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Abstract. In this paper we will provide a fresh take on Dana Angluin’s
algorithm for learning using ideas from coalgebraic modal logic. Our work
opens up possibilities for applications of tools & techniques from modal
logic to automata learning and vice versa. As main technical result we
obtain a generalisation of Angluin’s original algorithm from DFAs to
coalgebras for an arbitrary finitary set functor T in the following sense:
given a (possibly infinite) pointed T -coalgebra that we assume to be
regular (i.e. having an equivalent finite representation) we can learn its
finite representation by asking (i) “logical queries” (corresponding to
membership queries) and (ii) making conjectures to which the teacher
has to reply with a counterexample. This covers (a known variant) of the
original L* algorithm and the learning of Mealy/Moore machines. Other
examples are bisimulation quotients of (probabilistic) transition systems.
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1 Introduction

Coalgebra studies “generated behaviour” that can be observed when interacting
with a system. A lot of progress has been made thus far to formalise behaviour
and to create languages that allow to specify and reason about it (cf. e.g. [1]).
Intriguingly little, however, has been done to formalise the process of making
observations and of using these observations to learn how a system works.

This has changed thanks to a series of recent work [2–5] but the connections
between coalgebra & learning are still far from being completely understood. In
this paper we will describe one such connection between the above mentioned
coalgebraic specification languages (aka coalgebraic modal logics) and the well-
known L∗ algorithm [6] for learning deterministic finite automata (DFA).

This algorithm constructs a minimal DFA accepting a (at the beginning
unknown) regular language by asking a teacher membership queries of the form
“is word w in the language?” and by making conjectures for what the language/DFA
is, to which the teacher replies with a counterexample in case the conjecture is
false. A central role in the algorithm is played by so-called tables that essentially
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consist of two sets of finite words S and E of which the first corresponds to the
states of the constructed DFA and the second set corresponds to observations or
tests that we are performing on states.

The use of tests shows that the connection to logic is not at all surprising. A
bit more surprising was for us the observation that closed & consistent tables
can be best understood using the notion of a filtration from modal logic. We will
not discuss this observation in detail - instead we will describe a generalisation of
the L∗ algorithm to coalgebras that was made possible by it. Our “Lco algorithm”
allows - in principle - the learning of regular coalgebras for an arbitrary finitary
set functor. This generalisation of L∗ is the main contribution of this paper.

1.1 What the algorithm learns

The classical L∗ algorithm looks very much like a bottom up procedure. The
starting point of the algorithm are two singleton sets that grow step-by-step
until the desired DFA has been learned. It is instructive, however, to think of
the algorithm as follows: The regular language L ⊆ Σ∗ that we intend to learn
can be thought as represented by the infinite DFA

〈o, δ〉 : Σ∗ → 2× (Σ∗)Σ

where o(w) = 1 iff w ∈ L and δ(w)(a) = w · a for all w ∈ Σ∗, a ∈ Σ. The
assumption that L is a regular language can be rephrased by stating that the
pointed coalgebra (Σ∗, 〈o, δ〉, λ) is behaviourally equivalent to a finite well-pointed
coalgebra [7]. The aim of the algorithm is to learn this finite well-pointed coalgebra
using queries that can be asked concerning the given infinite coalgebra. Our
generalisation of Angluin’s algorithm looks thus as follows: We are given a
(possibly infinite) pointed T -coalgebra (X, γ, x) (corresponding to the language
L) and we assume that (X, γ, x) is regular, i.e. behaviourally equivalent to a finite
well-pointed T -coalgebra (Y, δ, y). The goal of the algorithm is to learn (Y, δ, y).

1.2 Means to learn

The central device for learning in our setting is logic: we assume that we are
provided with an expressive modal language that allows to characterise coalgebras
up-to behavioural equivalence. The learner is able to ask two types of queries:

– Logical queries of the form “is formula ϕ true at some state x′ ∈ X?”

– Conjectures of the form “is this the correct well-pointed T -coalgebra?”

Logical queries are answered truthfully with Yes or No by the teacher, conjectures
are either confirmed or the teacher provides a counterexample in the shape of a
formula ψ ∈ F(Λ) that can be used to distinguish the point of the conjectured
coalgebra from the point x of the coalgebra that we are trying to learn.



