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Abstract: A new heuristic method is proposed for the problem of vessel routing optimisation for offshore wind farms. Turbines requiring a
maintenance action are arranged into clusters, each associated with a vessel and a value for repairing the turbines. The clusters with the highest
value are used to produce offspring, which is selected from the remaining high-value clusters, provided the constraints are met. The process is
repeated until vessels available or turbines requiring maintenance are exhausted. To test the performance of the proposed approach, the same
problem was formulated as integer linear programming problem and benchmarked against the IBM CPLEX commercial solver. The proposed
method was shown to consistently produce close-to-optimal policies within seconds, even in problems with 15–20 turbines requiring a main-
tenance action. Although the proposed method only outperformed the commercial solver in one instance, its benefits include short and con-
sistent computational times and the fact that the users can easily understand, implement and adapt the algorithm to suit their needs.
1 Introduction

The offshore wind industry has grown significantly in the last
5 years, with 6 GW of new capacity installed in Europe between
2013 and 2015 [1]. However, the cost of energy remains higher
than other renewables such as onshore wind and solar [2]. O&M
costs constitute up to a third of the total cost of energy from offshore
wind turbines [3]; one of the ways to reduce this proportion, and
therefore, the overall cost of energy is to optimise the use of
vessels and resources when carrying out maintenance activities.
The largest operational offshore wind farm in the world,

London Array, is made up of 175 wind turbines; managing the
Operations & Maintenance (O&M) actions on this scale is a
complex problem. Interviews with wind farms operators
have revealed that this problem is solved manually by experienced
maintenance planners. However, given the complexity of the
problem and the number of constraints which need to be considered,
human ability of consistently producing close-to-optimal policies
when faced with billions of possible combinations of assignment
of vessels to turbines and order in which they are visited has to
be questioned. Operators would benefit from effective algorithms,
which can be transformed into commercial decision support tools.
In this paper, the cluster matching algorithm (CMA) is proposed;

a heuristic method which can contribute to the development of de-
cision support tools for offshore wind, which will aid O&M cost
reductions.
1.1 Related work

A comprehensive overview of different heuristic approaches in the
context of vehicle routing problems (VRPs) was provided by
Laporte [4], who summarised the 50 years of research on vehicle
routing. One of his conclusions was that ‘several of the most success-
ful metaheuristics are over engineered’ and that researchers should
attempt to produce simpler and more flexible algorithms which can
handle a wide range of constraints. It is the lack of flexibility of the
available metaheuristic methods, which led the authors of this paper
to develop a heuristic method specifically for the problem at hand.
J. Eng., 2017, Vol. 2017, Iss. 13, pp. 1159–1163
doi: 10.1049/joe.2017.0511

This is an open
Many VRPs can be formulated as integer linear programming
problems, which can be solved effectively with commercial
solvers such as IBM CPLEX Optimizer, which use
branch-and-bound and branch-and-cut algorithms.
Branch-and-bound methods [5] are widely used for solving a
variety of VRPs; they intelligently search the space of all possible
solutions. Branches that contain no solutions which are better
than the current best are discarded without enumeration.
Branch-and-bound methods have been used in the context of
VRPs and O&M optimisation in [6, 7]. Branch and cut is an exten-
sion of the branch-and-bound method, in which cutting planes are
used to tighten the linear programming relaxations [8]. Use of
branch and cut in the VRP domain includes [9–11].

Within the offshore wind domain, the problem of vessel routing
for O&M actions has been tackled by a number of researchers [12–
15]. Rolling horizon heuristic proposed by Raknes [12] takes a long
time (up to 2 h) to compute for large problems and does not guar-
antee a feasible result. Stahlane [13] used path and arc flow heuris-
tics, while Dai [14] and Irawan [15] used commercial solvers
(Xpress Optimizer and IBM CPLEX Optimizer, respectively),
capable of providing the optimal solution in a short computational
time. Naturally, the downside of using commercial solvers is that, in
most cases, there is a fee associated with using them and the user
has limited or no ability to influence the solver.

We proposed a model for optimising the vessel routing for off-
shore wind farms described in Dawid et al. [16]. However, it was
only capable of solving problems with up to ten failed wind tur-
bines, as exhaustive search was used to evaluate all possible com-
binations of assignment of vessels to turbines. In this paper, a
heuristic method is proposed for solving the master problem (as
defined by Irawan [15] and Dawid [16]) only. IBM CPLEX
Optimizer, a commercial solver, was chosen as the benchmark to
evaluate the proposed methodology against.

