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Abstract:  
A systematic numerical analysis is carried out on the multiplicity of patterns produced by inertial 
particles dispersed in a fluid and localized gravitational convection developing in the form of a rising 
thermal plume. In particular, specific numerical examples are presented to provide inputs for an 
increased understanding of the underlying flow-particle interaction mechanisms and cause-and-effect 
relationships. A rich spectrum of convective dynamics is obtained at the relatively high value of the 
considered Rayleigh number (Ra=108), which naturally allows the investigation of several intriguing 
effects (including, but not limited to, particle interaction with plume jet, associated vortices, shear 
instabilities and symmetry breaking phenomena). An important degree of freedom is introduced in 
the problem by changing the particle viscous drag through proper tuning of the related Stokes 
number (St). Similarly, inertia and weight of solid matter are varied parametrically by performing 
numerical simulations for both light and heavy particles at different values of the Froude number. 
This framework lets us identify the average behaviour of particles by revealing the mean evolution. 
We connect such statistics to the behaviour of the temporally evolving thermal plume, giving deeper 
insights into the particle transport mechanisms and associated dissipative dynamics. 
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1. Introduction 

 

The transport of an immiscible phase in a convectively unstable environment is relevant to many 

fields of applied physics as well as of industry. The problem underpins research in powder 

metallurgy, catalytic processes, mineral processing and nuclear re-processing. Indeed, in many of 

these fields, circumstances exist for which a material is in an initial liquid state (the so-called 

majority phase), which includes a second immiscible phase (the minority phase) in the form of 

dispersed solid particles or droplets requiring particular attention (see, e.g., Balboa-Usabiaga and 

Delgado-Buscalioni1; Ohta and Sussman2). Many materials with special features are produced in this 

way. Related examples include (but are not limited to) structural materials, many types of composites 

and alloys, electrical conductors, ceramics and magnetic substances (Zhao et al.,3; Zhang et al.,4; 

Markov5;  Zhao et al.,6). Usually, the presence of a gravity field forces the minority phase to 

experience buoyancy, i.e. the alloy components typically undergo rapid spatial separation through 
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sedimentation or flotation. Superimposed on this is the fact that during these processes the melt is 

typically subject to a temperature difference. These gradients can be responsible for several 

additional complex and intriguing phenomena. In a gravity field, they lead in most cases to “natural” 

convective flows (thermogravitational convection). 

This is just one example of circumstances in which the interplay between the motion of a dispersed 

phase under the influence of its own weight and convective flows of gravitational nature has to be 

seen as a significant aspect of the problem under investigation. Suspensions of dust, droplets, bubbles 

or other kinds of small particles in buoyant flows are widespread phenomena in nature and 

technology (Bürger and Wendland7). Additional relevance can be also found in typical industrial 

processes for the separation of particles from a suspension (the so-called size separation methods by 

which particles are extracted from a liquid according to their size). Such techniques use 

sedimentation as a natural means to filter out the solid phase. Accordingly, the controlled 

sedimentation of suspensions of small particles, is generally referred to as thickening or clarification 

depending on whether either the concentrated sediment or the clarified liquid (the majority phase) is 

considered as the main result of the process; in most situations, particles are separated while they are 

settling in a non-static medium (Parchevsky8,9).   

In all such representative industrial instances, undesired motions of the medium can sometimes be 

mitigated; in general, however, fluid motion is significant and must be taken into account. This 

motion may have a preferred line of evolution in space, as in a pipe flow (see, e.g., Reeks and 

Skyrme10; Dasgupta et al.,11 and references therein); in other cases, there is no preferred direction 

(e.g., homogeneous and isotropic turbulence, Maxey12; Wang and Maxey13).  

Other relevant examples of convectively unstable fluids transporting fine dispersed particles include 

plumes from urban mass fires, the release in the atmosphere of smokes from industrial stacks 

(McGrattan et al.,14), severe accidents in chemical or nuclear reactors (Kissane15) , the fallout from 

nuclear testing (Moroz et al.,16) and pyroclastic flows from volcanic eruptions (Valentine and 

Wohletz17; Haszpra and Tél18). 

As all these cases share a common factor, namely the existence of localized regions where the 

temperature is higher than that of the surroundings, in the present work we concentrate expressly on 

a fluid medium made unstable by the presence of buoyant thermal plumes.  

Plumes are one of the most relevant examples in the natural, industrial or urban environment where 

lighter materials rise into an overlying fluid. Furthermore, plumes are not an exclusive prerogative of 

systems for which energy is provided to the fluid via a single source or a discrete distribution of 

sources of buoyancy. Indeed, thermal plumes can become a persistent feature of flow dynamics also 

when localized heating is replaced by homogeneous thermal boundary conditions. This typically 

occurs when the system is limited vertically by differentially heated solid walls and the fluid is in 

largely supercritical conditions [a theme generally known as turbulent Rayleigh-Bénard (RB) 

convection, see, e.g., Bucchignani and Stella19]. In such a context, thermal plumes can be regarded as 

the flow “ingredients” whose interrelations (or interactions) are responsible for the emergence of a 

well-defined “large scale” flow (see, e.g., Lappa20 and references therein). 
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In general, thermal plumes have complex dynamics even if the considered fluid (e.g., a liquid) is 

assumed to be incompressible (Hier Majumder et al.,21). The problem originating from their 

interaction with a dispersed solid (or immiscible) phase, however, can be made even more complex 

by the peculiar properties of the particle velocities which tend to behave as a compressible velocity 

field. Even though the considered fluid flow is incompressible, inertia causing compressibility effects 

in the particle velocity field, can produce depletion of dispersed solid matter in some regions, and its 

accumulation in others (such events, frequently referred to as preferential concentration, are 

associated with the presence of regions with either extremely high or low particle concentrations22,23).  

In such a context, numerous studies have highlighted the significant role played in such dynamics by 

the interplay between the just mentioned compressibility affecting the particle velocity field and the 

specific amount of vorticity possessed by the carrier fluid flow (Ref24 and references therein). As 

instructive and specific examples, the reader may consider the works by Maxey et al.,25 and Saw et 

al.,26 where numerical and experimental evidence was clearly reported, respectively, that dense 

particles can undergo remarkable segregation phenomena in high-Reynolds-number homogenous 

isotropic turbulence. Similarly, Boffetta and De Lillo27 could numerically predict the emergence of 

network-like regions of high particle density in turbulent flows. Along these lines, there is 

widespread consensus nowadays that  such remarkable phenomena of preferential concentration 

depend on the ability of the various eddies present in the considered flow to act as “centrifuges” 

ejecting particles having density larger than that of the fluid and entrapping them in the opposite case. 

Compressibility effects are introduced because such vortices create a positive or negative divergence 

in the particle velocity field according to the relative density of dispersed matter with respect to the 

surrounding fluid (Squires and Eaton,28; Biferale et al., 29; Bec et al.,30). As a result, heavy particles 

tend to accumulate at the boundaries of vortices (the regions with small velocity and large shear rate), 

while it is vice-versa in the case of light particles.  

Some initial ideas along these lines were already present in the works by Eaton and Fessler31 and 

Raju and Meiburg32 where the tendency of heavy inertial particles to leave the neighbourhood of a 

vortex was identified as the main mechanism by which vortical structures cause concentration non-

uniformities in typical technological processes. These mechanisms can obviously interfere with the 

sedimentation process. 

Historically, this subject took a peculiar path essentially depending on the widespread practice to 

develop theoretical models based on the interaction of particles with isothermal two-dimensional 

cellular flow fields consisting of vortices with well-known analytic representation (chosen as an 

idealized view of effective processes or to mimic turbulent flows, and supported by the need to study 

the problem in well-controlled and deterministic conditions). A milestone work, on which several 

numerical approaches would successively rely, was the analysis by Stommel33. This author was the 

first to provide a description of how heavy particles can be permanently suspended in a steady two-

dimensional array of vortices only if their inertia is neglected. Later Maxey and Corrsin34 

demonstrated that inertia, though weak, eventually causes all particles to settle out.  
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Some additional useful (general) information about these subjects can be found in the book by Clift 

et al.,35 and in the aforementioned work by Burger and Wendland6. While in the former a variety of 

data have been provided about the typical drag coefficient of a sedimenting particle depending on its 

shape and Reynolds number, the latter presents a review of the so-called Kynch’s kinematic 

sedimentation theory, and its extension to different circumstances (continuous sedimentation, 

flocculent and polydisperse suspensions, vessels with varying cross-section, centrifuges and several 

space dimensions). 

