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Abstract

Recently, Güssregen et al. used solute–solvent distribution functions calculated by

the 3D Reference Interaction Site Model (3DRISM) in a 3D-QSAR model to predict

the binding affinities of serine protease inhibitors; this approach was referred to as

Comparative Analysis of 3D RISM MAps (CARMa). [J. Chem. Inf. Model., 2017,

57, 1652-1666] Here we extend this idea by introducing probe atoms into the 3DRISM

solvent model in order to directly capture other molecular interactions in addition to

those related to hydration/dehydration. Benchmark results for six different protein-

ligand systems show that CARMa models trained on probe atom descriptors gives

consistently more accurate predictions than CoMFA, and other common QSAR ap-

proaches.

Introduction

The premise of quantitative structure-activity relationships (QSAR) is that a compound’s

molecular structure can be used to determine its macroscopic properties, such as binding
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affinity and pIC50. A QSAR is derived by using experimental data to learn a statistical

relationship between the physical property of interest (e.g. pIC50) and molecular descrip-

tors calculable from a simple computational representation of the molecule. The QSAR

must accurately model the training data and generalize to correctly predict activities for

molecules outside the representative training set.1 A large number of QSAR methods have

been described in the literature using various classes of descriptors. For the prediction of

physicochemical properties, 1D and 2D descriptors that can be calculated quickly without

knowledge of molecular conformation are often considered to be satisfactory (e.g. counts

of functional groups, graph indices, etc)2,3 However, for modelling protein-ligand systems,

where ligand conformation influences the strength of binding interactions, 3D (or 4D) de-

scriptors are usually preferred.1,4–7

One of the most widely used 3D-QSAR methods is Comparative Molecular Field Analysis

(CoMFA), which was proposed by Cramer et al. in 1988.7 CoMFA establishes a uniform grid

encompassing a series of pre-aligned molecules. Electrostatic and Lennard-Jones potential

energies are then calculated between a positively charged carbon atom probe, located at each

vertex of the grid, and each of the molecules embedded within.7 The resulting electrostatic

and "steric" fields are used as input for partial-least-squares regression models. Since its first

publication, CoMFA has been cited in thousands of published articles and used in numer-

ous drug discovery programs.8,9 Several extensions to the CoMFA methodology have been

proposed, of which the highest profile is comparative molecular similarity indices analysis

(CoMSIA).10,11

Although CoMFA is widely used, it relies on a relatively simple representation of molec-

ular interactions, which does not explicitly account for solvation/desolvation effects that can

dramatically influence protein-ligand binding. Since CoMFA was first proposed, advances

in theory, algorithms and computer power mean that there are now many fast and accurate

methods to model molecular solvation effects. Some success has been acheived using numer-

ical simulation (e.g. Monte Carlo or molecular dynamics simulations) to compute solute-
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solvent descriptors for QSAR models,12 but such methods are computationally expensive

and subject to sampling errors that reduce the signal-to-noise ratio in the modelling dataset.

Integral equation theory approaches are of particular interest for QSAR modelling because

they allow solute-solvent distributions and solvation thermodynamics to be computed at a

fraction of the cost of explicit solvent numerical simulations and with no sampling error.13–15

The most widely used of these methods are the 1D and 3D Reference Interaction Site Models

proposed by Chandler et al.16 and Beglov and Roux,17–19 respectively. Accurate predictions

of hydration free energy and Caco-2 permeability have previously been reported using QSAR

models based on 1D RISM molecular descriptors.20 Recently, Güssregen et al. proposed the

Comparative Analysis of 3D RISM Maps (CARMa) methodology, which uses solute–solvent

distribution functions calculated by 3DRISM to replace the electrostatic or steric fields in

CoMFA.21 This approach was shown to give accurate predictions of binding affinities for a

series of serine protease inhibitors, but tests on other systems have not yet been published.21

The purpose of this article is two-fold. Firstly, we propose an extension to the CARMa

methodology. CARMa uses a statistical mechanics solvent model to capture solvation effects,

but does not directly model the electrostatic and steric effects probed by CoMFA. Solving the

3D RISM equations for a solvent comprising CoMFA probes in aqueous solution addresses

this issue and results in predictions that are more accurate than either CoMFA or the original

CARMa model; in what follows, this approach is referred to as CARMa(electrolyte) whenever

a distinction needs to be made with the original CARMa method. Secondly, we provide an

extensive benchmark of both CARMa and CARMa(electrolyte) models over six different

protein-ligand systems and compare their accuracy to previously published CoMFA and 3D-

QSAR results. The influence of 3DRISM algorithmic parameters, such as the 3D RISM

bridge-functional and grid-size, on the prediction accuracy are systematically investigated.
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Theory

The method proposed here uses density distribution functions calculated by the 3D reference

interaction site model (3D-RISM) as input. We begin with a brief description of the relevant

parts of the standard 3D RISM theory before outlining our approach to QSAR predictions.

3D-RISM

3D-RISM19,22–24 is a theoretical method for modelling solution phase systems based on clas-

sical statistical mechanics. The 3D-RISM equations relate 3D intermolecular solvent site -

solute total correlation functions (h↵(r)), and direct correlation functions (c↵(r)) (index ↵

corresponds to the solvent sites):19,24

h↵(r) =
N

solventX

⇠=1

Z

R3

c⇠(r� r0)�⇠↵(|r0|)dr0, (1)

where �⇠↵(r) is the bulk solvent susceptibility function, and Nsolvent is the number of sites in

a solvent molecule (see 1). The solvent susceptibility function �⇠↵(r) describes the mutual

correlations of sites ⇠ and ↵ in solvent molecules in the bulk solvent. It can be obtained from

the solvent intramolecular correlation function (!

solv
⇠↵ (r)), site-site radial total correlation

functions (h

solv
⇠↵ (r)) and the solvent site number density (⇢↵): �⇠↵(r) = !