2 Methodology

The master problem involves generating multiple clusters of tur-
bines, assigning a vessel to each cluster and matching individual
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Table 1 Comparison of inputs to Cases A–C

Case A Case B Case C

turbines failed 10 15 20
technicians available 25 32 45
vessels available 3 4 5
number of policies generated by CMA 15,000 36,000 51,840
clusters to choose from (1) 1155 7760 30,975

Table 2 Sample of 4 out of 1155 clusters which are input to the heuristic
model in Case A, instance #1

Cluster
ID

Turbines
visited

Technicians
required

Vessel no.
used

Value

1 T1 T2 T3 T4 9 CTVa 1 £32,207
2 T1 T2 T3 T5 9 CTV 1 £32,239
3 T1 T2 T3 T6 10 CTV 1 £34,090
4 T1 T2 T3 T7 10 CTV 1 £33,977

aCTV – crew transfer vessel.
clusters into a policy. Given a large set of clusters of turbines, the
objective is to choose a set of clusters which maximises the total
rewards (or minimises costs), while satisfying the constraints.
Each cluster is defined by four parameters:

(i) Turbines visited
(ii) Vessel used
(iii) Number of technicians required to carry out repairs
(iv) Value of repairing turbines visited (rewards – costs)

Examples of the clusters, which are an input to the heuristic
model, are shown in Section 3. Parameters 3 and 4 are calculated
in the inner section of the general vessel routing problem, and are
inputs to the outer problem. More information on how these para-
meters are calculated is available in [16].

The number of clusters depends on the size of the problem
(number of turbines and vessels) and on the maximum number of
turbines in a cluster (η). It was shown that setting η to 4 and enumer-
ating all possible combinations of turbines, yields, in most cases,
answers within 97% of the optimal solution [15]. Limiting η
decreases the computational time significantly, by reducing the
number of possible combinations when matching individual clus-
ters into a policy. This limit reflects the fact that the number of tur-
bines a single vessel can maintain on one day will be limited by its
capacity and the time available. Assuming a problem with a number
of turbines requiring a maintenance action T, a set of available
vessels V, the number of clusters can be calculated from:

Number of clusters = V∗
∑n=N

n=1

T
n

( )
(1)

Multiplying the sum of binomial coefficients by the number of
vessels is necessary if the vessels have different properties; as
some clusters may only be successfully serviced by the more
capable vessels due to time constraints.

In the next step, all clusters are sorted by value in a descending
order. Alternatively, value per technician in a cluster can be used to
sort all clusters in scenarios with a shortage of technicians. The first
policy is generated by choosing the highest value cluster, and
matching it with the next highest value cluster, which:

(i) Does not visit the same turbines
(ii) Does not use the same vessel
(iii) Does not exceed the total number of technicians available on

the day

These constraints ensure that no turbine is visited by more than
one vessel (although it does not guarantee that all turbines will be
visited). The above is repeated until vessels available or turbines re-
quiring maintenance are exhausted, resulting in the creation of a
single policy. Note that this procedure is detailed in the
Appendix. The user can specify the number of policies which are
to be generated, depending on the time available for the decision
to be made, by defining the amount of ‘mothers’ in each tier
(with ‘mothers’ being individual clusters which are selected to be
matched with multiple ‘children’ clusters from the following
tiers). For example, in a case with three vessels, defining:

Tier 1 limit = a

Tier 2 limit = b

Tier 3 limit = c

would result in the algorithm producing an amount of policies equal
to a*b*c, which consist of up to three clusters (as there are three
tiers), each containing up to η turbines. Setting a equal to 100 as
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an example, means that 100 of the highest value clusters will be
used to produce offspring (tier 1). Setting b= 10, as an example,
ensures that each ‘mother’ cluster selected in tier 1 will be
matched with ten highest value ‘children’ clusters, which are com-
patible with its ‘mother’. Clusters available for selection in tiers
below the top one will vary depending on the clusters chosen in
the tiers above it. The value of each policy is calculated by
adding the values of individual clusters, with the highest value
policy selected and displayed to the user as suggested vessel
routing plan. The entire solving procedure is detailed in the
Appendix.