1.3 Related Work

Within the large body of literature on Angluin learning [6], the line of research
closely related to our paper is [2–5] which applies categorical techniques to
automata learning. There are, however, important differences to our work. On
the one hand, our logic-based methodology allows us to make the L∗ algorithm
parametric in the system type, which is less clear in the cited articles. On the
other hand, our results are limited to the category of sets - results such as learning
linear weighted or nominal automata [2, 5] are currently out of reach for our
approach. Connections between modal logic and automata theory are of course
well-known [8], but the link between modal logic and automata learning that we
are describing is, to the best of our knowledge, new.
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2 Preliminaries

We assume that the reader is familiar with basic category theory [9] and coalge-
bra [10]. We briefly recall some definitions from coalgebra & modal logic that will
play a central role in the paper. Throughout the paper we will be working with an
arbitrary finitary set functor T and we will assume - without loss of generality [7,
11] - that T preserves intersections and for any sets X,Y with X ⊆ Y the inclu-
sion map ιX,Y : X → Y gets mapped to the inclusion ιTX,TY (in particular, we
have TX ⊆ TY ). Under this assumption finitariness of the functor T means that
for all sets X and all elements t ∈ TX there is a finite subset X ′ ⊆ X such that
t ∈ TX ′. Another functor that will be playing an important role in our paper is
the contravariant power set functor P : Setop → Set that maps a set X to the
collection PX of subsets of X and a function f : X → Y to the inverse image
function Pf = f−1 where for V ⊆ Y we have f−1(V ) = {x ∈ X | f(x) ∈ V }.
Finally, for a set X we denote by #X the cardinality of X and we write X ′ ⊆ω X
if X ′ is a finite subset of X.

2.1 Coalgebra

A T -coalgebra is a pair (X, γ) where X is a set and γ : X → TX is a function. A T -
coalgebra morphism from a T -coalgebra (X, γ) to another T -coalgebra morphism
(Y, δ) is a function f : X → Y such that the following diagram commutes.

X

γ

��

f // Y

δ
��

TX
Tf
// TY



We call two states x1 ∈ X1 and x2 ∈ X2 of two T -coalgebras (X1, γ1) and
(X2, γ2) behaviourally equivalent1 if there exists a T -coalgebra (Y, δ) and coalgebra
morphisms fi : (Xi, γi) → (Y, δ) for i = 1, 2 such that f1(x1) = f2(x2). In this
case we write x1 ↔T x2 or simply x1 ↔ x2. A pointed T -coalgebra is a triple
(X, γ, x) where (X, γ) is a T -coalgebra and x ∈ X is a distinguished point (to
be thought of as the “initial state”). A morphism f : (X, γ, x) → (Y, δ, y) is
a T -coalgebra morphism f : (X, γ) → (Y, δ) such that f(x) = y. Two pointed
coalgebras (X, γ, x) and (Y, δ, y) are behaviourally equivalent if x ↔ y. When
discussing concrete constructions on transition systems it is important to be
able to express the notion of a “successor state”, i.e. a state that can be reached
after performing one step in the transition structure. Coalgebra does not come
with such a notion from the outset, but it is well-known that successors can be
formalised via the notion of base.

Definition 1. Given a finitary set functor T and an element t ∈ TX, we define

BaseTX(t) :=
⋂
{Y ⊆ω X | t ∈ TY }.

Whenever T and X are clear from the context we will drop the super- and subscript,
respectively, and simply write Base(t).

Fact 1 Let T be a finitary set functor, let X be a set and let t ∈ TX. Then
t ∈ TBaseTX(t) and for any proper subset X ′ ⊂ BaseTX(t) we have t 6∈ TX ′.

The notion of base can be used to associate with any T -coalgebra a graph that
can be used to give a concrete representation of reachability.

Definition 2 ([7]). Let (X, γ) be a T -coalgebra. The canonical graph (X, canγ :

X → PfX) is defined by putting canγ(x) := BaseTX(γ(x)) for all x ∈ X.

Note that we can confine ourselves to finitely branching canonical graphs as
we are considering only finitary set functors.

Example 1. 1. T = A × Id where A is a set and Id is the identity functor. In
this case BaseTX((a, x)) = {x} for (a, x) ∈ A×X.