solv
⇠↵ (r) + ⇢↵h

solv
⇠↵ (r)

(from here onwards we imply that each site is unique in the molecule, so that ⇢↵ = ⇢ for all

↵).24 In this work, these functions were obtained by solution of the RISM equations of the

solvent.24,25
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Figure 1: Correlation functions in the 3D-RISM approach. (a) Site-site intramolecu-
lar (!solv

�⇠ (r)) and intermolecular (hsolv
↵⇠ (r)) correlation functions between sites of solvent

molecules. The graph shows the radial projections of water solvent site-site density corre-
lation functions: oxygen-oxygen (OO, red solid), oxygen-hydrogen (OH, green dashed) and
hydrogen-hydrogen (HH, blue dash-dotted); (b) Three-dimensional intermolecular solute-
solvent correlation function h↵(r) around a model solute (diclofenac). This figure is based
on Figure 1 from our earlier work.14

In order to calculate h↵(r) and c↵(r), Nsolvent approximate closure relations must be

introduced. Here two forms of closure relationship were tested: the Kovalenko and Hirata

(KH) closure, which is also referred to as the partial series expansion order 1 (PSE-1),

or partial-linearised hypernetted chain (PLHNC) closure;26 the PSE-3 closure.27 The KH

closure is:

h↵(r) =

8
><

>:

exp(⌅↵(r))� 1 when ⌅↵(r)  0

⌅↵(r) when ⌅↵(r) > 0

(2)

where ⌅↵(r) = ��u↵(r) + h↵(r) � c↵(r), u↵(r) is the 3D interaction potential between the

solute molecule and ↵ solvent site, � = 1/kBT , kB is the Boltzmann constant, and T is the

temperature. The PSE-3 closure is:27,28
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h↵(r) =

8
><

>:

exp(⌅↵(r))� 1 when ⌅↵(r)  0

nP
i=0

(⌅↵(r))i/i!� 1 when ⌅↵(r) > 0

(3)

The 3D interaction potential between the solute molecule and ↵ site of solvent (u↵(r),

Equation 2) is estimated as a superposition of the site-site interaction potentials between so-

lute sites and the particular solvent site, which depend only on the absolute distance between

the two sites. We use the common form of the site-site interaction potential represented by

the long-range electrostatic interaction term and the short-range term (Lennard-Jones poten-

tial).29 3DRISM distribution functions computed using the PSE-3 closure have been labelled

in the following text with a superscript, e.g. gPSE�3
O (r); all other calculations were performed

using the KH closure.

3D-RISM–CARMa

Two different classes of functions were tested as input to CARMa analyses: solvent density

distribution functions, g(r), which represent the local solvent density at grid points around

the solute; solvation free energy density functions, which indicate the local contribution to

the excess chemical potential of the solute (further details below).

Solvent Density Distribution Functions

Solving the 3D RISM equations gives a solvent density distribution function, g(r), for each

interaction site (atom) in the solvent. For water, the g(r) functions are identical for the two

hydrogen atoms because of molecular symmetry. Four different g(r) functions were tested as

input to CARMa: (i) water density distribution functions, gO(r) or gH(r), computed for pure

aqueous solvent; (ii) solvent-probe density distribution functions, gC+(r) or gC�(r), obtained

by solving the 3DRISM equations with 0.1 M "C+" and 0.1 M "C-" probe atoms as co-

solvents in aqueous solution. The C+ and C- probes are positively or negatively charged

sp

3 carbon atoms with Lennard-Jones parameters taken from the general Amber forcefield
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(GAFF).30
gO(r) and gH(r) functions were also obtained from the simulations in 0.1 M

C+/C- (aq), but these were not used in CARMa models because they were observed to

be highly correlated with gO(r) and gH(r) functions computed in pure water, respectively

(e.g. to two decimal places, R = 1.00 and R = 1.00, respectively, for the steroid dataset

with grid-spacing of 3.O Å). By contrast the gC+(r) and gC�(r) functions are only weakly

correlated with the gOr,gHr, and SFED functions computed in pure water (0.01  |R| < 0.6

for the steroid dataset with grid-spacing of 3.O Å).

Solvent Free Energy Density

Within the framework of the RISM theory there exist several approximate functionals that

allow one to analytically obtain values of the solvation free energy from the total h↵(r)

and direct c↵(r) correlation functions.27,31,32 These can be derived analytically from the

appropriate 3DRISM closure relationship.

The PSE-3 free energy functional is given by:

�G

PSE�3
hyd = �G

HNC
hyd � kBT

N
solventX

↵=1

⇢↵

Z

V


⇥[h↵(r)]

⌅↵(r)n+1

(n+ 1)!

�
dr (4)

where ⇢↵ is the number density of solvent sites ↵, ⇥ is a Heaviside step function, and �G

HNC
hyd

is the solvation free energy calculated using the hypernetted-chain functional, which is given

by:33

�G

HNC
hyd = kBT

N
solventX

↵=1

⇢↵

Z

V


1

2

h

2
↵(r)�

1

2

h↵(r)c↵(r)� c↵(r)

�
(5)

The KH free energy functional is given by:

�G

KH
hyd = kBT

N
solventX

↵=1

⇢↵

Z

R3


1

2

h

2
↵(r)⇥(�h↵(r))�

1

2

h↵(r)c↵(r)� c↵(r)

�
dr (6)

where ⇢↵ is the number density of solvent sites ↵, and ⇥ is the Heaviside step function:
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⇥(x) =

8
><

>:

1 for x>0

0 for x<0

9
>=

>;
(7)

Both the KH and PSE-3 solvation free energy functionals can be written in a compact

form as:

�Gsolv =

Z 1

0

w(r)dr (8)

where the integrand functionals combine the N total and direct correlation functions of a

single solute into a single function of r, which we refer to as the solvation free energy density,

SFED. Thus for the KH free energy functional, SFED is defined as:

wKH(r) = kBT

N
solventX

↵=1

⇢↵


1

2

h

2
↵(r)⇥(�h↵(r))�

1

2

h↵(r)c↵(r)� c↵(r)

�
(9)

As indicated by Equation 8, integrating wKH(r) over all space returns �G

KH
hyd . Therefore,

the grid points in the function give the local spatial contribution to the total solvation free

energy of the solute. One argument for using SFED as opposed to g(r) in a QSAR model

is that it inherently includes information from all of the 3D-RISM functions, i.e. for pure

water, SFED is a composite of gH(r), gH(r),cH(r), and cO(r). Also, the SFED functions

asymptotically approach zero at shorter solute-solvent distances than g(r), which reduces

the number of redundant descriptors in the CARMa analysis.