Though, owing to page limits we do not strive to review all aspects relating to the sedimentation of a 

dispersed particle in a quiescent or non-quiescent medium, we wish to mention here also the 

excellent analyses by Raju and Meiburg32,36 (from which we took most of the inspiration at the root 

of the present work), Dávila and Hunt37, Eames and Gilbertson38, Chen et al.,39, Ravichandran et 

al.,40 and  Bergougnoux et al.,41. Wang and Maxey13 and Dávila and Hunt37 demonstrated that the 

transient nature of turbulence can give rise to increased settling speeds for sufficiently small particles. 

Good et al.,42 found that the reduced settling speeds of relatively large particles (see, e.g., Kawanisi 

and Shiozaki43) are due to nonlinear drag effects. They also demonstrated that falling particles are 

more responsive to vertical than to horizontal fluctuations. 

Works addressing particles interacting with non-isothermal conditions and thermal convection, 

however, are much more rare and sparse. Akbar et al.,44 and Puragliesi et al.,45 considered an air-

filled differentially heated cavity with horizontal temperature gradient for the case in which the 

temperature gradient is horizontal and the flow develops accordingly a stable thermal stratification in 

the centre of the cavity. While the former concentrated on Rayleigh numbers in the range of 102 to 

8x105 and particles with size 1 m, 200 nm, and 50 nm, the latter focused on particles with diameter 

15, 25, 35 m and Ra= 109 and 1010. These studies provided evidence that some conditions can be 

identified (in terms of particle size and Rayleigh number), for which near-equilibrium particle 

recirculation zones are maintained by thermal convection (particles being allowed to remain 

suspended in these zones). Along the same lines, Puragliesi et al.,45 highlighted that strong 

recirculating zones created in proximity to the heated wall might contribute to decrease the average 

rate of gravitational settling by temporarily lifting and segregating particles.  

These mechanism are made particularly complex by the fact that, in addition to being compressible, 

just as thermal convection (see, e.g., Lappa46), particle dynamics are, in general, dissipative.  

Continuing our computational investigation (see, e.g., Refs47-53) into this general area, in the present 

study (unlike earlier works, which considered synthetic flows, isotropic turbulence or other 

circumstances) we target expressly the case of particles interacting with thermal plumes in 

thermogravitational flow. An increased understanding of these processes (see, e.g., Gan et al., 54; 

Akbar et al., 44; Puragliesi et al, 45; Haeri and Shrimpton55) is likely to produce important benefits or 

advantages, for example, better process control, increased efficiency, improved reproducibility and 

the ability to modify or devise products for innovative applications in chemistry, physics and 

biomaterials. 

 



Accepted for publication in the Physics of Fluids on 14 February 2018 
 

5 
 

2. Mathematical Models and Methods 

 

 
2.1 Fluid, geometry and boundary conditions 

 

We consider a portion of liquid limited by two horizontal walls placed 2L apart, as shown in Figure 1 

and circumstances for which the temperature field permits the formation of a localized thermal 

plume.  

A single laminar plume, generally known in the literature as a unbounded or “free” plume is 

produced when the fluid located in proximity to a point or horizontal line heat source becomes 

lighter and starts to rise (as an example, a two-dimensional line source plume can be obtained if a 

horizontal heated wire is immersed in a box of cold fluid, see, e.g., the experiments of Rouse et al., 

56).  

 

 
Figure 1: Physical domain and boundary conditions 

 

The theory for steady laminar plumes is in a mature state. According to scaling arguments, the 

vertical velocity can be considered constant (Batchelor57). Asymptotic analyses valid for the plume 

stem far from the leading edge (the cap) are due to Gebhart et al., 58, Worster59 and Liñán and 

Kurdyumov60. Other authors (e.g., Moses et al., 61; Kaminski and Jaupart62) have specifically 
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concentrated on the behaviour of the plume cap (not considered by asymptotic analyses). Numerical 

results are available for different values of the Prandtl number (e.g. Fujii63; Brand and Lahey64; 

Worster59; Hier Majumder et al.,21; Hernandez65).  

In particular, Hier Majumder et al.,21 considered values of the Prandtl numbers spanning the interval 

from 10−2 up to 104, identifying the existence of four different regimes of plume development. 

Following their work, here we focus on the case of plumes in the so-called IVND (inviscid–

nondiffusive) regime. The reason of such a choice resides essentially in the fact that this is the most 

turbulent of the four regimes, thus being representative of many effective situations of practical and 

technological interest. 

The plume is assumed to be produced by a heat source of finite length d located on the bottom of the 

physical domain. The heat source is modelled assuming there a constant temperature Thot while the 

rest of the bottom wall and the entire top wall are adiabatic. No slip conditions are set for velocity on 

such walls (confined plume), while periodic boundary conditions (PBC) are considered for velocity 

and temperature fields at the two lateral boundaries (placed L apart, as shown in Fig. 1). 

At the initial instant t=0 the fluid is assumed to be in quiescent conditions and at a uniform 

temperature Tcold. 

Hereafter, we indicate with T the temperature difference between the temperature of the heat source 

and the temperature of the liquid at t=0, i.e. T = Thot - Tcold. Moreover, we denote by  the fluid 

thermal diffusivity, F the fluid density,  the fluid kinematic viscosity and  the dynamic viscosity. 

This leads us to introduce more formally the various dimensionless parameters involved in the 

problem. At least three independent dimensionless parameters have to be specified 

 




Pr             (1a) 

 


 3TLg

Ra T            (1b) 

 

gL
Fr

2/3


             (1c) 

 

known as the Prandtl, Rayleigh and Froude numbers, respectively (where g is the gravity 

acceleration and T is the thermal expansion coefficient). 

The ranges of existence of the aforementioned IVND regime are RaO(108) for Pr=10-3, RaO(106) 

for Pr=O(1), RaO(107) for Pr>O(104).  

Accordingly, we select Pr=8 (NaNO3, see Table I) and Ra=108. 
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TABLE I: Liquid properties  

Fluid (NaNO3) density ρ, kg m-3 1904 

Kinematic viscosity , m2s-1 1.27 × 10−6 

Thermal diffusivity , m2s-1 1.58 × 10−7 

Thermal expansion coefficient βT , K-1 1.25 × 10−3 

 

 

2.2 Nondimensional balance equations 

 

The non-dimensional balance equations governing fluid motion can be obtained from scaling the co-
ordinates by L and the velocity components by the energy diffusion velocity V = /L; related scales 

for time and pressure are, respectively, L/ and F/L. The temperature is measured with respect 

to its initial value Tcold and is made nondimensional as (T- Tcold) /T. 

In such a framework and using the Boussinesq approximation, the continuity and momentum 

equations simply read: 

 

 V 0            (2) 

 

  nRaTVVVp
t

V
ˆPrPr 2 




        (3) 

 
where V and p are the fluid velocity and pressure, respectively, and n


 is the unit vector along the 

direction of gravity.  

These equations must be supplemented with the energy balance equation, which in nondimensional 

form reads: 

 

  TTV
t

T 2



           (4) 

 

2.3 Solid matter 

 

Dispersed impurities or particles have a finite size and typically a mass density different from that of 

the carrier fluid, which makes a representation based on the concepts of point-like particles with 

negligible mass, and moving with a velocity that inherits the divergence-free property of the carrier 

flow, a really oversimplified and inaccurate model. A relevant and complete mathematical 

framework must take into account their inertia.  

In other words, this means that accounting for the dispersed phase is equivalent to introducing 

additional degrees of freedom in the considered problem (particle shape, size and density). Related 

dimensional parameters are the particle density P = ( F) (where is the ratio of the solid matter to 
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the fluid densityand the particle radius R
~

 (we assume particles to be perfectly spherical). Another 

relevant dimensional quantity is the so-called particle relaxation (or aerodynamic response) time (), 
which in the literature is generally defined as: 

 




2~

9

2 R
part              (5) 

 

For the sake of consistency with earlier works addressing companion subjects47-53, as the 

characteristic time scale of the fluid flow, we consider: 

 




2L
flow              (6) 

 

Moreover, to properly account for the effect of gravity on particle motion, we introduce a third 

relevant time scale into the problem, namely, the particle setting time:  

 

2~2

9

Rg

L
sett

              (7) 

 

This quantity relates to the amount of time that a particle falling (or rising) with its terminal velocity 

would take to cover a distance equal to the height of the cavity.  