2. T = 2× IdA where A is a finite set (the “alphabet”). Then BaseTX((i, f)) =
{fa | a ∈ A} for (i, f) ∈ TX.

3. Let T = Dω where DωX denotes the collection of discrete probability distribu-
tions over X with finite support, i.e. DωX = {µ : X → [0, 1] |

∑
x∈X µ(x) =

1, supp(µ) finite} and for a function f : X → Y and µ : X → [0, 1] we have
(Dωf)(µ)(y) =

∑
f(x)=y µ(x), where supp(µ) = {x ∈ X | µ(x) 6= 0} denotes

the support of µ. In this case BaseDωX (µ) = supp(µ). Note that while Dω does
not satisfy our condition that X ⊆ Y implies DωX ⊆ DωY , an isomorphic
modification of Dω does, e.g. the functor D′ω that maps a set X to the set
of partial funtions µ : X ⇀ (0, 1] with supp(µ) finite and

∑
x∈X µ(x) = 1.

We stick with the functor Dω as it is commonly used and as this technical
subtlety is irrelevant for this specific example.

1 Readers should think of “behavioural equivalence” as a general notion of bisimilarity.
In all concrete examples in this paper both notions of equivalence coincide.



We are going to describe a learning algorithm that learns a minimal finite
representation of the behaviour of a given pointed coalgebra. Minimal here means
that the learned pointed coalgebra should not have any proper subcoalgebras or
proper quotients. Let us first recall those notions.

Definition 3. Let (X, γ, x) be a pointed T -coalgebra. We say (Y, δ, y) is a quo-
tient of (X, γ, x) if there is a surjective morphism q : (X, γ, x)→ (Y, δ, y). We say
(Y, δ, y) is a subobject of (X, γ, x) if there is an injection m : (Y, δ, y)→ (X, γ, x).
A quotient or subobject (Y, δ, y) of (X, γ, x) is said to be proper if (Y, δ, y) is not
isomorphic to (X,x, γ).

Minimality of a pointed coalgebra is captured by the following notion from [7].

Definition 4. A pointed T -coalgebra (X, γ, x) is called well-pointed if it is simple
and reachable, i.e. if it does not have proper quotients or proper subcoalgebras.

Example 2. 1. For T = 2×( )A, the (finite) well-pointed T -coalgebras are DFAs
where each state is reachable from the initial state and where no two states
represent the same (regular) language.

2. For T = Pω (where PωX = {X ′ | X ′ ⊆ω X}) well-pointed T -coalgebras are
finitely-branching Kripke frames with a designated state such that each state
is reachable from the designated state and such that no two distinct states
are bisimilar.

2.2 Coalgebraic Modal Logic

Coalgebraic modal logics [12, 13] are a family of logics that allow to express
properties of pointed coalgebras that are invariant under behavioural equivalence.
We first recall the basic definitions and state an important fact on expressivity of
these logics. Later in the paper formulas will serve as tests that allow to learn a
given (pointed) coalgebra. The language of coalgebraic modal logic is determined
by choosing a collection of modal operators - the so-called similarity type:

Definition 5. A (modal) similarity type is a set of modal operators with arities.
If Λ is a similarity type, a Λ-structure consists of an endofunctor T : Set→ Set,
together with an assignment of an n-ary predicate lifting, that is, a natural
transformation of type [[♥]] : (P )n → P ◦ T where P : Set → Setop is the
contravariant powerset functor, to every n-ary operator ♥ ∈ Λ.

The syntax is now given as propositional modal logic, where the modal operators
are the elements of Λ. To keep things simple we treat propositional variables as
nullary predicate liftings. The definition of the semantics is also standard.

Definition 6. The language induced by a modal similarity type Λ is the set
F(Λ) of formulas given by

F(Λ) 3 ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | ♥(ϕ1, . . . , ϕn) (♥ ∈ Λ n-ary)



Given a Λ-structure T and a T -coalgebra (X, γ), the semantics of ϕ ∈ F(Λ) is
inductively given by

[[>]](X,γ) = X
[[ϕ ∧ ψ]](X,γ) := [[ϕ]](X,γ) ∩ [[ψ]](X,γ) [[¬ϕ]](X,γ) := X \ [[ϕ]](X,γ),
[[♥(ϕ1, . . . , ϕn)]](X,γ) := Pγ ◦ [[♥]]X([[ϕ1]](X,γ), . . . , [[ϕn]](X,γ)),

Instead of x ∈ [[ϕ]](X,γ) we will often write (X, γ, x) |= ϕ or simply x |= ϕ. In
words “the pointed coalgebra (X, γ, x) satisfies ϕ”, or simply “x satisfies ϕ”.