This methodology ensures that the highest value clusters are used
to produce offspring. Many policies can be generated in a relatively
short computational time as the next section demonstrates and
close-to-optimal policies are generated in fractions of a second.

3 Computational studies

To assess the performance of the algorithm proposed in this paper,
its outputs were compared to the results obtained from IBM CPLEX
Optimizer software. In total, 30 cluster matching problems were
solved, 10 for each of the cases are outlined in Table 1. The simula-
tions were run on a computer with an i7 3.4 GHz processor and
8 GB RAM using MATLAB and CPLEX for MATLAB software.

Tests were run based on a wind farm with 100 turbines arranged
on a 10-by-10 grid. In all, 10, 15 and 20 out of 100 turbines required
a maintenance action in Cases A, B and C, respectively. The com-
plexity of the problem increases significantly as the number of
failed turbines is doubled between Cases A and C; the number of
clusters to choose from is over 26 times larger (1155 for Case A
and 30,975 for Case 3 from (1), using η equal to 4).

The number of policies generated by CMA in each of the cases
(Table 1) was set at a relatively low level to ensure short computa-
tional time and enable meaningful comparison with CPLEX opti-
miser. The only difference between the instances in each of the
cases was the turbine locations and type of repairs. In some
cases, it will not be possible to repair all turbines with a fault,
due to the constraint on the number of technicians. As the
number of technicians available to the operator in Case B was set
at a lower level (in terms of technicians per failed turbine) compared
to Cases A and C, the former is expected to feature a larger propor-
tion of heavily constrained problems.

Table 2 illustrates a sample of the key input to the model – the
clusters of turbines and the parameters associated with each cluster.
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Table 3 Results for Case A: 10 turbines. The number in bracket is the
difference between CMA and CPLEX results

Instance CMA
value

CPLEX value
(difference)

CMA CPU
time, s

CPLEX CPU
time, s

#1 £88,183 £88,183 (0%) 2 0.6
#2 £86,240 £86,244 (0.004%) 2 0.5
#3 £88,063 £88,063 (0%) 2 4.7
#4 £88,204 £88,204 (0%) 2 0.5
#5 £90,198 £90,198 (0%) 2 0.5
#6 £88,061 £88,061 (0%) 2 0.5
#7 £92,134 £92,134 (0%) 2 0.4
#8 £90,135 £90,135 (0%) 2 0.5
#9 £94,144 £94,144 (0%) 2 0.5
#10 £89,993 £89,993 (0%) 2 0.5

Table 5 Results for Case C: 20 turbines. The second result for instance
#5 (in brackets) indicates that improved solution was found by using a
different sorting technique

Instance CMA value CPLEX value
(difference)

CMA CPU
time, s

CPLEX CPU
time, s

#1 £146,952 £147,112 47 13.6
(0.11%)

#2 £143,126 £150,897 40.4 7.6
(5.43%)

#3 £155,034 £155, 269 48.3 8.5
(0.14%)

#4 £150,902 £151,010 44.2 8.3
(0.07%)

#5 £145,214
(£152,883)

£153,173 43.4 7.9

(5.48%, 0.19%) (47)
#6 £154,972 £155,192 48.2 8.7

(0.14%)
#7 £145,027 £145, 200 51.5 8.9

(0.12%)
#8 £136,157 £140,995 38.7 16.3

(3.52%)
#9 £139,309 £147,147 44.1 19.5

(5.63%)
#10 £151,163, £151,308 47.2 8.2

(0.1%)
4 Results

Table 3 compares the performance of the CMA to IBM CPLEX
Optimizer in test case A. The former matched the policies of the
latter in nine out of ten instances, with a minute difference in the
other instance (£4). The computational time was marginally
shorter for CPLEX solver, with the exception of instance #3.
The results of simulations for Case B are shown in Table 4.

