannel with charged walls, which results in a

streaming current, defined by

Is =

∫
Ac

uρedAc.

Using Eqs.(5), (7), and (21), we obtain its dimensionless form

Is = −4Umn0ẑeWH

∫ 1

0

U(Y )Ψ(Y )dY. (32)

On the other hand, the streaming potential produces a conduction current in the reverse

direction, which is given by

Ic =
λ0EsAc

L
, (33)

where λ0 is the constant electrical conductivity of the fluid, Ac is the cross-sectional area of

the channel. It can be transformed, using the relations Ēs = Es/ζ and Ac = 2H ×W , into

the following form

Ic = λ0ζ
2HW

L
Ēs. (34)
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The electrokinetic potential Ex can be obtained by balancing the streaming current and

the electrical conduction current at the steady state. In this situation, the net electrical

current equates to zero, which indicates

I = Is + Ic = 0. (35)

Using Eqs.(34) and (32), Ēs is obtained

Ēs = 2G3

∫ 1

0

U(Y )Ψ(Y )dY, (36)

where G3 =
LUmn0ẑe

λ0ζ
is a constant.

Substituting Eqs.(10) and (30) into Eq.(36), the other relationship between G1 and Ēs

is obtained:

Ēs −
2G3ζ̄

[
G1κ+ ĒsG2κζ̄sech

2(κ)− (G1 + ĒsG2ζ̄)tanh(κ)
]

κ3
= 0. (37)

Therefore, G1 and Ēs can be determined, via combining Eq.(31) and Eq.(37), as

G1 =
3κ6 − 6κ3G2G3ζ̄

2[κSech2(κ)− tanh(κ)]

κ6 − 2G2G3ζ̄2[6κ2 + κ4Sech2(κ)− κ (12 + κ2) tanh(κ) + 6tanh2(κ)]
,

Ēs =
6G3κ

3ζ̄[κ− tanh(κ)]

κ6 − 2G2G3ζ̄2[6κ2 + κ4sech2(κ)− κ (12 + κ2) tanh(κ) + 6tanh2(κ)]
.

Hence the explicit solution U(Y ) denoted in Eq.(30) is fully determined.

5 HAM solution and discussion

It is worth mentioning that the Eq.(22) contains two unknown constantsG1 and
∫ 1

0
U(Y )Ψ(Y )dY ,

which are difficult to be calculated directly by either numerical or analytical methods with-

out special treatments. To overcome this limitation, we employ and extend the homotopy

analysis method (HAM) [27] to obtain the accurate solutions of the nonlinear equations

Eqs.(9), (22), (24) and (25), in which the exact values for G1 and
∫ 1

0
U(Y )Ψ(Y )dY , are
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calculated spontaneously and simultaneously as part of the solution procedure without any

approximations.

We first define G1 and
∫ 1

0
U(Y )Ψ(Y )dY as

G1 = σ = σ0 +
∞∑
j=1

σj ,

∫ 1

0

UΨdY = w = w0 +
∞∑
j=1

wj , (38)

then express the functions Ψ(Y ), U(Y ), Θ(Y ) and Φ(Y ) as

Ψ(Y ) = ψ0(Y ) +

∞∑
j=1

ψj(Y ), U(Y ) = u0(Y ) +

∞∑
j=1

uj(Y ),

Θ(Y ) = θ0(Y ) +
∞∑
j=1

θj(Y ), Φ(Y ) = ϕ0(Y ) +
∞∑
j=1

ϕj(Y ). (39)

In the framework of the HAM, the kth order HAM deformation equations can be written

as

ψ′′
m − χmψ

′′
m−1 = ~ψRψ,m, (40)

u′′m − χmu
′′
m−1 = ~uRu,m, (41)

θ′′m − χmθ
′′
m−1 = ~θRθ,m, (42)

ϕ′′m − χmϕ
′′
m−1 = ~ϕRϕ,m. (43)

subject to the boundary conditions

ψm(±1) = 0, um(±1) = 0,

∫ 1

0

um = 1, θm(±1) = 0, ϕm(±1) = 0, (44)

where ~ψ, ~u, ~θ and ~ϕ are the HAM auxiliary parameters used for the convergence-control

of the HAM analytical approximations. Also, Rψ,m, Ru,m, Rθ,m, Rϕ,m and χm are defined,
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respectively, by

Rψ,m = ψ′′
m−1 − κ2ψm−1 (45)

Ru,m = u′′m−1 + σm−1 − 4G2G3

m−1∑
j=0

wjψm−1−j , (46)

Rθ,m = θ′′m−1 +
m−1∑
j=0

(
Nb θ′jϕ

′
m−1−j +Nt θ′jθ

′
m−1−j + PrEc u′ju

′
m−1−j

)
−RePr um−1 + (Nt+Nb) ∗ (1− χm) (47)

Rϕ,m = ϕ′′m−1 +
Nt

Nb
θ′′m−1 −RePrLe um−1, (48)

where

χm =


0 m ≤ 1,

1 m > 1.