The logics give rise to the notion of logical equivalence.

Definition 7. Let (X, γ) and (Y, δ) be T -coalgebras and let Σ ⊆ F(Λ) be a set
of formulas. Two states x ∈ X and y ∈ Y are logically equivalent wrt Σ if for
all formulas ϕ ∈ Σ we have x |= ϕ iff y |= ϕ. In this case we write x ≡Σ y. The
equivalence classes wrt ≡Σ on a coalgebra (X, γ) will be denoted by |x|Σ, i.e. we
put |x|Σ = {x′ ∈ X | x′ ≡Σ x}. If Σ = F(Λ) is the set of all formulas we simply
write ≡ for the equivalence and denote the equivalence class of some x by |x|.

The semantics of formulas of coalgebraic modal logic is invariant under
behavioural equivalence. An important stronger property that coalgebraic modal
logics often possess is expressivity, i.e. the property that logical equivalence
implies behavioural equivalence.

Definition 8. The language F(Λ) is called expressive if for all T -coalgebras
(X, γ) and (Y, δ) and all x ∈ X, y ∈ Y we have x ≡ y iff x ↔ y.

For a finitary set functor T we are always able to find an expressive language,
cf. e.g. [14]. Many expressive coalgebraic modal logics have been considered in
the literature, we mention two examples - note that in both examples we do
not need the full Boolean structure of the language to obtain expressivity. Also
note that we are simply sketching the semantics of the logics without explicitly
explaining how its definition can be seen as special case of Definition 6.

Example 3. 1. For T = ( × O)I coalgebras correspond to so-called Mealy
machines [15] and we define:

F(Λ) 3 ϕ ::= > | pi/o, i ∈ I, o ∈ O | [i]ϕ, i ∈ I.

Given a T -coalgebra (X, γ), a state x ∈ X and i ∈ I, o ∈ O, we put x |= pi/o
if π2(γ(x)(i)) = o. Intuitively, pi/o is true in x if the output of the coalgebra
at x on input i is equal to o. Furthermore we put x |= [i]ϕ if π1(γ(x)(i)) |= ϕ.

2. For T = PAt × Dω with At a set of propositional variables, coalgebras
correspond to probabilistic transition systems and an expressive language [16]
is given by

F(Λ) 3 ϕ ::= > | p, p ∈ At | ϕ1 ∧ ϕ2 | Lqϕ, q ∈ [0, 1],

where for a coalgebra (X, γ) we have x |= p if p ∈ π1(γ(x)) and x |= Lqϕ if∑
x′|=ϕ π2(γ(x))(x′) ≥ q, in words, if the probability of reaching a successor

of x that makes ϕ true is at least q.



2.3 Logical quotients

Given an expressive modal language F(Λ) for T , it is well known that we can
compute the maximal quotient of a coalgebra simply by identifying states that
satisfy the same modal formulas in F(Λ).

Fact 2 Let (X, γ) be a T -coalgebra and let F(Λ) be an expressive language, let
|X| = {|x| | x ∈ X} and define γFΛ : |X| → T |X| by putting γF(Λ)(|x|) :=
(T | |)(γ(x)). Then the logical quotient γFΛ is well-defined and q : X → |X| given
by x 7→ |x| is a T -coalgebra map that computes the maximal quotient of (X, γ).

The proof of well-definedness can e.g. be found in [17]. That the quotient is
maximal is an immediate consequence of the fact that truth of modal formulas
is preserved by coalgebra morphisms. The method also allows us to obtain the
well-pointed coalgebra that is equivalent to a given pointed T -coalgebra.

Lemma 1. Let (X, γ, x) be a pointed T -coalgebra and let (Y, δ, x) be its smallest
pointed subcoalgebra. The logical quotient (|Y |, δF(Λ), |x|) is well-pointed.

Proof. First note that the smallest pointed subcoalgebra (Y, δ, x) exists as T
preserves intersections. It is reachable by definition. Therefore also its quotient
will be reachable because (i) it is easy to see that the canonical graph of the
quotient is a quotient of the canonical graph of (Y, δ, x) and (ii) by [7, Lemma 3.16]
reachability of its canonical graph implies reachability of a pointed T -coalgebra.
Furthermore the logical quotient of (Y, δ, x) is simple as any two distinct states
can be distinguished by a formula in F(Λ) and can thus not be behaviourally
equivalent. This implies that (|Y |, δF(Λ), |x|) is well-pointed (cf. Definition 4).