The fundamental difference between this time scale and flow can be easily understood just taking into 

account that, while flow is directly connected to the time required by the particle to respond to 

unsteady forcing eventually caused by fluctuating velocities of the carrier flow, sett should be 

regarded as a time scale linked to the forcing of steady nature that gravity exerts directly on particles 

(this being dependent, in turn, solely on gravity acceleration, particle size and fluid viscosity).  

In practice, additional insights into this problem can be obtained by introducing specific 

nondimensional parameters measuring the relative importance of the characteristic times so far 

introduced. Such nondimensional ratios can be defined as:  

 

St
L

R

flow

part 
2

2~

9

2




           (8a) 

 

generally known as the Stokes number, and: 

 

2

2

4

22

~2

9

St

Fr

Rg

L

part

sett 











          (8b) 
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St

Fr

RgLflow

sett
2

2

2

~2

9













          (8c) 

 

which, as shown by (Raju and Meiburg32) can be also written in combined form as : 

 

Fr
gLflow

part

flow

sett 
2/3








          (9) 

 

which indicates that the Froude number can be linked directly to the square root of the product of the 

two time scale ratios in eqs. (8b) and (8c), respectively. 

Given such premises, the limit St  0 can be seen as the condition for which a fixed viewer would 

see the particle moving with the same velocity as the carrier flow, i.e. particles “frozen” in the 

natural convective field (in other words, particles simply moving with the local fluid velocity as ideal 

mass-less and size-less Lagrangian tracers), the opposite limit St >>1, representing situations in 

which particles would be prevented from responding to any velocity change in such a flow due to 

excessive inertia.  

Similarly, the other two nondimensional ratios can be used in principle to characterize the “residence 

time” of the particle in the considered domain, i.e. the time interval during which the surrounding 

flow can affect a particle in order to enhance or delay its settling (and create accordingly non-

uniformities in an initially uniform dispersion of solid matter). In such a context, therefore, the limit 

Fr0 may be interpreted as the ideal condition that would be attained by a particle undergoing 

unperturbed gravitational (purely vertical) motion (all particles moving in synchronized manner, no 

non-uniformities in the particle concentration field being allowed).  

Moreover, with the above mélange of characteristic numbers the nondimensional particle terminal 

velocity can be cast in compact form as: 

 
     1

Pr
1

Pr

1~

9

2
2

2 


 



St
Fr

Stg
LRVT        (10) 

 

which indicates that for a fixed fluid (Pr) and container height (Fr), such a nondimensional velocity 

depends only on the Stokes number (St) and particle density (via ). 

Let us recall that this quantity represents the ideal speed that a particle would attain asymptotically 

(after an initial transient time required to establish a perfect balance between gravity and viscous 

drag) while falling in a still (motionless) fluid.  

Evaluation of the effective particle velocity in a convectively unstable medium requires obviously a 

dedicated numerical approach and the solution of an additional set of equations, whose nature and 

number depends on the specific strategy undertaken to capture the motion of the dispersed solid 

phase. Indeed, many valuable methods have been elaborated over the years to deal with such 

problems. These techniques, which have enjoyed a varying degree of use and success depending on 
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the specific problem considered, can roughly be categorized in methods entirely based on the 

assumption or concept of “continuum” (where particles are globally treated as a “fluid” by assuming 

that the carrier fluid and the set of particles behave as interpenetrating continua) or partially 

involving a discrete representation of reality (with particles being monitored and tracked as separate 

entities with respect to the background fluid flow). Each method, of course, has its own convenience 

and bottlenecks. The former allow particle diffusion to be incorporated directly into the model 

through the introduction of some “production terms” in the momentum and energy equations. As 

illustrated by many authors (see, e.g., Marble66; Dasgupta et al.,11; De’ Michieli Vitturi et al.,67), 

these techniques work particularly well for the case of particles in gases for which the adoption of an 

“equivalent gas model” is used to treat the gas-particle mixture as a homogeneous medium (with 

such methods the treatment of the dispersed phase is particularly convenient and efficient as, in place 

of being considered as separate entities, particles and their local density are accounted for by solving 

a conservation equation formulated for the dispersed phase in terms of particle concentration). 

As we are specifically interested in the “patterning behaviours” produced by particles, we base the 

present simulations on a hybrid approach in which particles are tracked via the solution of a specific 

Lagrangian equation. This gives us the possibility to track every single particle as a separate entity 

and identify the emerging “ensemble” phenomena through the analysis of the related collective 

behaviour. Under the assumption St<<1, such equation, known as the Maxey-Riley equation, can be 

written (using the present reference quantities) in condensed form as: 

 

    nVV
t

V
VV

Stdt

Vd
partcl

partcl 



 2/1

1

2

3

2

3Pr

2/1

1








 







    (11a) 

 

where Vpart (upart, vpart, wpart) is the particle velocity and dVpart /dt is its time derivative. This equation 

includes the viscous drag forces (first term at the right hand side), the added mass effect relating to 

the material derivative of the fluid velocity (second and third terms) and the effect of gravity (fourth 

term) depending on the parameter , which, in turn,  reads  

 
2

2

3 Pr








Fr

gL


            (11b) 

   

( may be also regarded as an analogue of the so-called Galileo number defined as Ga=gL3/2=/Pr2). 

Such well-known equation, originally introduced by Maxey and Riley68 (since then it has enjoyed a 

widespread use in the literature, see, e.g., Sapsis and Haller69; Kuhlmann et al., 70 and references in 

these papers), is based on the so-called dilute-system assumption, i.e. particle motion cannot alter the 

liquid flow (the reader being referred to other works in the literature, such as Dasgupta et al., 11, for 

the opposite situation in which the mass loading of particles is so high that two-way coupling 

numerical approaches must be necessarily used). Moreover, we assume particles to be independent of 

each other. Despite such limitations, as also illustrated by Akbar et al., 44 and Sapsis and Haller69, this 
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equation has proved of fundamental importance in the definition and elaboration of criteria to predict 

the inertial particle relocation/clustering dynamics in in a variety of flows and conditions of practical 

interest and relevance. We do not consider thermophoretic forces and Brownian motion effects as 

they are expected to be negligible for the conditions considered in the present work (Puragliesi et al., 

45). 

 

2.4 Solution Method and Mesh Refinement Study  

 

Balance equations (2-4) have been solved by a time-explicit finite-difference projection (primitive-

variable) method. The method has been implemented with a staggered grid arrangement, deriving 

velocities and pressure in a segregated manner. A synthetic description of the related approach can 

be provided as follows.  

The momentum equation is initially integrated with respect to time by disregarding the influence of 

pressure. In this way, an intermediate velocity field is determined that has no precise physical 

meaning, but has some “mathematical relevance” as it possesses the same amount of vorticity that 

the physically relevant velocity field should have. The equation required for this step reads: 

 

  nRaTVVVtVV n
n

n ˆPrPr* 2 



    (12a )  

   

The pseudo-velocity field obtained in this way does not satisfy the incompressibility constraint and 

must, therefore, be corrected. This is achieved by reintroducing the pressure gradient previously 

disregarded as follows: 

 
nn ptVV  *1           (12b) 

 

As the pressure p appearing in this equation plays the role of an unknown, an additional equation is 

needed for its determination. Such equation, explicitly needed for the problem mathematical closure, 

is obtained by substituting the above expression for the velocity at the time step n+1 into the 

continuity equation: 

 
*2 1

V
t

p n 


           (12c) 

 

With this modus operandi, the method ensures that the final velocity field Vn+1 (eq. (12b) is 

solenoidal (as required for an incompressible flow) and possesses the same vorticity that would 

satisfy the vorticity balance equation (separate equation obtained by applying the curl operator to the 

momentum equation). The resulting field is, therefore, consistent with the physics of the considered 

problem and “unique” from a mathematical point of view (by virtue of the so-called 
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Ladyzhenskaya71 decomposition theorem, which states that the uniqueness of a vector field is 

guaranteed when its divergence and curl are given).   

The accuracy of such a method obviously depends on the nature and order of the schemes used to 

integrate effectively the above equations and the related time and space integrations steps. 

For the present work, in particular, forward differences have been used to discretize the time 

derivatives, coupled with central-differencing schemes in space (second order accurate) for the 

momentum equation and upwind schemes (third-order accurate) for the energy equation (the partially 

different treatment of the energy equation has been motivated by the need to resolve with sufficient 

accuracy the strong temperature gradients established between the plume and the surrounding fluid). 

