Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Plasma-based wakefield accelerators as sources of axion-like particles

Burton, David A and Noble, Adam (2018) Plasma-based wakefield accelerators as sources of axion-like particles. New Journal of Physics, 20. ISSN 1367-2630

[img]
Preview
Text (Burton-Noble-NJP-2018-Plasma-based-wakefield-accelerators-as-sources-of-axion-like)
Burton_Noble_NJP_2018_Plasma_based_wakefield_accelerators_as_sources_of_axion_like.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (492kB) | Preview

Abstract

We estimate the average flux density of minimally-coupled axion-like particles generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of axion-like particles whose flux density is comparable to that of solar axion-like particles at Earth. This mechanism is optimal for axion-like particles with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.