3 The Lco algorithm

We first describe the possible configurations of the algorithm. After that we
describe the algorithm parametric in a finitary set functor T . Finally we prove
termination and correctness of the algorithm. Throughout this section we assume
that we are given a pointed T -coalgebra (X, γ, x) whose finite representation we
are trying to learn. Furthermore we are given an expressive language F(Λ) for T .

3.1 Filtrations & Logical Tables

Following Angluin’s original terminology we will refer to configurations of our
algorithm as logical tables or simply as tables. First we need some terminology
concerning sets of formulas from F(Λ).

Definition 9. A set Σ ⊆ F(Λ) is closed under taking subformulas or subformula
closed if we have

– ϕ1 ∧ ϕ2 ∈ Σ implies ϕi ∈ Σ for i ∈ {1, 2}
– ¬ϕ ∈ Σ implies ϕ ∈ Σ, and



– for all ♥ ∈ Λ we have ♥(ϕ1, . . . , ϕn) ∈ Σ implies ϕi ∈ Σ for all i ∈
{1, . . . , n}.

Sets that are closed under taking subformulas are used in modal logic to compute
filtrations of Kripke models and to prove a truth lemma for such filtrations [18].
It turns out that a similar idea is at work in the L∗ algorithm, although the
relevant construction is a modification of the standard filtration. We first give a
coalgebraic account of the filtrations that play a role in our algorithm.

Definition 10. Let (X, γ) be a T -coalgebra, let Σ ⊆ F(Λ) be a subformula closed
set of formulas and let S ⊆ X be a selection of points in X such that

1. for all x1, x2 ∈ S we have x1 6≡Σ x2
2. for all x ∈ S and all x′ ∈ Base(γ(x)) we have |x′|Σ ∈ |S|Σ

where |S|Σ = {|x|Σ | x ∈ S}. The (S,Σ)-filtration of (X, γ) has as carrier the
set |S|Σ and as coalgebra structure γS,Σ we define the map

γS,Σ(|x|Σ) := (T | |Σ)(γ(x))

where we view the operation of identifying equivalent points as a function | |Σ :
X → |X|Σ to which the functor T is applied.

Lemma 2. Under the conditions on (S,Σ) from the previous definition, the
(S,Σ)-filtration of a T -coalgebra (X, γ) is well-defined.

Proof. This follows as x ≡Σ x′ implies x = x′ and thus γ(x) = γ(x′) for all
x, x′ ∈ S by condition 1 and as (T | |Σ)(γ(x)) ∈ T |S|Σ as S satisfies condition 2.

Definition 10 is reminiscent of the definition of a logical quotient in Fact 2 - the
differences are that we select only one representant for each ≡Σ-equivalence class
and that a (S,Σ)-filtration of a coalgebra is in general not a quotient. Instead a
weaker property holds: restricted to elements in S, the map | |Σ preserves truth
of formulas in Σ.

Lemma 3. Let (X, γ) be a T -coalgebra, let Σ ⊆ F(Λ) be a subformula closed
set of formulas and let (|S|Σ , γS,Σ) be the (S,Σ)-filtration of (X, γ) for some
suitable S ⊆ X. Then for all x ∈ S and all ϕ ∈ Σ we have

(X, γ, x) |= ϕ iff (|S|Σ , γS,Σ , |x|Σ) |= ϕ.

In particular, (|S|Σ , γS,Σ) is simple.

Proof. We prove the statement by induction on the structure of the formula ϕ.
In case ϕ = > is obvious. Similarly, the Boolean cases ϕ = ψ1 ∧ ψ2 and ϕ = ¬ψ
easily follow from the induction hypothesis. Suppose now that ϕ = ♥(ψ1, . . . , ψn).
We have x |= ♥(ψ1, . . . , ψn) iff γ(x) ∈ [[♥]]X([[ψ1]](X,γ), . . . , [[ψn]](X,γ)) iff x ∈
Pγ
(
[[♥]]X([[ψ1]](X,γ), . . . , [[ψn]](X,γ))