The SFED function computed in 0.1 M C+/C- (aq) was not used in CARMa models

because it was observed to be highly correlated with the SFED function computed in pure

water (e.g. R = 1.00 for the steroid dataset with grid-spacing of 3.O Å).

Grids

When the 3DRISM equations are solved numerically, both the local solvent density (as given

by g(r)) and the solvation free energy density (w(r)) are represented on discrete grids. In
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principle, the values of these functions at specific grid points could be used directly as input

to the CARMa models. Since 3D-RISM calculations are normally carried out on a large grid

with a relatively small grid spacing (0.3-0.5 Å), however, this would lead to many redundant

variables making the numerical data sets too large to be processed easily. A simple solution

would be to solve the 3D RISM calculations on a small and coarse grid, but this would reduce

the accuracy of the obtained density distribution functions. Instead, in this study, all 3D-

RISM calculations were performed on a large and fine grid (>50 Å3 grid with a 0.5 Å spacing).

The size of the grids used to represent the 3D-RISM distribution functions were then reduced

to a standard size by removing layers of each grid face as appropriate (using custom Python

scripts). To provide a further filter to remove some of the unnecessary variables, we tested

two different approaches: (i) mapping the 3D-RISM results onto a coarser grid; (ii) selecting

only those grid points that were within a distance, d, from the solute. The latter method

increased computational expense without improving prediction accuracy and, therefore, is

not discussed further. Prior to statistical modelling, we also removed all variables that

had a variance of zero. Further variable selection was carried out using standard statistical

methods (namely a genetic algorithm and Random Forest, as described later).

Statistical and Machine Learning Algorithms

To derive the predictive CARMa models, two different methods of regression were considered:

Partial-Least-Squares (PLS) and Random Forest (RF). A genetic algorithm was also tested

to select input variables for the PLS model.

Partial-Least-Squares Regression

Partial least squares (PLS) is a method for linear regression that has been widely used

in many different fields of research, including chemistry, biology, econometrics and social

science. The PLS algorithm finds a linear regression model by projecting both the dependent

and independent variables into a new mathematical space in which the covariance in the data
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structure can be explained by a small number of latent variables. As such PLS regression has

some similarity to principal component regression, but the latent variables are selected for

their ability to explain the variance in the dependent variable as well as in the independent

variables. The algorithms used for PLS regression have been explained elsewhere.34

Genetic Algorithm

A genetic algorithm was used to select an optimal subset of descriptors for the PLS model.

Genetic algorithms are commonly used to solve both constrained and unconstrained op-

timization problems using a selection approach based on biological evolution.35 Here the

genetic algorithm continuously modifies a population of chromosomes, in which each chro-

mosome is a bit string that indicates whether each variable (grid point from 3DRISM dis-

tribution function) should be included or omitted from the PLS regression model.36 The

RMSE for 3-fold cross-validation was used as a fitness function to score each chromosome.

Over successive generations, the population "evolves" toward an optimal solution.37

Random Forest

Random Forest is a method for classification and regression which was introduced by Breiman

and Cutler.38 The method is based upon an ensemble of regression trees, from which the

prediction of a continuous variable is provided as the average of the predictions of all trees.

Each tree is grown from a separate bootstrap sample of the training data using the CART

algorithm.38 During tree growth, the branches continue to be subdivided while the minimum

number of observations in each leaf is greater than a predetermined value. The descriptor

selected for branch splitting at any fork in any tree is not selected from the full set of

possible descriptors but from a randomly selected subset of predetermined size. There are

three possible training parameters for Random Forest: ntree - the number of trees in the

Forest; mtry - the number of different variables tried at each split; and nodesize - the

minimum node size below which leaves are not further subdivided. The bootstrap sample
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used during tree growth is a random selection with replacement from the molecules in the

dataset. The molecules that are not used for tree growth are termed the out-of-bag sample.

Each tree provides a prediction for its out-of-bag sample, and the average of these results

for all trees provides an in situ cross-validation called the out-of-bag validation.

Methods

QSAR Data Sets

Six datasets were selected to benchmark the CARMa predictions. Firstly, the 21 steroids

selected by Cramer et al. were used to provide a direct comparison between CARMa and

CoMFA.7,9 Optimized and aligned structures for all 21 molecules were taken from Coates et

al.;9 these files resolve some errors in the way that the structures were reported by Cramer

et al.9 Secondly, five pIC50 data sets published by Sutherland et al. were used to compare

CARMa to a wide-range of 3D-QSAR methods (including CoMFA, COMSIA, etc). The com-

pounds with literature references, aligned molecular structures, and grid parameters for field

based QSAR are all described by Sutherland et al.1 Briefly, the datasets are: ACE dataset

– 114 angiotensin converting enzyme (ACE) inhibitors with pIC50 values ranging between

2.1 - 9.9;39 AchE dataset – 111 acetylcholinesterase (AchE) inhibitors with pIC50 values

ranging between 4.3 - 9.5;40 BZR dataset – 163 ligands for the benzodiazepine receptor