(49)

Here the expression (36) is used to obtain Ru,m.

The solutions of Eqs.(40)-(43) are in the forms of

ψm = ψ∗ + χmψm−1 + C1,m + C2,mY, (50)

um = u∗ + χmum−1 + C3,m + C4,mY, (51)

θm = θ∗ + χmθm−1 + C5,m + C6,mY, (52)

ϕm = ϕ∗ + χmϕm−1 + C7,m + C8,mY, (53)

where

ψ∗ =

∫ ∫
~ψRψ,mdY dY, u∗ =

∫ ∫
~uRu,mdY dY,

θ∗ =

∫ ∫
~θRθ,mdY dY, ϕ∗ =

∫ ∫
~ϕRϕ,mdY dY. (54)

The integral constants Ci,m (i = 1, 2, 3, 4, 5, 6, 7, 8) are determined by the boundary condi-

tions

C1,m = −ψ
∗(1) + ψ∗(−1)

2
, C2,m = −ψ

∗(1)− ψ∗(−1)

2
, C3,m = −u

∗(1) + u∗(−1)

2
,
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C4,m = −u
∗(1)− u∗(−1)

2
, C5,m = −θ

∗(1) + θ∗(−1)

2
, C6,m = −θ

∗(1)− θ∗(−1)

2

C7,m = −ϕ
∗(1) + ϕ∗(−1)

2
, C8,m = −ϕ

∗(1)− ϕ∗(−1)

2
.

The above HAM solution procedure can work accordingly after the initial approximations

ψ0(Y ), u0(Y ), θ0(Y ) and ϕ0(Y ) are chosen properly based on the boundary conditions (44),

such as

ψ0(Y ) = ζ̄Y 2, u0(Y ) = 1 +
3

2
Y 2 − 5

2
Y 4,

θ0(Y ) = 1− Y 2, ϕ0(Y ) = 1− Y 2. (55)

During the HAM solution procedure, the unknown constantG1 is determined in the following

way. It is known that um contains the unknown term σm−1, which is determined using the

mass flow rate equation(20). For instance, in the case of ~u = −1, G2 = G3 = 1, ζ̄ = 1, for

the zero-th order approximation when m = 1, it is easily seen that u1 contains the unknown

term σ0. By means of Eq.(20) we have

∫ 1

0

u1dY = 0 (56)

we can obtained the value of σ0 = 1691
525 from above equation. Also, the constant integra-

tion term w0 =
∫ 1

0
u0(Y )ψ0(Y )dY can be obtained by means of Eq.(55). In this way, the

whole solution series in Eq.(38) for G1 and the constant integration term can be determined

successively from m = 1, 2, 3, · · · .

To check the accuracies of the results, the error estimation function is defined as

E(m) = max{EΨ(m), EU (m), EΘ(m), EΦ(m)}, (57)
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where

EΨ(m) =

∫ 1

−1

(Ψ′′ − κ2Ψ)2dY,

EU (m) =

∫ 1

−1

[
U ′′ +G1 −

(
4G2G3

∫ 1

0

UΨdY

)
Ψ

]2
dY,

EΘ(m) =

∫ 1

−1

[
Θ′′ +Nb(1 + Θ′Φ′) +Nt

(
1 + Θ′2)+ PrEcU ′2 −RePrU

]2
dY,

EΦ(m) =

∫ 1

−1

(
Φ′′ +

Nt

Nb
Θ′′ −RePrLeU

)2

dY.

Substituting mth order computational results into Eq.(57), the corresponding error can be

obtained. I n present work, the study mainly f ocuses on the effect of  various physical

quantities with the κ value ranging from 0 to 20. The rest of the dimensionless parameters

are given the fixed values. For instance, in the case of G2 = G3 = 1, Ec = Le = Re =

1, ζ̄ = 1, P r = 5, Nt = 1/10, Nb = 2/10, we obtain the maximum error E(m) for various

values of κ, as listed in Table 2. Note that the Homotopy-Padé technique [27] is employed

to improve the convergence of the HAM approximations.

It is noted that Mala et al. [8] gave an analytical solution for Ψ(y), by imposing an

additional boundary condition Ψ(0) = 0, as

Ψ(Y ) =
ζ̄

sinh(κ)
| sinh(κY )|. (58)

The solution exists singularity at Y = 0 and is physically unrealistic, as shown in Fig.2.