Increased complexity of the problem led to longer computational
times for the CPLEX solver. The values achieved by the CMA
are very close to values produced by CPLEX, the difference
between the two was never higher than £173 or 0.17%. The
CMA managed to match CPLEX value in four out of ten instances,
outperforming the commercial optimiser in instance #4, as the
optimal result was achieved in a shorter computational time. It is
also worth noting that the CPLEX computational time in instance
#1 was over ten times longer than CMA.
Table 5 shows the results of Case 3 tests. The average computa-

tional time for both methods has increased. While in Cases A and B,
the number of turbines repaired using CMA- and CPLEX-generated
policies were the same, in Case C the CPLEX managed to repair an
additional turbine in instances #2, #5 and #9, which is reflected in
the higher difference in value.
Table 4 Results for Case A: 15 turbines

Instance CMA
value

CPLEX value
(difference)

CMA CPU
time, s

CPLEX CPU
time, s

#1 £119,083 £119,104 32.1 438.2
(0.02%)

#2 £116,107 £116,107 34.5 5.3
(0%)

#3 £126,907 £126,951 33.7 2.2
(0.04%)

#4 £116,034 £116,034 35.2 53.5
(0%)

#5 £116,932 £117.133 32.6 5.1
(0.17%)

#6 £114,946 £115,134 34.1 27.8
(0.16%)

#7 £114,093 £114,093 30.3 1.5
(0%)

#8 £124,722 £124, 945 33.4 1.8
(0.17%)

#9 £114,871 £115,036 35 27.4
(0.14%)

#10 £113,862 £113,862 30.4 3.3
(0%)
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This is an open
In the CMA method, high-value policies are encouraged by
sorting all clusters by their value and using the best of them to gen-
erate offspring. However, in heavily constrained scenarios, an alter-
native approach can be adopted; the user can choose to sort all
clusters by the value they deliver divided by the number of techni-
cians required to repair all turbines in a cluster. This encourages pol-
icies which achieve high value while utilising few technicians.
Given that the number of technicians is one of the key constraints,
this can lead to a better performance of the CMA in heavily con-
strained scenarios.

Applying the aforementioned approach to instances in which
CPLEX outperformed the CMA by repairing an additional
turbine (Case C, instances #2, #5 and #9) led to a significant im-
provement in instance #5: an additional turbine was repaired, as
shown in Table 5.

In some of the scenarios across Cases A–C, neither CPLEX nor
CMA managed to find a policy which resulted in all turbines being
repaired. This was caused by a higher proportion of turbines requir-
ing complex repairs and more technicians to complete, taking the
number of technicians required beyond the amount available to
the operators on the day. These problems can be considered as
being heavily constrained. It is worth noting that across all cases,
there were six instances, in which the CPLEX computational time
exceeded 15 s, five of them were heavily constrained (cases with
a shortage of resources and time leading to failure in repairing all
turbines). These constituted only 40% of all test instances (12/
30). It can be concluded that CPLEX takes longer to compute
heavily constrained problems. This does not affect the CMA
method; its consistency can be seen as an advantage for applications
where short computational time is crucial. A comparison of the
computational time of each method versus the value of the best
policy generated is shown in Fig. 1.

From Fig. 1, it can be seen that the CMA produces a very good-
policy (within 0.34% of optimal) in a fraction of a second. The
rate at which the solution is improved is high initially, but
reduces with computational time. It is likely that given a longer
computational time, the CMA result would match the value
achieved by CPLEX.
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Fig. 1 Comparison of computational time and performance of CMA and
CPLEX for Case C instance #1

Fig. 2 Solving procedure for a problem with three vessels available

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
5 Conclusions

The proposed CMA methodology is capable of providing
close-to-optimal solutions in under a minute and performs particu-
larly well in scenarios with fewer than 15 turbines. Although the use
of commercial solvers can be advantageous in complex problems
with over 20 failed wind turbines, having such a high number of
issues on an average offshore wind farm is very rare.

In comparison to the CPLEX Optimizer, the CMA computational
times were more consistent. It was found that, unlike CPLEX, the
CMA computational time was not increased when solving heavily
constrained problems.

Interviews with O&M planners have revealed that practitioners
value being able to understand how the algorithm calculates the
answer and being able to change or influence it. The CMA is
easy to understand and it allows the user to modify its parameters,
such as the value used to sort all clusters. The number of iterations
can also be defined by the user depending on the time available for
computation. Increasing the number of iterations leads to better
quality results at a cost of increased computational time. The pro-
posed method is easy to implement in any programming language
and provides quality solutions to complex problems without the
need for purchasing a commercial solver.