(BZR) with pIC50 values ranging between 5.5 - 8.9;41 COX2 dataset – 322 cyclooxygenase-

2 (COX2) inhibitors with pIC50 values ranging between 4.0 - 9.0;42 DFHR dataset – 397

dihydrofolate reductase (DHFR) inhibitors with pIC50 values ranging between 3.3 - 9.8.43

Sutherland et al used a "cherry picking" with maximum dissimilarity algorithm to assign

33% of the dataset to the test set and the remaining compounds to the training set.44,45 To

allow a direct comparison with Sutherland’s results, we have used the same aligned molecular

conformations and the same training and test sets.
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Aldosterone Androstanediol Androstenediol Androstenedione

Androsterone Corticosterone Cortisol Cortisone

Dehydroepiandros-
terone Deoxycorticosterone Deoxycortisol Dihydrotestosterone

Estradiol Estriol Estrone Etiocholanolone

Pregnenolone 17-
Hydroxypregnenolone Progesterone 17-

Hydroxyprogesterone

Testosterone

Figure 2: A depiction of steroids training set.

3D-RISM

The 3DRISM calculations were performed using AmberTools16.46 Ligand structures were

obtained from the articles by Coates et al.9 and Sutherland et al.1 and were used without

modification. Lennard-Jones parameters and atomic partial charges for the ligands were
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taken from the General Amber Force Field (AMBER-GAFF).30 The KH closure was used

for solution of the 3D-RISM equations unless otherwise stated. The linear grid spacing in

each of the three directions was 0.5 Å. We employed the MDIIS iterative scheme,47 where we

used 5 MDIIS vectors, MDIIS step size of 0.7, residual tolerance of 10�10 in the L2 norm of

the difference between the g(r) functions for two subsequent solutions of 3D RISM iterations.

All calculations were carried out at 298 K.

Solvent susceptibility functions required as input to 3D-RISM were calculated using di-

electrically consistent 1D-RISM48 with the KH closure. The grid size for 1D-functions was

0.025 Å, which gave a total of 16384 grid points. We employed the MDIIS iterative scheme,

where we used 20 MDIIS vectors, MDIIS step size of 0.3, and residual tolerance of 10�12 in the

L2 norm of the difference between the g(r) functions for two subsequent solutions of RISM

iterations. The solvent model was: (i) 0.1M C+/C- (aq) for the calculation of gC+(r) and

gC�(r), or (ii) pure water for the calculation of all other distribution functions (e.g. gO(r),

g

PSE�3
O (r), gH(r), and SFED). As mentioned previously, we did not build CARMa models

for the gO(r) or gH(r) functions obtained from the simulations in 0.1M C+/C- (aq) because

each one was highly correlated with the same function calculated in pure water (R = 1.00

to two decimal places). We used the Lue and Blankschtein version of the SPC/E model

of water (MSPC/E).49 This differs from the original SPC/E water model50 by the addition

of modified Lennard-Jones (LJ) potential parameters for the water hydrogen, which were

altered to prevent possible divergence of the algorithm.51–54 The Lorentz-Berthelot mixing

rules were used to generate the solute-water LJ potential parameters.55 The following LJ

parameters (for water hydrogen) were used to calculate the interactions between solute sites

and water hydrogens: �

LJ
H

w

= 1.1657Å$ and ✏

LJ
H

w

= 0.0155 kcal/mol.

CARMa

CARMa models were setup and trained using a combination of bespoke Python and R

scripts.
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Partial-Least Squares

Partial-Least Squares regression models were trained using the pls library56 in the R statis-

tical computing environment.57 All PLS models were trained with 3 latent variables, which

was selected as the optimal balance between model size and prediction accuracy based on

consideration of the residual error sum of squares and the percentage of variance explained.

It is also the same number of latent variables that was used in the original studies on CoMFA

and CARMa methods.7,21

Random Forest

Random Forests were trained with the randomForest library58 in the R statistical computing

environment,57 using standard parameters: mtry = N/3, nodesize = 5, and ntree = 500,

where N is the number of input variables and mtry is rounded down to the nearest integer.

There is extensive evidence in the literature that the Random Forest algorithm is insensitive

to training parameters,59,60 so that variation of mtry between 40 and N , of ntree from 250

upward, and of nodesize in the region 5 to 10 has little effect on prediction accuracy. As

has been done previously, we use these standard Random Forest parameters without further

optimization.59,60

Computational Expense

The CARMa calculations reported here were performed using a quad-core, 3.4GHz Intel Core

i5 iMac desktop with 16GB RAM (late 2013, operating system version 10.12.2). The most

time-consuming step in making a prediction with a pre-trained 3D-RISM–CARMa model

is solving the 3D-RISM equations; the remaining steps require negligible computational

expense. For the molecules considered here, none of the 3DRISM calculations took longer

than 10 minutes.
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Results

Steroid dataset

The steroids dataset consists of 21 compounds with corticosteroid-binding globulins (CBG)

binding affinity data. Cramer et al. report a q

2
= 0.734 for leave-one-out cross-validation of

a CoMFA model,9 which represents a relatively accurately prediction of the CBG binding

affinity data.

Table 1: Steroids leave-one-out cross-validation statistics (q2) using CARMa with various
descriptors and grid spacings.

Grid Spacing (Å) gO(r) g

PSE3
O (r)

a
gH(r) SFED

b
gC�(r)

c
gC+(r)

d
CoMFA

PLS
1.0 0.84 0.85 0.84 0.68 0.84 0.84 -
1.5 0.86 0.86 0.85 0.67 0.85 0.84 -
2.0 0.84 0.84 0.83 0.69 0.85 0.84 0.73
2.5 0.81 0.81 0.85 0.74 0.83 0.83 -
3.0 0.85 0.86 0.85 0.67 0.83 0.84 -

a Partial Series Expansion-3 closure; b Solvation Free Energy Density; c sp3 Carbon probe
atom with -1 charge; d sp3 Carbon probe atom with +1 charge.