It can be seen in the figure that the present analytical solution denoted in Eq.(10) are

structurally different from the result given by Mala et al. [8, 9]. They are smooth for all κ.

As κ becomes sufficiently large, Ψ(Y ) diminishes to zero in the middle of the channel. This is

due to the important assumptions of Zeta potential [6] in the application of micro-channels

(i) the surface is flat and (ii) the double layer is able to develop fully so that the potential

in the middle of the channels is zero. It is also noticed that the HAM solutions agree with

the analytical ones (10) in the whole region −1 ≤ Y ≤ 1 for all considered κ.
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The solution of Mala et al. (58) for the electrostatic potential exists singularity at

Y = 0, causes the velocity profiles discontinuous at the same place, the less is κ, the clearer

is the discontinuity, as shown in Fig.3. Obviously, the solution is against the natural laws and

physically impossible, while the present analytical solution (30) is consecutive and smooth in

the whole region. Particularly when κ is sufficiently large, Mala’s result seems to match the

present solution, but in this case, the distance between two plates is too large to describe

the microchannel flow with interfacial electrokinetic effects. In Fig.3, it is seen that the

HAM approximation agrees well with the analytical solution (30). This further confirms the

validity and accuracy of the present HAM solutions.

The influence of κ on the pressure constant G1 is presented in Fig.4. It is shown that G1 

decreases monotonously as κ evolves. It is noted that as the value of κ decreases, the 

microchannel is narrower, thus the electric double layer effect is stronger. The electric double 

layer leads to back flow near the channel wall which could induce a stronger flow resistance in 

the microchannel, thus further lead the pressure constant increases. On the contrary, as κ 

increases, the distance between the microchannel wall becomes larger, the electric double 

layer effect is weak, the fluid flow is not affected by electric double layer, so the pressure tends 

to be a constant. Viewed from another perspective, if we keep the distance between the two 

plates remains unchanged, then κ is inversely proportional to the thickness of electrical 

double layer. The larger is κ, the thinner is the thickness of electric double layer. As κ is 

considerably large, the thickness of electric double layer approaches to zero. In this situation, 

the electrical double layer effect on the fluid motion can also be ignored.

The streaming potential Es is an important factor to affect the flow patterns in the

microchannel. As shown in Fig.5, Ēs decreases very quickly as κ evolves. It is sufficient to
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show that Ēs approaches to zero with κ being considerably large. In fact, the reason of this

phenomenon can be explained from the point of the electrical double layer. The rising value

of κ may be due to the increasing bulk concentration of ions. Accordingly, the counter-ions

concentration in the liquid increases, which leads to the diffuse layer compressed. With

more counter-ions being extruded into the shear plane, the zeta potential is thus decreased

leading to a decreased streaming potential. If the bulk concentration is sufficiently large,

namely the κ is large enough, the zeta potential will tend to zero, therefore the streaming

potential also tend to zero.

In macroscopical flows, the effect of viscous dissipation on the fluid flow is usually small,

therefore it could be ignored. But in microscopic ones, the viscous dissipation function can

be very strong, and in turn its influence on the distribution of the flow temperature can be

significant. As a result, it leads to the flow obviously changed in the microchannel. As seen

in Fig.6, Θ(Y ) increases rapidly with Ec increasing. It is also shown in Fig.7 that Ec has

a significant effect on the nanoparticle concentration distribution Φ(Y ). Its increase causes

the rapid reduction of the relative nanoparticle concentration Φ(Y ).

It is noted that the physical quantities such as the local skin friction, the local Nusselt

number and the local Sherwood number are of importance in practical applications. It is

therefore necessary to further examine discuss their variational trends with Re and κ on the

lower wall in detail.

Many studies on microchannel flow, especially contains the effect of electric double layer, 

but less research with focus on Reynolds number. Thus, some results about the Reynolds 

number are presented in order to provide theoretical basis for test. From Table 3, it is found 

that the Reynolds number Re have great influence on both the local Nusselt number Nu2 and 

the local Sherwood number Sh2. The absolute value of Nu2 decreases with the
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increase of Re. However, the value of Sh2 enhances with Re evolving. It is also noted that

Sh2 increases faster than Nu2 indicating that the effect of Re on Sh2 is greater than that

of Nu2. As shown in Fig.8, it is seen that Cf2 decreases rapidly as κ increases when κ is

small. It is worth mentioning that Cf2 reaches a minimum near κ = 1.5. Once going over

this minimum value, Cf2 increases as κ evolves and approaches to 3 as κ keeps continuously

increasing. It is observed that the large κ corresponds to the thin electric double layer

thickness. Conversely, the small κ indicates the thick electric double layer thickness. It is

illustrated in Fig.9 that the variation of local Nusselt number Nu2 with κ exhibits the totally

reverse trend relative to that of Cf2. The local Nusselt number Nu2 rapidly increases to

its maximum value, then gradually reduces as κ continuously increases. When κ becomes

sufficiently large, the local Nusselt number Nu2 closes to a certain constant. As shown in

Fig.10, the influences of κ on the local Sherwood number Sh2 are presented. It has the

similar trend as the variation of Cf2 with κ. Namely, Sh2 decreases as κ increases for small

κ. After reaching the minimum value, Sh2 increases as κ evolves.