With regard to the spatial integration steps, the sensitivity of the overall numerical framework to the 

density of the mesh has been assessed by considering uniform grids with a progressively increasing 

number of points and checking the percentage variation experienced by some representative physical 

quantities (until such a variation falls under a given (acceptable) threshold). Such analysis has been 

partially supported by the use of well-known criteria for high-Ra thermal convection, these being 

based on the evaluation of the so-called Kolmogorov length scale. This quantity, which represents 

the minimum possible size of the small-scale structures present in the considered flow, is known to 

take different typical values in the case of thermal convection according to the relative direction of 

gravity and the imposed temperature gradient (see, e.g., Lappa and Gradinscak72). For the case of 

prevailing horizontal temperature gradients, with the present reference length and definition of the 

Rayleigh number, in particular, it can be estimated (see Paolucci73 and Farhangnia et al.,74) as  

 
8/3

Pr2
2 








Ra
            (13a) 

 

which gives =1.78x10-2 for the present conditions (corresponding to approximately 60 points over a 

length of L, i.e. a total of 120 grid points along the vertical extension of the system). 

If the prevailing temperature gradient is vertical (heating from below effect), the typical value taken 

by the Kolmogorov length scale (see, e.g., Kerr75 and De et al.,76) becomes: 

    
  32.0336.1  Ra           (13b) 

 

For Pr=8 and Ra=108, this yields =3.68x10-3, which would correspond to 270 points over a length 

of L (540 grid points along the vertical extension of the system). 

Figure 2 shows the outcomes of the corresponding grid refinement study carried out by increasing 

continuously the mesh resolution from the minimum requirement indicated by eq. (13a) towards the 

more restrictive constraint represented by eq.(13b) (mesh convergence being expected to occur in 

such a range). 
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Figure 2: Maximum vertical velocity as a function of mesh resolution (Pr=8, Ra=108). 

 

As evident in this figure, convergence is attained when the mesh density is increased from 480x320 

to 600x400 grid points (indeed, the data indicate that the related percentage variation experienced by 

the maximum value attained by the vertical velocity in the entire physical domain becomes smaller 

than 1%).  

Accordingly, we have used a mesh with an intermediate number of nodes, i.e. 520 points in the x 

(vertical) direction and 360 in the transverse directions. Not surprisingly such a mesh satisfies both 

the requirements discussed before about the need to properly capture the smallest scale structures 

involved in the considered phenomena. Indeed, comparison of the chosen grid resolution (520x460) 

with the value of η evaluated in the most restrictive conditions (its smallest value), namely the case 

in which the prevailing temperature gradient is vertical (eq. 13b), leads to the conclusion that our 

grid spacing is either smaller than or comparable to the Kolmogorov scale (x / η and y / η, are 

approximately equal to 1 and 3/4, respectively, which is in line with the general criteria indicated by 

Ref77).  

The typical (non-dimensional) time integration step used for all the simulation has been set to 10-8 

(satisfying two different criteria, namely the well-known conditions for the numerical stability of the 

diffusive and convective equation terms appearing in both the momentum and energy equation, see, 

e.g., Ref78). No appreciable changes have been noticed on decreasing it (not shown).   

Special care has been devoted to the integration of the Maxey-Riley equation as well, for which a 

fourth-order accurate Runge-Kutta approach has been implemented (although for the sake of 

concreteness it should be mentioned that, owing to the very small integration time step set for all 

cases (t=10-8), the use of lower-order schemes in the integration of the Maxey-Riley equation 

would not have produced significant differences with respect to the application of the fourth-order 

accurate variant).  

The CFD kernel of the present code was successfully used for numerous studies of fundamental 

fluid-dynamics (the reader being referred to Lappa20 for an assessment of the code performances for 



Accepted for publication in the Physics of Fluids on 14 February 2018 
 

14 
 

a typical problem of turbulent gravitational convection) and repeatedly validated also by comparison 

with other kinds of convection (of various natures, see, e.g., Refs.47,78).  

For what concerns the assessment of the particle tracking approach against other data in the literature, 

relevant information can be found in Ref47 and Ref79 for the case of particles interacting with a liquid 

and a gas (and compressible and incompressible flows), respectively. The same subroutines were 

also used by Ref53. We recall here that in all these works proper coupling between the CFD and 

particle tracking kernels was implemented on the basis of a simple linear interpolation used to 

determine the fluid velocity at generic particle locations (and the related substantial derivative as 

required by eq. (11a)) as a function of the corresponding values taken by V on the fixed nodes of the 

staggered grid. 

The influence of the mesh on particle dynamics for the present conditions can be gathered from 

Figure 3. The additional data shown there have been produced under the two-fold motivation to 

verify that 1) particle-dynamics converge towards a mesh-independent behaviour as the number of 

grid points is increased (just as the carrier velocity field does);  2) the number of considered particles 

is statistically relevant (which means that the observed particle “ensemble” dynamics do not depend 

on such a number as well). In order to address in a relevant way the second point, we have 

introduced some dedicated “global” parameters as   

 

tot
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partpart

M

um

Q part


 

0
,  
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Q part
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        (14) 

 

where upart is the vertical velocity component of each particle and mpart its mass (the parameter 

totMQ  may be regarded as a measure of the overall particle instantaneous positive or negative 

momentum in the system). Towards the end to determine the number of particles Npart to be exceeded 

in order to make the behaviour of the dispersed phase statistically relevant (i.e. not dependent on 

Npart), we have scaled the number of particles effectively tracked for each simulation with the mesh 

as Npart= Nx /2 × Ny/2. The results for a representative set of parameters (=0.8, =2.15x1010, 

St=2x10-7), summarized in Fig. 3, demonstrate the reliability of the present hybrid Eulerian–

Lagrangian numerical approach. On increasing the number of points used for the Eulerian uniform 

structured mesh and the number of effectively tracked Lagrangian particles accordingly (in a linearly 

proportional way), it can be seen that beyond a certain threshold the observed dynamics became 

independent of both the mesh and the number of tracked particles79. 

 Further code validation has been achieved through comparison with the theoretically predicted 

sedimentation terminal velocity (eq. (10)) for cases in which the fluid is in quiescent conditions, 

obtaining differences between the computed solid particle velocity and the corresponding theoretical 

value (depending on Fr and Pr), less than 1%. 
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a) b)  
 
Figure 3: Parameters Q  (A) and Q  (b) versus time for =0.8, =2.15x1010 (Fr=5.45x10-5), 
St=2x10-7, Pr=8, Ra=108 and different mesh resolutions and number of particles tracked (Npart= Nx /2 
× Ny/2)  

 

 

3. Results and discussion 

 

As discussed to a certain extent in the introduction, the main objective of the present study is to 

clarify the interplay between localized buoyancy convection in the form of a plume rising from the 

bottom of a fluid domain and particle dispersion-vs-segregation mechanisms. Periodic boundary 

conditions are imposed at the lateral vertical boundaries with the express intent to mimic a discrete 

set of spatially periodic rising plumes. This realistic configuration is typical of several natural and 

industrial contexts. Indeed, common examples in nature are volcanic gas eruptions (Kaminski et al.,80) 

and hydrothermal vent flows in the deep ocean; they are also a typical feature of modern society’s 

fluid waste disposal methods including gaseous emissions into the atmosphere from domestic and 

industrial smokestacks and thermal discharges from nuclear and fossil-fueled electricity generation 

plants (Lee and Asce81); configurations with multiple plumes can also exist at a smaller scale in 

combustion chambers as a result of the presence of holes or orifices for fuel injection and dilution 

(Issac and Jakubowski82). 

As anticipated in Sect.2, the shape of the particles is fixed (spherical). An important degree of 

freedom, however, is introduced in the problem by changing their viscous drag through a proper 

tuning of the related Stokes number St (O(10-8)StO(10-6)), which corresponds to a change in the 

size of the particles. Similarly, the effects of inertia and gravity are varied by performing the 

numerical simulations for different values of the density ratio  (0.22) and the Froude number 

(3.85x10-5Fr8x10-5), corresponding to 10104.3x1010.  Accordingly, a total of 108 simulations 

have been performed (each simulation requiring approximately one day of computational time on 

each CPU core). 

To properly track the system evolution, a huge number of solid particles (Npart= Nx /2 × Ny/25x104) 

have been initially seeded uniformly into the computational domain. By virtue of the one-way 
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coupling assumption (governing the interactions between the liquid and solid phases, as explained at 

the end of Sect. 2.3), the considered number of particles has no effect on the fluid flow properties. As 

already explained to a certain extent in Sects. 2.3 and 2.4, our consideration of such a large number 

obeys a specific and rational (two-fold) need: 1) the system dynamics can be easily characterized in 

terms of patterning behaviour (namely, the recognizable topology of structures formed by aligned 

particles in the physical domain); 2) considering a statistically relevant number of solid particles 

makes related results and conclusions sufficiently independent and general; in other words, this 

framework lets us identify the average behaviour of particles by revealing the effective mean 

evolution (a similar approach was implemented by Raju and Meiburg32,36). We finally link the 

resulting statistics to the dynamics of the temporally evolving rising thermal plume, to provide useful 

information about the particle transport mechanisms and associated dissipative dynamics. 

