
This version is available at https://strathprints.strath.ac.uk/63345/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
INTRODUCTION: We present a three-dimensional multiscale flow simulation of water past a buckyball. We employ the Schwarz alternating method to couple molecular dynamics of liquid water and the C\textsubscript{540} fullerene with the Lattice-Boltzmann (LB) description of the Navier-Stokes (NS) equations. Our approach allows for studying nanoscale flow phenomena that are out of scope of the pure atomistic simulation.

METHODS: The simulation model is shown schematically in Fig.1. We extend the Schwartz domain decomposition scheme [1] by a fully 3D atomistic-continuum coupling.

![Fig. 1: Cross section of the water molecules that surround the C\textsubscript{540} fullerene molecule.](image)

The computational domain is cubical. Lattice nodes are centered in corresponding cubical MD sampling cells of size α. The spherical MD domain provides the LB method with velocity boundary conditions (BCs). The MD domain has non-periodic force BCs in all three directions in order to maintain the correct mean virial pressure [2]. Furthermore, we use a specular boundary to impose the ideal kinetic part of the system pressure. Liquid water is modeled with the rigid SPC/E water model. The simulations are performed at $T = 300K$ and $\rho = 997kg/m^3$. Force field parameters for the rigid C\textsubscript{540} fullerene molecule are taken from Refs.[3,4]. Long range electrostatic interactions are treated by the reaction field method with a cutoff of α. In order to correctly describe the hydrodynamics we employ in this study the linear momentum preserving Dissipative Particle Dynamics (DPD) thermostat.

RESULTS: The results from the multiscale simulations are compared with full MD reference simulations. In the inset of Fig.2 we monitor the evolution of the convergence rate. In the same figure we plot the x-component of the fluid velocity. In Fig.3 we present the tangential velocity radial profile, which shows that the slip velocity at the surface is not zero.

![Fig. 2: The x-component velocity. The inset shows the convergence of the hybrid toward the reference solution.](image)

![Fig. 3: The tangential velocity profile in the radial direction from the fullerene.](image)

REFERENCES:

http://www.ecmjournal.org