This heuristic method could be improved further by using a local
search or a large neighbourhood search, to enhance the quality of
results produced in complex scenarios.
6 Acknowledgments

This work was funded by Engineering Physical Sciences Research
Council via the University of Strathclyde’s Wind Energy Systems
Centre for Doctoral Training, grant number EP/G037728/1.
7 References

[1] Corbetta G., Mbistroba A., Ho A.: ‘Wind in power 2015 european sta-
tistics’, 2016. Available at: https://windeurope.org/wp-content/
uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.
pdf, accessed 12 June 2017.

[2] World Energy Council: ‘World energy perspective – cost of energy
technologies’, 2013, p.48. Available at: http://www.worldenergy.
org/wp-content/uploads/2013/09/
WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf,
accessed 12 June 2017.

[3] Scheu M., Matha D., Hofmann M., ET AL.: ‘Maintenance strategies for
large offshore wind farms’, Energy Proc., 2012, 24, pp. 281–288

[4] Laporte G.: ‘Fifty years of vehicle routing’, J. Transp. Sci., 2009, 43,
pp. 408–416

[5] Wood E.L., Lawler D.E.: ‘Branch-and-bound methods: a survey’,
Oper. Res., 1966, 14, (4), pp. 699–719

[6] Kovacs A., Erdos G., Monostori L., ET AL.: ‘Scheduling the mainten-
ance of wind farms for minimizing production loss’. 18th IFAC
World Congress Proc., 2011, vol. 44, no. 1

[7] Fischetti M., Toth P., Vigo D.: ‘A branch-and-bound algorithm for
the capacitated vehicle routing problem on directed graphs’, Oper.
Res., 1994, 42, (5), pp. 846–859

[8] Mitchell J.E.: ‘Branch and cut’, (James J. Cochran (Ed.)), ‘Wiley en-
cyclopedia of operations research and management science’ (John
Wiley & Sons, Inc., Troy, New York, 2011) doi: 10.1002/
9780470400531.eorms0117

[9] Ropke S., Cordeau J.F., Laporte G.: Models Branch-and-Cut
Algorithms Pickup Deliv. Probl. with Time Windows, 2007

[10] Kenyon A.S., Morton D.P.: ‘Stochastic vehicle routing with random
travel times’, Transp. Sci., 2017, 2003, pp. 74–80

[11] Bianchessi N., Irnich S.: ‘Branch-and-price-and-cut for the split de-
livery vehicle routing problem with time windows’. Technical
Report, LM-2016-07, 2016

[12] Raknes N.T., Ødeskaug K., Stålhane M., ET AL.: ‘Scheduling of main-
tenance tasks and routing of a joint vessel fleet for multiple offshore
wind farms’, J. Mar. Sci. Eng., 2017, 5, (11)

[13] Stålhane M., Hvattum L.M., Skaar V.: ‘Optimization of routing and
scheduling of vessels to perform maintenance at offshore wind
farms’, Energy Proc., 2015, 80, (1876), pp. 92–99
Commons J. Eng., 2017, Vol. 2017, Iss. 13, pp. 1159–1163
doi: 10.1049/joe.2017.0511

https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/statistics/EWEA-Annual-Statistics-2015.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf
http://www.worldenergy.org/wp-content/uploads/2013/09/WEC_J1143_CostofTECHNOLOGIES_021013_WEB_Final.pdf


[14] Dai L., Stålhane M., Utne I.B.: ‘Routing and scheduling of mainten-
ance fleet for offshore wind farms’, Wind Eng., 2014, 39, (1), pp.
15–30

[15] Irawan C.A., Ouelhadj D., Jones D., ET AL.: ‘Optimisation of mainten-
ance routing and scheduling for offshore wind farms’, Eur. J. Oper.
Res., 2017, 256, (1), pp. 76–89

[16] Dawid R., Mcmillan D., Revie M.: ‘Development of an O&M tool for
short term decision making applied to offshore wind farms’.
WindEurope Summit, Online Proc., 2016, available at: https
J. Eng., 2017, Vol. 2017, Iss. 13, pp. 1159–1163
doi: 10.1049/joe.2017.0511

This is an open
://windeurope.org/summit2016/conference/submit-an-abstract/pdf/
1801328683846.pdf

8 Appendix

The solving procedure for a problem with three vessels available is
shown in Fig. 2
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