 
3.1 The temporally evolving rising thermal plume 

 

Before starting to deal with particle phenomena and in order to improve clarity, in this section first 

we describe the temporal evolution of the considered background flow, i.e. the rising thermal plume 

shown in Fig. 4. As mentioned before, we concentrate on the so-called IVND regime in which 

plumes typically undergo shear-driven “sinuous instabilities”. As such instabilities are known to be 

initially two-dimensional and eventually produce appreciable three-dimensional effects only when 

higher-order bifurcations are enabled, we limit our analysis to the first flow bifurcation (by which the 

initial symmetry of the plume with respect to the vertical direction is broken; the interested reader 

being referred to Desrayaud and Lauriat83 for some interesting information about the subsequent 

instabilities). Along these lines, in the following we identify and comment on some representative 

stages of plume evolution that we will expressly recall later as “reference fluid-dynamic states” for 

further analyses (to illustrate how the behaviour of particles changes in response to a variation of the 

parameters , St and Fr for a given (fixed) background flow). This specific approach is instrumental 

in unravelling processes that are otherwise interwoven or overshadowed and difficult to discern. 

At the beginning (t=0), the fluid is in quiescent and thermally uniform conditions (T=0, V=0). As 

shown in Fig. 4a, however as time passes, the liquid surrounding the heat source (represented by the 

short portion of non-dimensional length =d/L at temperature T=1) becomes progressively warmer, 

thereby making the buoyancy mechanism operative. In particular, it can be seen that as the heated 

fluid rises, it pushes aside the material above it and is, itself, in turn deflected. The rising material 

produces a stalk, while the deflected fluid produces a cap on top. As the pushing and deflection 

mechanism is iterated, the edge of the cap may undergo additional deformation. The result is 

something that looks like a mushroom (Fig. 4a-c).  

The “nondiffusive” nature of the regime (due to the relatively high value of the Rayleigh number 

considered, Ra=108) can be clearly observed in both the temperature and velocity fields. The plume 

has a thin, sharp stem with a well-defined cap and lobes that are significantly deformed by symmetric 

vortex structures (Hier Majumder et al.,21).  
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When the top wall impedes further rise of the plume front, however, the typical cap shape discussed 

before is significantly deformed by its interaction with the horizontal boundary (Fig. 4f). Hot fluid 

previously moving essentially in the plume stem (the jet) along the vertical direction (from bottom to 

top) is now spread along this boundary towards both left and right corners of the computational 

domain. Due to continuity effects and the periodic boundary conditions imposed at the two sides, this 

fluid is finally pushed again towards the bottom along both lateral boundaries (return flow) thereby 

creating two anti-symmetric heat circulation loops. 

When such complete loops are established (with warm fluid rising at y=0 and descending at y=1/2), 

vorticity formerly concentrated essentially in the plume lobes (Figs. 4a-4e), spreads over the entire 

domain producing quite a complex pattern. In particular, well-defined secondary vortices are created 

at the lower edges of the descending branches which constitute the return flow.  

As anticipated, the tendency to develop (as time passes) diffused vorticity and the presence of strong 

gradients of velocity make this regime very susceptible to the onset of sinuous instabilities created by 

the destabilizing shear stresses between ascending and descending portions of fluid. As illustrated, 

e.g., by Desrayaud and Lauriat83, and Hernandez65 for the cases in which the environment where the 

plumes develop is not unbounded, but relatively limited, the finite size of the considered geometry 

does indeed play a role in determining unstable plume behaviour and evolution. This behaviour is 

generally referred to (see, e.g., the experimental work of Noto84) as the natural swaying motion of 

confined plumes. 

This is very evident in Figs. 4k-4o where it can be seen that with time the plume stem develops a 

sinuous, snake-like appearance due to horizontal shear. This shear can cause the plume stem to 

become so distorted that the original plume collapses and new plumes develop from the original 

plume stem (Cortese and Balachandar85). 

As anticipated, in this section we use such numerical results to provide some important clues 

regarding the expected nature of the interaction between the considered natural flow and the particles 

in advance.  

More precisely, resolving this question requires separating the different contributions to the particle 

dynamics and estimating the relative importance of two fundamental mechanisms running in parallel: 

how particle settling (or flotation) under gravity is modified by the presence of the rising plume and 

how, in turn, the particle dispersion process by the coherent plume vortex structures (reported 

separately for the convenience of the reader in Fig. 5) is affected by gravity. 
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(a)                                             (b)                                            (c)                                           (d)                                            (e) 

     
(f)                                            (g)                                            (h)                                             (i)                                             (j) 

     
(k)                                            (l)                                            (m)                                            (n)                                             (o) 

Figure 4: Snapshots of temperature distribution at different instants evenly spaced in time over the 
timeframe 0<t<3x10-3 (Pr=8, Ra=108). 
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Figure 5: Snapshots of vorticity distribution (absolute value) at different instants evenly spaced in 
time over the timeframe 0<t<3x10-3 (Pr=8, Ra=108), =v/x-u/y. 
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Obviously, owing to the presence of the abovementioned strong gradients of velocity (especially 

between the plume stem and the surrounding stagnant fluid) and concentration of vorticity in the two 

lateral lobes of the plume (in the initial stages of plume development, see Figs. 5a-5e), one would 

expect the fluid velocity field to create quite strong gradients of particle concentration even in the 

absence of gravity, especially for intermediate values of St. Vice versa, one should also take into 

account that in a still fluid, gravity would not create concentration gradients (because it would 

uniformly accelerate all the particles without creating any velocity differences among them, see Raju 

and Meiburg32). With such initial arguments in mind, one may finally argue that the only way gravity 

can influence the emergence of inhomogeineities in the distribution of solid matter is via the 

interaction of the particle sedimentation (or flotation) process with the rising plume. An “a priori” 

classification of such effects, in turn, can be attempted as follows:  

 

 dynamics produced by the strong rising jet established in the plume stem (and associated 

horizontal gradients of vertical velocity);  

 

 effects related to the two main vortices produced by the rising plume (vorticity role); 

 

 phenomena related to the interaction of the rising plume front with descending particles 

(formation of dynamical equilibrium points – related mechanisms being operative essentially 

in the early stages of plume development); 

 

 effects related to shear instabilities and symmetry breaking phenomena (related mechanisms 

being effective in the final stages of evolution of the thermo-fluiddynamic field). 

 
3.2 Particles heavier than the fluid 

 

Comparison step by step of thermal fields and particle distribution for >1, i.e. particles heavier that 

the fluid (see, e.g., Fig. 6), reveals that, for the specific ranges of Stokes and Froude numbers 

considered in the present analysis, heavy inertial particles can behave as “intelligent tracers” marking 

areas with positive buoyancy (warm fluid regions, see Fig. 4) or with significant vorticity (Fig. 5) in 

a very special way.  

Such a statement, apparently naive, can be justified on the basis of an articulated explanation 

involving separate examination of the dynamics in distinct regions of the considered fluid domain. 

As explained to a certain extent in Sect. 3.1, using the fluid velocity, its direction and main spatial 

gradients as the “separation criteria”, we can roughly divide the fluid domain (especially in the early 

stages of plume evolution) into three main areas: the central jet, the plume cap (and related lobes) 

and the remaining fluid (which is in more or less stagnant conditions).  

In such areas particle behaviour is expected to be very different due to particle inertia (finite size and 

mass). The best way to make such differences evident is to concentrate on the different recognizable 
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“textures” which are created by solid matter in the distinct regions of the domain according to the 

prevailing effect (Fig. 7). 

 

     
(a)                                             (b)                                            (c)                                            (d)                                            (e) 

     
(f)                                             (g)                                            (h)                                             (i)                                            (j) 

     
(k)                                            (l)                                             (m)                                          (n)                                             (o) 

 
Figure 6: Particle distribution shown in different snapshots evenly distributed over the timeframe 
0<t<3x10-3 (=2, St=2x10-7, =2.15x1010, Fr=5.45x10-5).   
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Figure 7: Regions of with different patterning behaviour (sketch) - The particles “decorate” the 
plume and the surrounding fluid with different recognizable textures. 