A total of 30 different PLS models were trained for the steroid dataset (5 different 3D

RISM grid spacings ⇥ 6 different 3D RISM distribution functions). The complete set of

statistics (R2
, RMSE, �, bias for training and cross-validation) are presented in the Sup-

porting Information. Table 1 presents q2 values for LOO-CV for all 30 PLS models. Several

different trends are evident in Table 1. Firstly, the choice of bridge functional used to solve

the 3D RISM equations (KH or PSE-3) does not significantly influence the results. The q

2

values for CARMa models built on g

KH
O (r) or gPSE3

O (r) are nearly identical for all grid sizes.

A similar conclusion was reached in previous work that used PLS models trained on 1D

RISM descriptors to predict hydration free energy and Caco-2 permeability.20 (Since con-

verging the 3DRISM equations using the PSE-3 closure is occasionally problematic, the five

datasets discussed next were modelled using the KH closure). Secondly, for this dataset, the

PLS models trained on solvation density distributions (gO(r), gPSE3
O (r), gH(r), gC�(r) and
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gC+(r)) perform better than those trained on solvation free energy density (SFED). Thirdly,

there is no obvious trend between the various grid spacings. Although finer grids might be

expected to lead to more accurate models, this is not evident in the data, which suggests

that some redundancy is present in the finer grids.

Figure 3 shows the cross-validated predictions obtained for PLS models trained on gO(r)

distribution functions represented on a 2 Å grid; the same grid spacing used in the CoMFA

models. The CARMa model explains more of the variance in the experimental data than the

CoMFA model, as exemplified by q

2
= 0.84 for CARMa compared to q

2
= 0.73 for CoMFA.

The residual cross-validated error in the CARMa model (RMSE = 0.46) is predominantly

due to random error (� = 0.45) with a relatively small systematic error (bias = 0.09).

Figure 3: Correlation graphs of leave-one-out cross-validation (LOO-CV) for PLS models
using the gO(r) distribution data at 2.0 Å grid spacing.
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Importance

(a) gO(r) distribution importance. (b) gH(r) distribution importance.

Figure 4: Aldosterone is shown with PLS importance of gO(r) and gH(r) distributions at
grid spacings 1.0 (blue), 1.5 (red), 2.0 (grey), 2.5 (orange) and 3.0 (green). The graphics
show 10% of the most important regions for the PLS models.

The total contribution that each input variable made to the PLS latent variables was used

as a metric to assess its importance to the model. Figure 4 depicts the most important 10%

of the gO(r) and gH(r) functions as assessed from the PLS models. There is little difference

between the gO(r) and gH(r) descriptor models, which is perhaps not surprising given that

oxygen and hydrogen atoms are covalently bonded in water. In Figures 4a and 4b, the

regions highlighted are located by the terminal cyclohexane (ring A) of the steroids for all

grid spacings. A similar trend is observed in the importance graphics for the gC�(r) and

gC+(r) probe atom distributions (see Figure 5), but here the distributions seem to be more

localised in space in comparison to those for gO(r) and gH(r) (Figure 4).
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(a) gC�(r) distribution importance. (b) gC+(r) distribution importance.

Figure 5: Aldosterone is shown with PLS importance of gC�(r) and gC+(r) distributions at
grid spacings 1.0 (blue), 1.5 (red), 2.0 (grey), 2.5 (orange) and 3.0 (green). The graphics
show 10% of the most important regions for the PLS models.

pIC50 Data Sets

To further validate the methodology, CARMa models were developed to predict pIC50 values

for five datasets collated by Sutherland et al.1 In each case, the training/testing datasets

and aligned molecular structures selected by Sutherland et al. were used to provide a direct

comparison to their CoMFA and 3D-QSAR results. Three different regression methods were

considered: PLS, GA-PLS and RF. (The GA-PLS and RF algorithms were not used in the

previous section because they can not be reliably trained on smaller datasets).

In total, 450 different CARMa models were considered (5 3DRISM fields ⇥ 6 grid spacings

⇥ 3 regression methods ⇥ 5 datasets). All of the results are compiled in Table 2 (training

dataset) and Table 3 (testing dataset). As before, since correlation coefficients (q2 or R

2)

and predictive errors (RMSE) were found to be highly correlated for these datasets, only

the correlation coefficients are presented in Tables 2 and 3, but all other statistics (RMSE, �,

bias) are provided in the Supporting Information; presenting q

2 statistics here also permits a

18



direct comparison to previously published results. The "-" entries in Tables 2 and 3 indicate

that training PLS or RF models on 3D RISM fields with a 0.5 Å grid spacing was found to

be prohibitively computationally expensive. The best predictions for the external test set

are summarised in Table 4.
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Table 3: Test set predictive accuracy statistics (r2) for 5 pIC50 data sets using CARMa with various descriptors and grid
spacings. In bold are the best models and each dataset using the PLS, GA-PLS and RF models.