6 Conclusion

The nanofluid flow through a microchannel with the effects of the EDL are investigated.

By eliminating the unphysical assumption leading to the discontinuities of flow field and

replacing the inappropriate pressure constant assumption, the microchannel problem is re-

formulated, which is consistent with commonly-accepted models in channels. The major

findings contained in this paper are as follows:

1. The analytical solutions for both the electrostatic potential and the velocity field

are given, which are consecutive and smooth in the whole region. These results are

obviously better than those given by Mala et al. [8].
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2. κ is a key factor to measure the EDL effects. It is noted that when κ ≥ 20, its

effects become negatively small. In this situation, the electrical double layer effect on

the fluid motion and heat transfer can be ignored, thus the corresponding physical

quantities tend to be constant, i.e. the streaming potential Ēs approaches to zero.

The pressure constant G1, the local skin friction, the local Nusselt number and the

local Sherwood number approach to fixed values, respectively.

3. The effect of viscous dissipation influence on the distribution of the fluid temperature

and the nanoparticle concentration is significant. The reason is that the shear strength

and frictional resistance are greatly increased in the microchannel, it leads to the

viscous dissipation function is very strong.
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Table 2: The maximum error E(m)

order κ = 1 κ = 3 κ = 5 κ = 20

10 1711.196 13738.398 4686.691 70.382

20 8.002 0.793 0.125 0.798

30 1.87× 10−7 0.166 2.80× 10−4 6.50× 10−4

40 5.37× 10−15 1.49× 10−4 1.42× 10−8 2.82× 10−5

50 1.32× 10−23 7.17× 10−7 1.24× 10−8 1.097× 10−5

60 - - - 1.46× 10−6
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Table 3: The results of Nu2 and Sh2 with variation of Re and κ in the case of

Le = Ec = 1, Nb = 1/5, Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.

Re
κ = 1 κ = 3 κ = 20

Nu2 Sh2 Nu2 Sh2 Nu2 Sh2

1 -9.090 9.545 -9.119 9.559 -9.180 9.590

10 -2.088 51.044 -2.137 51.069 -2.247 51.123

20 -1.216 100.608 -1.249 100.625 -1.328 100.664

30 -0.843 150.421 -0.867 150.433 -0.927 150.464

40 -0.643 200.326 -0.662 200.331 -0.711 200.356

50 -0.520 250.291 -0.536 250.269 -0.576 250.291
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(a) 3-D sketch

(b) 2-D sketch

Figure 1: Physical model and coordinate system
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Figure 2: The electrical potential Ψ(Y ) for various values of κ with ζ̄ = 1. Line with

circles: analytical solutions given by Eq.(10); line with squares: HAM solutions; line

with gradients: results of Mala et al. [8].
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Figure 3: The velocity U(Y ) for various values of κ with G2 = G3 = 1 and ζ̄ = 1.

Line with circles: analytical solutions given by Eq.(10); line with squares: HAM

solutions; line with gradients: results of Mala et al. [8].
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Figure 4: Variation of the pressure constant G1 with κ in the case of Ec = Le =

Re = 1, Nb = 1/5, Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.
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Figure 5: Variation of the streaming potential Ēs with κ in the case of Ec = Le =

Re = 1, Nb = 1/5, Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.
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Figure 6: Variation of Θ(Y ) with Ec in the case of κ = 1, Le = Re = 1, Nb = 1/5,

Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.



34

Φ(Y )

Y

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ec = 3 Ec = 1Ec = 5

Figure 7: Variation of Φ(Y ) with Ec in the case of κ = 1, Le = Re = 1, Nb = 1/5,

Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.
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Figure 8: Variation of Cf2 with κ in the case of Ec = Le = Re = 1, Nb = 1/5,

Nt = 1/10, Pr = 5, G2 = G3 = 1 and ζ̄ = 1.
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Figure 9: Variation of Nu2 with κ in the case of Ec = Le = Re = 1, Pr = 5,

G2 = G3 = 1 and ζ̄ = 1.
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Figure 10: Variation of Sh2 with κ in the case of Ec = Le = Re = 1, Pr = 5,

G2 = G3 = 1 and ζ̄ = 1.