 

Indeed, as shown by the numerical simulations, in the plume stem (the jet) where the vertical fluid 

velocity attains its maximum value and its gradients are particularly strong both in the axial and 

horizontal directions (due to vertical buoyancy and interaction with the external stagnant fluid, 

respectively) particles tend to form strange knot-like aggregates which give the illusion of a vertical 

“spine” embedded in the plume.  

Similarly, in the two plume lobes, where the prevailing effects are represented by horizontal 

gradients of vertical fluid velocity and vertical gradients of horizontal velocity (essentially, the two 

components of vorticity visible in Fig. 5), particle inertia leads to the irregular but recognizable 

succession of particle-dense lines and well-defined near-empty spaces.  

Such particle-dense lines have the shape of distorted closed circuits embedded in the two lobes of the 

plume cap. A thorough understanding of this phenomenon requires considering that the topology of 

such closed lines formed by dispersed matter depends essentially on the presence of concentrated 

vorticity in the plume lobes that tends to propel particles along curved (closed in many circumstances) 

trajectories, thereby trapping them in closed “loops” or circuits (similar findings are due for instance 

to Akbar et al., 44). The rhythmic alternation of concentric particle-depleted regions and particle 

circuits, in turn, may be regarded essentially a consequence of particle inertia (as witnessed by the 

fact that for a fixed particle-to-liquid density ratio , the spacing behaves as a function the considered 

value of the Stokes number, Fig. 8).  
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(a)                                             (b)                                            (c)                                           (d)                                            (e) 

 
Figure 8: Snapshot of particle distribution at t=4x10-4 (=2, =2.15x1010, Fr=5.45x10-5) for different 
values of the Stokes number: a) St=5x10-8;  b) St=1x10-7;  c) St=4x10-7; d) St=6x10-7; e) St=8x10-7. 

 

Finally, the distortion of the loops must be ascribed to the specific nature of the considered flow 

(which is intrinsically unsteady) and to gravity. The particle-trapping vortices are neither stationary 

nor fixed in space (as time passes they move towards the top). When as time progresses, the particle-

dense lines undergo the convective transport towards the top due to the large-scale buoyancy flow, 

such loops are stretched and deformed. Superimposed on this are the typical effects experienced by 

non-neutrally buoyant, finite-sized particles: although in the region affected by plume vortices the 

dominant effect in producing particle motion is represented by convective transport, we must still 

keep in mind that particle are not passive tracers and as such they are subjected to the centrifugal 

force, which tends to display them outwards and the gravity force, which tends to pull them down 

(Eaton and Fessler31; Raju and Meiburg32; Ravichandran et al., 40). 

In general, by having an influence on the “efficiency” by which the convective flow is able to 

transport them (or, in other words, on the ability with which particles are able to “follow” this 

unsteady flow), both the mass and size of particles (namely, the density ratio  and the Stokes 

number in the nondimensional space of parameters) will definitely have an important role also in the 

“folding process” of the particle-dense lines (discussed before), which finally determines the 

extension and intricate shape of the two closed circuits discussed above. 

The remaining fluid (outside plume jet and cap) can be further partitioned into two main regions: a 

patternless state lying on the top of the plume cap and a zebra-like pattern visible in the region 

limited from below by the bottom wall and from above by the plume lobes (see again Fig. 7). 

Despite their spatial separation, both behaviours are the expression of a single root cause, i.e. the 

significant lack in these areas of vertical (positive) fluid velocity and/or vorticity induced by thermal 

effects. 
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With no significant effects opposing to sedimentation, the region lying on the top of the plume cap is 

progressively depleted of particles. Consequently, a sharp boundary becomes evident between a 

particle-filled area and a clear fluid region, which extends downward as time increases. 

A similar concept applies to the zebra-like texture visible in the lower half of the domain. There, 

particles undergo almost unperturbed sedimentation as witnessed by the nearly vertical orientation of 

the lines of the particle concentration field. The small departure of such lines from the ideal purely 

vertical direction that would be attained in a motion-less fluid must be attributed to the residual 

horizontal fluid velocity component (induced in this area by the main vortices originating from the 

plume lobes) that tends to transport particles from the domain sides towards the central jet. 

This mechanism is sensitive to particle inertia as well (as demonstrated by the relationship between 

the inclination angle of such lines and the Stokes number, Figs. 8a and 8b). 

The transition between the almost stagnant fluid outside the jet and high-speed fluid in the jet core 

determines another characteristic of the pattern in this region. Indeed, the counteracting action 

exerted on particles by the strong buoyancy fluid velocity in the jet core and the sedimentation 

process just outside is responsible for the formation of recognizable V-shaped profiles in the particle 

concentration on both sides (lefty and right) of the jet core. The extension of such profiles is a 

function of the particle inertia ( and St) as well.  

Another interesting feature of the particle concentration field originating from the interaction of 

thermal buoyancy effects with the gravitational settling of solid matter is related to the accumulation 

of particles in a specific point located inside the plume cap. 

This phenomenon is illustrated in Fig. 9, where the reader may appreciate the deceleration 

experienced by the sedimenting particles while approaching the plume cap from the top and, at the 

same time, their progressive clustering in a region of very limited extent (highlighted by the 

horizontal arrow). 

This accumulation point, which should not be confused neither with a static locus (i.e. a point fixed 

in space and time), nor with a stagnation point (i.e. a point where fluid velocity is zero) should rather 

be regarded as a condition of dynamic equilibrium attained by particles. Using dynamic arguments in 

place of definitions, we may also characterize this point by observing that a particle leaving this 

point due to random perturbations acting along the vertical direction would be subjected to an 

opposing restoring force pushing it back to the equilibrium point. Particles clustered in this point, 

however, are still sensitive to perturbations acting along the transverse (horizontal direction), which 

as shown in Fig. 9 can force particle to leave the equilibrium position by flowing along the right or 

left part of the plume cap front. 
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Figure 9: Dynamic equilibrium point in the early stages of plume development (t=4x10-4) for =2.0 
and Fr=5.45x10-5 (=2.15x1010) as a function of the Stokes number: a) St=5x10-8; b) St=4x10-7; c) 
St=8x10-7. 

 

All the above descriptions apply to the early stages of plume development. 

When the plume cap hits the top boundary, thereby giving rise to a significant return (downward) 

flow, a clear change can be notified in the scenario. 

While particles in other portions of the fluid are removed from the domain due to the endless 

sedimentation process, the entire plume body is still populated by dispersed particles, as made 

evident by particle lines that further stretch and deform in the plume interior as time passes, leading 

to very intricate patterns.  

Characteristic behaviours are shown in Figs. 6f-6j. 
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As an example, Fig. 6h shows two rounded patches “hanging” from the main particle region towards 

the clear fluid below. Such patches reflect another important fluid-dynamic effect, i.e. the existence 

of secondary vortex cores located on the edges of plume lobes (see Sect. 3.1). As time increases, 

these patches migrate towards the bottom with the return flow (Fig. 5).  

Fig. 6g also reveals that the shape of the boundary separating the particle region from the external 

particle-free fluid develops some cusp points, which later evolve into lateral extended branches.   

Such branches, featured by the collapse of particles into thin (nearly one-dimensional) areas (in 

embryonic conditions in Fig. 6g), are the manifestation in the particle concentration field of the 

aforementioned return flow originating from the impact of the plume cap with the top wall.  

As time passes, such return flows reach the bottom wall thereby producing by continuity (Figs. 6h-6j) 

two intense vortical structures embedded in the overall plume circulation system. Such vortices are 

responsible for folding and reversal in the direction of the two aforementioned descending thin 

particle branches. In turn, this effect produces well-defined spiralling filaments.  

As time grows further, the upper half of the particle-filled plume body undergoes shrinkage in size, 

whereas the lower half enlarges due to the presence of the two stable vortices just discussed above. 

As a result, an amphora-like shape is created (the distribution of particles results in a shape that 

bulges out below x=1 and necks in above it, Fig. 6j and 6k). 

At later times, while the total number of suspended particles continues to decrease due to the solid-

matter removal action exerted by gravity, a new fluid-dynamic effect comes to play a role in the 

dynamics, i.e. the plume instability mechanism outlined at the end of Sect. 3.1. 

The outcomes of the ensuing symmetry-breaking and plume-rupture phenomena can be clearly seen 

in the particle concentration field (Fig. 6). The overall set of particles, which remained a cohesive 

entity for a long time, maintaining a sharp boundary between its interior and the clear (particle-free) 

fluid outside, now displays a non-compact behaviour with distinct groups of particle leaving the main 

particle-laden area and behaving apparently as independent “blobs” or “satellites” ejected from the 

main particle distribution (Figs. 6m-6o). 