GSa (Å) gO(r)b gH(r)c SFEDd gC�(r)e gC+(r)f

PLS GA-PLS RF PLS GA-PLS RF PLS GA-PLS RF PLS GA-PLS RF PLS GA-PLS RF
ACE

0.5 - 0.541 - - 0.565 - - 0.472 - - 0.597 - - 0.615 -
1.0 0.558 0.531 0.621 0.571 0.459 0.595 0.447 0.474 0.615 0.611 0.564 0.636 0.605 0.582 0.614
1.5 0.532 0.460 0.612 0.561 0.510 0.613 0.440 0.559 0.603 0.605 0.513 0.621 0.585 0.502 0.599
2.0 0.519 0.156 0.592 0.572 0.373 0.559 0.450 0.487 0.575 0.596 0.345 0.621 0.623 0.497 0.589
2.5 0.542 0.481 0.578 0.531 0.467 0.605 0.458 0.507 0.577 0.638 0.458 0.625 0.631 0.502 0.616
3.0 0.505 0.395 0.601 0.513 0.501 0.550 0.433 0.397 0.608 0.578 0.424 0.631 0.602 0.459 0.608

AchE
0.5 - 0.670 - - 0.673 - - 0.438 - - 0.676 - - 0.697 -
1.0 0.626 0.629 0.454 0.632 0.637 0.476 0.404 0.474 0.506 0.660 0.587 0.405 0.665 0.601 0.402
1.5 0.632 0.422 0.460 0.623 0.490 0.488 0.414 0.423 0.518 0.658 0.696 0.443 0.659 0.595 0.385
2.0 0.587 0.459 0.454 0.583 0.317 0.484 0.366 0.494 0.537 0.634 0.491 0.445 0.644 0.500 0.359
2.5 0.603 0.393 0.493 0.648 0.481 0.471 0.373 0.364 0.495 0.608 0.345 0.456 0.601 0.364 0.359
3.0 0.606 0.429 0.468 0.637 0.365 0.472 0.383 0.335 0.526 0.621 0.208 0.431 0.654 0.269 0.397

BZR
0.5 - 0.186 - - 0.166 - - 0.088 - - 0.183 - - 0.187 -
1.0 0.177 0.142 0.202 0.190 0.142 0.198 0.095 0.114 0.205 0.203 0.125 0.198 0.197 0.165 0.192
1.5 0.184 0.078 0.197 0.181 0.205 0.202 0.084 0.045 0.180 0.209 0.195 0.196 0.192 0.092 0.203
2.0 0.171 0.130 0.214 0.194 0.208 0.193 0.092 0.156 0.193 0.184 0.055 0.199 0.191 0.150 0.198
2.5 0.189 0.116 0.189 0.188 0.033 0.186 0.111 0.125 0.188 0.172 0.114 0.183 0.184 0.074 0.185
3.0 0.155 0.076 0.203 0.166 0.060 0.193 0.071 0.118 0.188 0.193 0.102 0.217 0.151 0.095 0.209

COX2
0.5 - 0.327 - - 0.334 - - 0.200 - - 0.351 - - 0.336 -
1.0 0.343 0.322 0.347 0.346 0.341 0.347 0.176 0.241 0.355 0.365 0.342 0.353 0.366 0.282 0.341
1.5 0.326 0.243 0.353 0.348 0.224 0.357 0.166 0.260 0.372 0.344 0.248 0.364 0.363 0.266 0.370
2.0 0.308 0.303 0.338 0.331 0.257 0.335 0.188 0.183 0.341 0.334 0.216 0.357 0.342 0.269 0.339
2.5 0.303 0.164 0.349 0.299 0.251 0.339 0.176 0.182 0.346 0.312 0.225 0.338 0.323 0.228 0.374
3.0 0.323 0.249 0.343 0.323 0.188 0.318 0.156 0.139 0.367 0.348 0.198 0.318 0.382 0.172 0.375

DHFR
0.5 - 0.548 - - 0.545 - - 0.421 - - 0.567 - - 0.548 -
1.0 0.540 0.513 0.603 0.539 0.548 0.604 0.397 0.485 0.567 0.533 0.524 0.597 0.538 0.514 0.600
1.5 0.534 0.532 0.606 0.535 0.527 0.601 0.392 0.486 0.566 0.529 0.560 0.590 0.537 0.504 0.630
2.0 0.517 0.439 0.610 0.531 0.519 0.612 0.390 0.455 0.555 0.510 0.430 0.601 0.532 0.475 0.604
2.5 0.518 0.396 0.621 0.515 0.371 0.622 0.381 0.410 0.540 0.524 0.497 0.598 0.538 0.453 0.620
3.0 0.536 0.425 0.652 0.530 0.463 0.612 0.375 0.351 0.528 0.532 0.454 0.589 0.562 0.515 0.613

a Grid Spacing; b Oxygen Distribution; c Hydrogen Distribution; d Solvent Free Energy Distribution
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Table 4: Best test set predictive accuracy statistics (r2) for the pIC50 data sets compared to
CoMFA and best literature model.

q2 Grid Spacing Å RMSEa Descriptor
ACE

CoMFA 0.490 2.0 1.520 -
CoMSIA Basic 0.520 2.0 1.460 -

PLS 0.638 2.5 1.325 gC�(r)

GA-PLS 0.615 0.5 1.366 gC+(r)

RF 0.636 1.0 1.304 gC�(r)

AchE
CoMFA 0.470 2.0 0.937 -

PLS 0.665 1.0 0.791 gC+(r)

GA-PLS 0.697 0.5 0.761 gC+(r)

RF 0.537 2.0 0.918 SFED
BZR

CoMFA 0.000 2.0 0.960 -
2.5D 0.200 2.0 0.861 -
PLS 0.209 1.5 0.878 gC�(r)

GA-PLS 0.208 2.0 0.848 gH(r)

RF 0.217 3.0 0.863 gC�(r)

COX2
CoMFA 0.290 2.0 1.233 -

CoMSIA Extra 0.370 2.0 1.164 -
PLS 0.382 3.0 1.159 gC+(r)

GA-PLS 0.351 0.5 1.211 gC�(r)

RF 0.375 3.0 1.252 gC+(r)

DHFR
CoMFA 0.590 2.0 0.886 -
HQSAR 0.630 2.0 0.837 -

PLS 0.562 3.0 0.913 gC+(r)

GA-PLS 0.567 0.5 0.913 gC�(r)

RF 0.652 3.0 0.837 gO(r)
a For literature results this has been recalculated from the standard error of prediction (s)

reported by Sutherland et al.1 as: RMSE =
p

((s

2
)(N � 1/N).