)
. The last statement is by I.H. on the ψi’s

equivalent to

σ(x) ∈ Pγ
(
[[♥]]X(P | |Σ([[ψ1]](|S|Σ ,γS,Σ)), . . . , P | |Σ([[ψn]](|S|Σ ,γS,Σ)))

)



which is by naturality of [[♥]] equivalent to

x ∈ (Pγ ◦ PT | |Σ)
(
[[♥]]|S|Σ ([[ψ1]](|S|Σ ,γS,Σ), . . . , [[ψn]](|S|Σ ,γS,Σ))

)
which is equivalent to T | |Σ(γ(x)) ∈ [[♥]]|S|Σ ([[ψ1]](|S|Σ ,γS,Σ)), . . . , [[ψn]](|S|Σ ,γS,Σ))
which finally is equivalent to |x|Σ |= ♥(ψ1, . . . , ψn) as required.

Given our observations on filtrations we are now ready to introduce the tables
that will form the configurations of our algorithm.

Definition 11. A (logical) table is a pair (S,Σ) where S ⊆ X and Σ ⊆ F(Λ)
is a set of formulas that is closed under taking subformulas. A table (S,Σ) is
closed if for all x ∈ S we have |Base(γ(x)|Σ ⊆ |S|Σ. Finally we call (S,Σ) sharp
if for all x1, x2 ∈ S we have x1 6= x2 implies x1 6≡Σ x2.

Remark 1. Readers familiar with the L∗ algorithm will recognise the closedness
condition. The condition that a table is sharp implies the consistency requirement
in Angluin’s work. Sharpness will be maintained by adding counterexamples to
the tests and not to the states, similar to what is done e.g. in [19].

3.2 Description of the algorithm

Let (X, γ, x) be a pointed coalgebra that is behaviourally equivalent to a finite
well-pointed coalgebra and let F(Λ) be an expressive language. We will now
describe a procedure that allows to learn the well-pointed coalgebra by asking
queries to a teacher that knows (X, γ, x). Our algorithm will compute a closed
and sharp table (S,Σ)2 such that x ∈ S and such that the pointed T -coalgebra
(|S|Σ , γS,Σ , |x|Σ) that is based on the (S,Σ)-filtration of (X, γ, x) is the finite
quotient of a subcoalgebra of (X, γ, x) that contains x. The algorithm - depicted
in Figure 1 - makes the following steps:

1. The start table is ({x}, {>}) - the first component ensures that the distin-
guished point of (X, γ, x) is represented, the second component equals {>}
to keep the formulation uniform as > ∈ F(Λ) independently of the choice of
language.

2. At configuration (S,Σ), check whether (S,Σ) is closed. If yes, jump to Step 4.
If not, proceed with the next step.

3. Given a configuration (S,Σ) that is not closed, pick an element x′ ∈ S
such that |Base(γ(x′))|Σ 6⊆ |S|Σ . For all x′′ ∈ Base(γ(x′)) check whether
|x′′|Σ ∈ |S|Σ , i.e. whether the equivalence class of x′′ is already represented
by some other element of S. If not, then add x′′ to S. Otherwise check the
next element of Base(γ(x′)). Note that we are adding elements of Base(γ(x′))
one-by-one to maintain sharpness of the table.

2 Instead, we could use triples (S,Σ, |=S) to be in line with [6] but we decided to leave
the third “bookkeeping” component implicit.



4. Given the closed configuration (S,Σ), present the (S,Σ)-filtration γS,Σ to
the teacher. If teacher accepts, the algorithm terminates. If teacher rejects,
she has to provide a counterexample, i.e. a formula ϕ ∈ F(Λ) s.t. x |= ϕ
and |x|Σ 6|= ϕ or vice versa. In this case we put Σ′ = Σ ∪ Sub(ϕ) and the
algorithm continues at Step 2 with (S,Σ′).

Algorithm 1: The Lco algorithm with teacher (X, γ, x) and language F(Λ)

Initialize table T = (S,Σ),with S = {x} and Σ = {>}
? Check if T = (S,Σ) is closed
1 if Closed(T ) then

Given T closed
Conjecture: γS,Σ : |S|Σ → T |S|Σ
|x|Σ 7→ (T | |Σ)(γ(x))

2 if Conjecture ==⊥ then
Provide ϕ ∈ F(Λ) s.t. x � ϕ and |x| 2 ϕ
Update Σ ← Σ ∪ Sub(ϕ)
return T
Go to ?

else
return Aut(T )

else
Given T not closed
Pick x ∈ S s.t. |Base(γ(x ))|Σ 6⊆ |S|Σ

3 while Base(γ(x)) 6= ∅ do
Take y ∈ Base(γ(x))

4 if |y| ∈ |S|Σ then
Base(γ(x))← Base(γ(x)) \ {y}

else
Update S ← S ∪ {y}
Base(γ(x))← Base(γ(x)) \ {y}

return T
Go to ?