 
3.3 Particles lighter than the fluid 

 

After discussing the general characteristics of the fluid-solid system in the case of heavy particles, 

we now turn to describing the companion dynamics for <1. 

As the reader will immediately realize by inspection of the examples shown in Figs. 10a-o for  =0.2, 

the change in sign of the quantity -1 (>0 for heavy particle, <0 for light particles) leads to dramatic 

modifications in the patterning behaviour and general dynamics displayed by solid matter. Along 

these lines, comparison step by step of Figs. 4 and 10 is instrumental in revealing the fundamental 

differences with respect to Figs. 6 (>1).  

It needs no demonstration that because in this case particle are lighter that the surrounding fluid, they 

will tend to rise in any case. This tendency can immediately be seen in the evolution of the 

recognizable front separating the particle-rich region from the clear fluid below. 
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As time progresses, this well-defined transition boundary moves upward. On such a general trend, 

however, are superimposed the specific effects relating to the particle-plume interactions. Such 

effects lead to interesting (apparently counterintuitive) consequences. 

Unlike cases with >1, where in the initial stage of evolution the plume body (jet and cap) could be 

essentially recognized (within the overall particle concentration field) by virtue of the specific pattern 

of dispersed solid matter produced by phenomena of inertial nature, now (<1) gravity plays 

(although indirectly) a more fundamental role. The entire plume is now made evident by the 

complete absence of particles (a patternless region). 

By removing particles from the bottom of the container, gravity prevents solid mass from entering 

the plume jet. Only clear fluid is available close to the bottom and, accordingly, plume grows at the 

expenses of particle-free fluid available in proximity to its basis.   

As time passes, notably, a non-compact jagged (but still ordered) distribution of particles tends to be 

created in the lower part of the domain (Fig. 10c-10h). This pattern, made recognizable by a set of 

inclined particle-lines (hereafter simply referred to as “rays” due to their diverging appearance), is 

produced by the weak action that the horizontal component of fluid velocity (induced by plume 

vortices as already explained in Sect. 3.2) exerts (in conjunction with inertial forces) on rising 

particles.  

Most interestingly, particles aligned along the “rays” are periodically entrained by the jet. As a result, 

these particle lines are distorted and give rise to typical inverted-V particle profiles visible in the jet 

core (Figs. 10g-10i). These sets of V-shaped particle agglomerates are transported upwards by the 

rising jet fluid until they populate the upper part of the plume and are finally absorbed in the main 

particle concentration field (Fig. 10j). This process continues until all the rays are consumed and 

further entrainment of particles coming from this particular region is no longer possible (Fig. 10k). In 

line with these observations, for a further increase in time, the plume displays a completely particle-

free behaviour (giving the illusion of a clear “river” flowing through a “land”, Figs. 10l-10o).  

As opposed to cases with >1, where such effects were counteracting, here gravity and buoyancy 

flow act in the same direction forcing particles to move upward. Remarkably, this prevents the solid-

liquid system from forming dynamic equilibrium points such as those discussed in Sect. 3.2. Rather, 

a dynamically evolving particle-region/clear-liquid transition boundary is created in front of the 

rising plume cap (Fig. 11).  
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(a)                                             (b)                                            (c)                                           (d)                                            (e) 

     
 (f)                                            (g)                                            (h)                                            (i)                                             (j) 

     
(k)                                            (l)                                            (m)                                            (n)                                             (o) 

 
Figure 10: Particle distribution shown in different snapshots evenly distributed over the timeframe 
0<t<3x10-3 (=2x10-1, St=2x10-7, =2.15x1010, Fr=5.45x10-5).   
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Figure 11: Snapshot of particle distribution and underlying temperature field at t=4x10-4 for =0.5, 

=2.15x1010 (Fr=5.45x10-5) and St=1x10-6. 

 

     
(a)                                             (b)                                            (c)                                           (d)                                            (e) 

 
Figure 12: Snapshot of particle distribution at t=4x10-4 (=0.5, =2.15x1010, Fr=5.45x10-5) for 
different values of the Stokes number: a) St=1x10-7;  b) St=4x10-7;  c) St=6x10-7; d) St=8x10-7; e) 
St=1x10-6. 
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The role particle inertia does still play in such dynamics can be elucidated by showing the particle 

distribution as a function of the Stokes number (Fig. 12). A remarkable effect can be seen there in the 

morphology of the particle-free space produced by the plume interaction with the particle distribution 

(the shape of the boundary separating the particle-rich region from the clear fluid). The shape at a 

given instant ranges from arrow-headed one to elliptic or almost perfectly circular.  

 
3.4 Effect of density ratio and Froude number 

 

Some final room should also be devoted to discuss the interesting information that can be gathered 

via a parametric analysis of the system behaviour at fixed values of the Stokes number and as a 

function of the density ratio and the Froude number (Fig. 13).  

 

      
(a)                                             (b)                                            (c)                                            (d)                                            (e) 

Figure 13: Snapshot of particle distribution at t=1.6x10-3 (St=2x10-7, =2.15x1010, Fr=5.45x10-5) for 
different values of the density ratio : a) =0.2;  b) =0.5;  c) =0.8; d) =1.3; e) =1.6.   

 

Interestingly, Fig. 13 gives further evidence to some of the arguments already elaborated in Sect. 3.2 

about the capacity of plume vortices to temporarily “trap” particles in distorted (elongated vertically) 

closed circuits over a wide range of , with the formation of V-shaped particle profiles in the central 

region separating such vortices (V apex down for >1, up for <1, respectively). Although the 

dynamics of particles become increasingly different for >1 and <1 as time increases, a limited 

timeframe can be identified in which they tend to be trapped in the two vortices giving rise to 

qualitatively similar patterning behaviours in the region enclosed in the corresponding two plume 

lobes.  

Additional, specific insights into the general dynamics can be sought from consideration of the 
parameters Q as a function of time (Fig. 14). 

As expected, for a fixed St, the relative importance of Q and Q changes according to the value of , 

with Q  lying above Q  for <1 and vice versa for >1. In these plots, the non-monotone behaviour 

of  Q  (initially increasing, then decreasing with time) is intimately related to the transient dynamics 

of the rising plume that, by virtue of its own fluid velocity (especially in the jet and two side 
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vortices), tends to interfere with the otherwise uniform and homogeneous particle sedimentation (or 

flotation) process, as widely discussed in the preceding sections.  
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Figure 14: Parameters Q  (red line) Q  (black line) versus time for St=2x10-7, Fr=5.45x10-5 

(=2.15x1010) and different values of the density ratio: a) =0.2;  b) =0.5; c) =0.8; d) =1.3; e) 
=1.6; f) =2.0. 
 

The most interesting feature distinguishing >1 from <1 cases, however, is the double change in 
trend (increasing, decreasing, then again increasing and decreasing) observable in the Q  plots for 
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>1 only. This may be seen as a mark of an increased plume ability in influencing the purely 

gravitational motion of particles for these specific cases (by contrast, no double increasing-

decreasing trend can be seen for <1), where especially in the initial stages of evolution, both particle 

buoyancy velocities induced on particles by the plume and the gravity field are directed upward. 
More specifically, the “valley” visible in the central region of the Q  plot for >1 (the region 

affected by significant shortage of Q ) can be ascribed to the specific stages of evolution taken by 

the plume in a given temporal neighbourhood of the instant at which it hits the top wall. The location 
of the minimum of the Q  curves for >1, indeed, roughly corresponds to this instant. This 

realisation also leads to two interesting related (less straightforward) arguments, namely, that the two 

maxima visible on the left and on the right of the valley region (Figs. 14d-f) should be explained on 

the basis of two extremely different-in-nature effects, these being the not yet fully developed state (in 

terms of spatial extension and strength) of the plume before it reaches the top wall (see, e.g., Figs. 

6a-6e for =2) and its subsequent weakening (after it has hit the top) due to the creation of two 

descending layers of fluids at the plume sides (Figs. 6i-6k), and the ensuing (at later times) onset of 

the (symmetry-breaking) shear-driven instability (Figs. 6l-6o).  

Figure 14 also shows that, for a fixed St and Fr, apart from the just highlighted trends, the vertical 

distance (on average) between the two curves is also a function of the density ratio, with such a 

distance behaving as a decreasing function of  for  <1 and as an increasing function when >1. 