ACE Dataset. The ACE dataset comprises pIC50 data for 114 inhibitors of angiotensin

converting enzyme separated into a training dataset of 76 and a test dataset of 38 molecules.

The pIC50 values range between 2.1 - 9.9. Inspection of the data in Tables 2 and 3 show

that the CARMa models are relatively insensitive to the choice of 3D RISM field or grid-

spacing for this dataset. The most accurate predictions were obtained using either PLS or RF
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regression on gC�(r) variables. For the external test set, the RF model has a slightly smaller

error (RMSE = 1.304) than the PLS model (RMSE = 1.325), but both methods report

R

2
= 0.64 (2 decimal places). The correlation between experimental and predicted pIC50

data for the PLS model is illustrated Figure 6. By comparison, the most accurate predictions

reported by Sutherland et al. were less accurate: CoMSIA (R2
= 0.520, RMSE = 1.46) and

CoMFA (R2
= 0.490, RMSE = 1.52).

Using a GA to select input variables for the PLS method leads to a high q

2 for cross-

validation, which is not surprising given that the GA fitness function was RMSE for 3-fold

cross-validation, but these models do not generalise as well as the PLS or RF models; the

best GA-PLS prediction of the test set is R

2
= 0.615 and RMSE = 1.366.

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10

2
4

6
8

10

Experimental

Pr
ed
ic
te
d

R = 0.82
RMSE = 1.34
σ = 1.34
bias = 0.09

(a) Training Set (LOO-CV)

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

● ●

●

●

●

4 6 8 10

4
6

8
10

Experimental

Pr
ed
ic
te
d

R = 0.8
RMSE = 1.32
σ = 1.28
bias = 0.36

(b) Test set

Figure 6: ACE correlation graphs of leave-one-out cross-validation (LOO-CV) (a) and test set
(b) predictive accuracy for the CARMa PLS model using the gC�(r) probe atom distribution
descriptor at 2.5 Å grid spacing.

AchE Dataset. The pIC50 values for the 111 acetylcholinesterase inhibitors in the AchE

dataset range from 4.3 - 9.5. Sutherland et al. found CoMFA to be more accurate than other

QSAR methods for modelling this dataset (R2
= 0.47 and RMSE = 0.937). Tables 3 and
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4 show that an improvement in accuracy can be made by replacing CoMFA’s electric/steric

fields with gC+(r) variables giving R

2
= 0.665 and RMSE = 0.791 for PLS regression. Using

a GA to select input variables for PLS further improves the accuracy for most 3DRISM fields

and grid-spacings. The best CARMa model was obtained with GA-PLS regression on gC+(r)

variables giving R

2
= 0.697 and RMSE = 0.761 (Table 4). The correlation diagrams for

this model are presented in Figure 7.
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Figure 7: AchE correlation graphs of leave-one-out cross-validation (LOO-CV) (a) and test
set (b) predictive accuracy for the CARMa GA-PLS model using the gC+(r) probe atom
distribution descriptor at 0.5 Å grid spacing.

BZR and COX2 datasets The BZR and COX2 data have previously proven to be almost

impossible to model accurately using QSAR methods. Sutherland et al. reported R

2
= 0

and R

2
= 0.29 for CoMFA predictions of the BZR and COX2 test sets, respectively. The

best results were R

2
= 0.200 and RMSE = 0.861 for a "2.5D" QSAR model of the BZR

data and R

2
= 0.370 and RMSE = 1.164 for a CoMSIA Extra model of the COX2 data;

both of these models were considered to be too poor to be particularly useful. As would be

expected, the CARMa method is also not able to produce very accurate models for these
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datasets, but in both cases it improves on the CoMFA results and matches or improves upon

the other predictions. For the BZR dataset, a CARMa model using gC�(r) variables and RF

regression gives R

2
= 0.217 and RMSE = 0.863, while for the COX2 dataset a PLS model

trained on gC+(r) variables gives R

2
= 0.217 and RMSE = 1.159.

For the COX2 dataset, part of the reason for the poor test set prediction is that the

training and test sets cover different ranges of property space. The correlation diagram for

the PLS model on gC+(r) variables is given in Figure 8a. There are only three compounds

with pIC50 values below 5 in the training set, whereas in the test set there are 19 compounds

fitting this criteria. Figure 8b shows that compounds with pIC50 values above 5 are relatively

well predicted, with the exception of one or two outliers, but the 19 compounds with pIC50

values below 5 have all been overestimated.
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Figure 8: COX2 correlation graphs of leave-one-out cross-validation (LOO-CV) (a) and
test set (b) predictive accuracy for the CARMa PLS model using the gC+(r) probe atom
distribution descriptor at 3.0 Å grid spacing.

DHFR Dataset. A CoMFA model of the DHFR data has previously been reported to

give a R

2
= 0.590 and RMSE = 0.886, while the HQSAR produces an improved result
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R

2
= 0.630 and RMSE = 0.837. The best CARMa model is found using the RF method

and gO(r) variables at 3.0 Å grid-spacing, which has R

2
= 0.652 and RMSE = 0.837. In

Table 4, CARMa is shown to improve R

2 in comparison to CoMFA by 6.2% when the RF

method is used with the gO(r) descriptor. In fact, the RF method produces the best result for

all five descriptors tested here. The poorest results are obtained from the SFED descriptors

as shown in Table 3. The PLS and GA-PLS methods produce results comparable to the

literature when used with gO(r) and gH(r) descriptors, but improved results when used with

the probe atom descriptors, gC�(r) and gC+(r). Figure 9a shows the correlation diagram for

cross-validation of the DHFR training data using the best RF model. It is apparent that

the models do not make very accurate predictions for molecules with pIC50 values above

8, which may partly be because this region of property space is under-represented in the

training dataset.
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Figure 9: DHFR correlation graphs of leave-one-out cross-validation (LOO-CV) (a) and test
set (b) predictive accuracy for the CARMa RF model using the gO(r) distribution descriptor
at 3.0 Å grid spacing.
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Discussion

The predictive accuracy of CARMa models using various parameters and descriptors have

been examined using the steroid dataset defined by Cramer et al in 1988 and the five largest

data sets reported by Sutherland et al in 2004.1,9 The physiochemical properties of com-

pounds were encoded using 3D-RISM calculations for application in field-based QSAR. The

3D-RISM calculations provided solvent density distribution functions (gO(r), gH(r), gC�(r),

gC+(r)) and SFED distribution functions. The models were implemented using PLS, GA-

PLS and RF regression.

