
This version is available at https://strathprints.strath.ac.uk/63477/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Assessment of the Variability of Airborne Contamination Levels in an Intensive Care Unit over a 24 Hour Period

M.G. Booth1, L. Dougal1, E. Khoo1, H. Hood2, S.J. MacGregor3, and M. Maclean2,4

1 Glasgow Royal Infirmary (GRI), Glasgow, UK, 2 The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK, 3 School of Medicine, Dentistry and Nursing, University of Glasgow, UK, 4 Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK

Introduction

- Airborne transmission of infectious microorganisms is a serious public health threat, accounting for ~30-33% of all nosocomial infections.
- Environmental monitoring of airborne contamination levels was conducted in GRI ICU, in both occupied and unoccupied patient isolation rooms.
- Samples were collected on agar plates, and bacterial contamination levels recorded as CFU/m3 of air.
- An activity log was collated to record activities that might contribute to spikes in contamination levels.

Methods

- A sieve impactor sampler was used to collect 500L air samples every 15 minutes over a 24 hour period (8am – 8pm).
- Samples were collected on agar plates, and bacterial contamination levels recorded as CFU/m3 of air.
- A droplet impactor sampler was used to collect 150L air samples at 08:00, 13:00, 18:00 and 23:00.
- The probability of contamination was expressed as probabilistic curves in terms of CFU/m3 of air.

Results

Study

Graphical Data

- Observation (15 min intervals)

Statistical Data

- Observation (15 min intervals)

Analysis

- Average: 104 CFU/m3
- Highest: 510 CFU/m3
- Lowest: 12 CFU/m3
- Patient turn, patient moved from bed to chair, visitation, high room activity

Microbiology:

- Visual representation of variation in air contamination levels throughout the day in an occupied patient isolation room.

Future Work

- The authors of this work wish to thank the staff and patients of Glasgow Royal Infirmary Intensive Care Unit for their patience and help throughout the duration of this study. LD is funded by an EPSRC doctoral training grant (Reference: EP/M508159/1).

Conclusions

- This study demonstrates the degree of airborne contamination that can occur in an ICU over a 24 hour period and how much it can vary.
- Numerous factors were found to contribute to microbial air contamination including patient status, length of stay, time of day and room activity.
- Peaks in airborne contamination showed a direct relation to an increase in room activity.
- Contamination levels were lower overall during the night and in unoccupied isolation rooms, whilst the highest counts were observed in an isolation room occupied by a patient with C. difficile infection.

Acknowledgements

- Consideration should be given to potential improved infection control strategies and decontamination technologies which could be deployed within the clinical environment to reduce the airborne contamination levels, with the ultimate aim of reducing healthcare-associated infections from environmental sources.