This information is particularly meaningful as the smaller the separation of the curves, the stronger 

should be the ability of the plume to retain the particles (maintain particles suspended), which is 

indeed confirmed by the results shown in Fig. 13 (with the maximum number of suspended particles 

being attained there for =0.8).  

Similar considerations about the role played by gravity (via Fr) can be obtained by plotting the same 
quantities Q  versus time for a fixed value of  and different values of the Stokes and Froude 

numbers. 
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Figure 15: Parameters Q  (red line) Q  (black line) versus time for =2.0, as a function of the 

Stokes number for different values of the Froude number: a) Fr=8x10-5 (=1x1010);  b) Fr=5.45x10-5 
(=2.15x1010);  c) Fr=3.85x10-5 (=4.3x1010). 
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The related results summarized in Fig. 15 for =2.0 allow to identify additional interesting trends.  

To illustrate them it is convenient to start from the simplest condition possible, namely, the very 

initial stages of evolution when the plume cap is still confined to the bottom of the container (region 
located in proximity to t=0 in Fig. 15). It can be seen there that Q  behaves as an increasing function 

of St at fixed Fr, and as a decreasing function of Fr at fixed St. These dependences, valid or 

applicable when the fluid is still in almost quiescent conditions throughout the domain, are clearly in 

line with what one would expect on the basis of eq. (10) (let us recall that the theoretical 

sedimentation velocity of particles in a still fluid is directly proportional to the particle Stokes 

number and inversely proportional to the square of the Froude number). 
Extremely interesting in such plots is also the behaviour of the Q  curve, which experiences a 

notable shrinkage in height as the Stokes number is increased for a fixed value of Fr, or as the Froude 

number is decreased for a fixed value of St. 

The first effect can be clearly ascribed to the reduced capacity of heavy particles to be “captured” by 

the thermal plume vortices when St increases (see the discussions in Sect 2.3). 

Let us recall that in the absence of gravity, the two counter-rotating vortices associated with the 

plume would transport just as many particles from the upper domain into the lower one and vice 

versa, so that no net settling would take place. In our case, this ideal symmetry is broken by at least 

two factors: first, gravity itself that cause particle sedimentation, second, the presence of a central 

rising jet that propels both particles and the two above-mentioned counter-rotating vortices towards 

the top.  

Some particles do not experience significant fluid velocity and settle as they were in a stagnant fluid. 

Some particles are swept into the return flow and settle at rates that are larger than in still fluid. A 

limited percentage of them are propelled upward by the strong central jet. Other particles remain 

suspended, moving on closed trajectories, so that their vertical motions are oscillatory. On the one 

hand, these different types of behaviour result in a multi-modal distribution of vertical velocities, on 

the other hand, as a result the mean settling velocity can be either larger or smaller than the terminal 

velocity in a still fluid. 
With these arguments in mind, the dependence of Q  on Fr can be properly interpreted recalling 

what would be the expected theoretical behaviour of the particles in the limit conditions in which 

Fr0 (particles undergoing unperturbed purely vertical sedimentation, the reader being referred 

again to Sect. 3.2). 

Additional insights can also be obtained by highlighting that the region of limited temporal extent 
where the condition Q > Q  is satisfied (clearly identifiable in each of the frames shown in Fig. 15) 

may be regarded as a further proof of the existence of specific conditions where plume vortices 

become optimally efficient in promoting heavy particle suspension. 
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Figure 16: Axial penetration depth of the equilibrium point at t=4x10-4 (plume front located at 
x=0.63) for =2 as a function of the particle Stokes number for different values of the Froude number. 

 

 

Figures 16 and 17, finally, provide the missing information about the dependence of the position of 

the aforementioned dynamically evolving equilibrium point on the system parameters. By taking a 

look at Fig. 16, the reader will immediately realize that the point penetration depth (distance from 

plume front) behaves as an increasing function of St, whereas an increase in Fr makes it smaller. 

The combined temperature and particle fields in Fig. 17 provide even more interesting details. It is 

evident there that, for Fr=3.85x10-5 (=4.3x1010), a threshold value of the Stokes number can be 

identified beyond which the existence of the equilibrium point is no longer possible, as witnessed by 

the notable modification undergone by the particle field in Fig. 17c in terms of topology and 

morphology of particle path-lines. The topological change is especially evident if one concentrates 

on the regions located in proximity to the jet core. The typical double V-shaped profiles visible in the 

particle concentration on both sides (lefty and right) of the jet core (Figs. 17a and 17b) for smaller 

values of St are taken over for St=6x10-7 by a new configuration where the two first recognizable 

path-lines located on the left and on the right of the x axis proceed almost undisturbed along the 

vertical direction. Although solid particles flowing through the space encapsulated by these two 

slightly curved path-lines still experience some deceleration when they pass through the region 

corresponding to the plume cap, particles are allowed to continue their motion towards the bottom of 

the domain under the influence of gravity. 
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Figure 17: Snapshot of particle distribution and underlying temperature field at t=4x10-4 for =2, 
Fr=3.85x10-5 (=4.3x1010) and different values of the particle Stokes number: a) St=2x10-7;  b) 
St=4x10-7; c) St=6x10-7. 
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Figure 18: Snapshot of particle distribution at t=32 (=0.5, St=8x10-7) for different values of the 
parameter : a) =1x1010;  b) =2.15x1010;  c) =4.3x1010. 
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Figure 19: Stand-off distance at t=4x10-4 (plume front located at x=0.63) for =0.5 as a function of 
the particle Stokes number for two different values of the Froude number. 

 

Figure 18 provides analogous insights into the influence of the Froude number on the morphology of 

the  separation boundary produced by particles rising for <1 under the joint influence of thermal 

convection and gravity. 
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The role particle inertia does still play in such dynamics can be elucidated by plotting the “stand-off 

distance” (that we define as the distance along the x direction at y=0 between the plume front and the 

transition boundary separating the particle dense region from the clear fluid below, see Fig. 11) as a 

function of St and Fr (Fig. 19). According to such figure, the stronger the particle inertia (as 

quantified by the Stokes number), the larger the stand-off distance, whereas an increase in the Froude 

number (corresponding, e.g., to a decrease in the gravity acceleration) has the opposite effect. 

 
4. Conclusions 

A mathematical and numerical framework has been developed to inquire specifically about the role 

of thermal convection in determining segregation, dispersion and gravitational sedimentation (or 

flotation) of solid spherical particles in a convectively unstable medium. In particular, this topic has 

been investigated by direct numerical solution of the governing flow-field (Navier-Stokes-

Boussinesq) equations in combination with a specific particle tracking method accounting for 

particle motion under the influence of inertia, viscous drag and gravity. Attention has been paid to a 

rising plume, which represents a well-known exemplar of localized buoyancy convection.  

It has been shown that, if specific conditions are satisfied, particles, initially uniformly spaced in the 

liquid, can produce recognizable peculiar patterns with well-defined properties varying according to 

the considered sub-region of the fluid domain, the time interval considered, and particle inertia and 

drag as quantified by the density ratio and Stokes number and the relative strength of gravity (via the 

Froude number). Suspension (although non-permanent) is possible in specific regions of the fluid 

domain, whereas other regions experience rapid depletion processes due to particle sedimentation or 

flotation. The existence of “equilibrium points” has been investigated as well (together with an 

analysis of the topological properties displayed by the distribution of suspended particles). All these 

behaviours have been critically discussed and linked to the general features of the plume (its main 

constitutive parts and related instabilities). Moreover, to properly track the system evolution, and 

make results and conclusions sufficiently independent and general, a statistically relevant number of 

solid particles has been considered. Accordingly, insights into the changing behaviour of the fluid-

solid system in the space of parameters have been obtained by connecting the mean evolution of such 
particles, measured via ad-hoc-defined global parameters ( Q ), to the characteristic problem non-

dimensional numbers (St,  and Fr).  

This work should be regarded as a first step towards the understanding of more complex situations.  

Though our main intention here was to lay out the fundamental dynamical principles governing the 

interaction of a thermal plume with dispersed solid matter, let us recall once again that thermal 

plumes are the building blocks of turbulent fluid flow. In such flows, plumes typically stretch, 

interact with other vortices and undergo a variety of instabilities allowing energy to be transferred to 

larger scales. Along these lines, among the possible improvements, one direction of future research 

could be the extension of the present study to the case of turbulent Rayleigh-Bénard convection of 

which plumes in the IVND regime represent a typical constitutive ingredient. Another possible 

direction of extension could be the consideration of fluid compressibility effects in the case of 
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particles dispersed in gases a very high temperature for which the Boussinesq and other related 

assumptions are no longer applicable. 
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