Steroids

For the steroid dataset, only PLS regression was used as the dataset was considered to be

too small to train reliable GA/PLS or RF models; using PLS with three latent variables also

permits a direct comparison with the CoMFA results of Cramer et al.7 From the CV results,

it emerges that the solvent density distribution functions (gO(r),gH(r), gC+(r), gC�(r)) all

perform better than the SFED distribution function. With the exception of SFED, the

CARMa and CARMa(electrolyte) descriptors all give more accurate models than CoMFA,

Table 1. We find that there is no preferred grid spacing, which suggests that the coarse grids

contain much of the same information as the finer grids.

pIC50 Data Sets

Several trends are evident on comparison of the predictive accuracy of the CARMa,CoMFA

and 3D-QSAR models reported in Tables 3 and 4,

(1) the predictions made by CARMa and CARMa(electrolyte) are more accurate than

CoMFA for most of the 5 data sets regardless of which regression method is used. The

exceptions are the PLS and GA/PLS (but not RF) models of the DHRF dataset.

(2) the probe atom distribution descriptors consistently produce accurate predictions of
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the protein-ligand binding assay data. The best predictive model derived from the probe

atom descriptors performs substantially better than the best literature model for the ACE,

AchE, BZR and COX2 data sets. In the case of DHFR the best model derived from the

probe atom descriptors is of comparable accuracy to the best literature model (HQSAR).

(3) the SFED descriptor tends to perform poorly in comparison to the solvent density

descriptors (gO(r), gH(r), gC+(r), gC�(r)). This observation is interesting because both

previous 3D-QSAR studies using 1D or 3D RISM have employed SFED.20,21

(4) the gO(r) and gH(r) models tend to generate similar results. This is perhaps because

oxygen and hydrogen atoms are covalently bonded in water molecules, resulting in similar

information being captured in their distribution functions.

Overview

Since no clear consensus is reached with respect to the optimal choices of grid-spacing or

regression method for CARMa, it is instructive to compare the CARMa and CoMFA results

for the parameters used in the CoMFA model (PLS regression with 3 latent variables and

a 2 Å grid spacing). As shown in Table 5, more of the variance in the test set is explained

by models trained on CARMa solvent density distribution functions than either the CoMFA

or CARMa SFED variables. The rank order of the accuracy of the CARMa variables is

gC+(r) > gC�(r) > gH(r) > gO(r) >> SFED.

Table 5: Comparison of test set predictive accuracy statistics (r2) for the pIC50 data sets
modelled using PLS regression and a 2 Å grid spacing. The final row gives the mean of the
r

2 values for all five datasets

Dataset CoMFA gC+(r) gC�(r) gH(r) gO(r) SFED
ACE 0.49 0.623 0.596 0.572 0.519 0.45
AcHE 0.47 0.644 0.634 0.583 0.587 0.366
BZR 0.00 0.191 0.184 0.194 0.171 0.092

COX2 0.29 0.342 0.334 0.331 0.308 0.188
DHFR 0.59 0.532 0.510 0.531 0.517 0.39

(r

2
) 0.368 0.466 0.452 0.442 0.420 0.297
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Conclusions

We have proposed an extension of the CARMa methodology introduced by Güssregen et

al.21 in which charged carbon probe atoms commonly used in CoMFA are inserted in the

3DRISM solvent model to capture specific molecular interactions. Extensive benchmarking

over datasets for six different protein-ligand systems demonstrates that the original CARMa

method performs better than CoMFA in most cases. Using solvent density distribution

functions (gO(r),gH(r)) gives consistently more accurate predictions than using solvation

free energy density distributions. When the CARMa models are developed using density

distribution functions for C+/C- probe atoms in place of those for water, there is a small

but consistent increase in prediction accuracy; the gC+(r) and gC�(r) variables give the most

accurate results for 5 of the 6 datasets. Although the 3DRISM equations should be solved

on a relatively fine grid to ensure physical accuracy (grid spacing ⇡ 0.5 Å), in most cases

converting to a coarser grid (1 Å to 3 Å spacing) for use in CARMa doesn’t significantly

reduce prediction accuracy, but does simplify the statistical modelling procedure. Using a 2

Å grid spacing and PLS regression, the CARMa solvent density distribution functions give

consistently more accurate predictions than CoMFA (Table 5).

There is clearly scope for future work. From one side, the CARMa models would be

expected to benefit from improvements in standard QSAR procedures or 3DRISM theory.

Better algorithms for molecular alignment may reduce statistical noise and improve predic-

tion accuracy. More advanced machine learning techniques may be better suited to solve

the underdetermined regression problem posed by CARMa (and CoMFA). Open problems in

3DRISM theory include the design of bridge functionals, free energy functionals, and more

efficient and robust algorithms for solving the RISM equations.28 From another side, it may

be possible to choose solvents or probe atoms that capture molecular interactions more com-

pletely or that more closely mimic biological environments. However, none of these ideas

for future work should limit the use of CARMa now. Since the CARMa variables can be

computed at minimal computational expense using existing software (e.g. AMBER),61 the

29



method can already be easily implemented and used in drug discovery.
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