3.3 Termination & correctness

In this section we are going to prove termination and correctness of our Lco

algorithm. We first state the theorem and sketch its proof. After that we will
provide the proofs for the necessary technical lemmas.

Theorem 3. Let (X, γ, x) be a pointed T -coalgebra and suppose (X, γ, x) is
behaviourally equivalent to a finite well-pointed T -coalgebra (Y, δ, y). Let F(Λ) be



an expressive language for T -coalgebras. The Lco algorithm with teacher (X, γ, x)
and test language F(Λ) terminates and returns the correct well-pointed coalgebra.

Proof. That the algorithm terminates can be seen as follows:

– The algorithm builds tables (S,Σ) where S is a subset of the carrier of the
smallest subcoalgebra of (X, γ, x) that contains x. Therefore the size of S is
bound by the number of elements of Y (Lemma 4 and Lemma 5).

– Whenever a table is not closed, the algorithm will be able to close it. Whenever
the algorithm turns a table into a closed one, the size of S strictly increases
(Lemma 6).

– Whenever the teacher provides a counterexample the resulting table will not
be closed (Lemma 7).

Collectively these claims show that the teacher eventually will accept the conjec-
ture that the algorithm produces. Correctness of the algorithm then follows: Let
(S,Σ) be a closed & sharp table. By Lemma 3 we have that the (S,Σ)-filtration
(|S|Σ , γS,Σ , |x|Σ) of (X, γ, x) is simple. To see that it is reachable consider the
following diagram

TS
BaseTS //

T | |Σ
��

PωS

Pω| |Σ
��

T |S|Σ
BaseT|S|Σ

// Pω|S|Σ

where | |Σ is the mapping to equivalence classes restricted to S ⊆ X. Clearly
| |Σ is mono (due to sharpness of (S,Σ)) and thus we know from [7, Rem. 2.49] that
the square commutes (and even forms a pullback). Whenever the algorithm adds a
state x′ to S we know that x′ ∈ Base(γ(x′′)) for some x′′ ∈ S that has been already
added at an earlier stage. Commutation of the diagram implies that |x′|Σ ∈
Base(T | |Σ(γ(x′′))) = Base(γS,Σ(|x′′|Σ)) where the equality is a consequence of
the definition of the filtration. A routine induction argument together with [7,
Lemma 3.16] reducing reachability of the coalgebra to reachability of its canonical
graph can now be used to show that the (S,Σ)-filtration is reachable and hence
well-pointed. If, in addition, the teacher accepts the (S,Σ)-filtration of (X, γ, x)
we have that (X, γ, x) |= ϕ iff (|S|Σ , γS,Σ , |x|Σ) |= ϕ for all formulas ϕ ∈ F(Λ).
By expressivity of F(Λ) this means (X, γ, x) is behaviourally equivalent to
(|S|Σ , γS,Σ , |x|Σ), i.e. we have learned the correct well-pointed coalgebra.

3.4 Termination Lemmas

In this section we prove the claims from the proof of Theorem 3. In the following
let (X, γ, x) be a pointed T -coalgebra that is behaviourally equivalent to a finite
well-pointed coalgebra (Y, δ, y). We start by proving that states occurring in
tables are always taken from the reachable part of (X, γ, x).



Lemma 4. Let (S,Σ) be a table that is obtained in a run of the Lco algorithm
with teacher (X, γ, x). Then S is contained in the subcoalgebra of (X, γ) that is
generated by x.

Proof. Let (X ′, γ�X′ , x) be the smallest pointed subcoalgebra of (X, γ, x). Clearly
we have Base(γ(x′)) ⊆ X ′ for all x′ ∈ X as the coalgebra map γ restricts to a
map X ′ → TX ′. Now we can easily prove the claim on the number n of steps the
Lco algorithm was closing a table to reach the table (S,Σ). For n = 0 we have
S = {x} and obviously x ∈ X ′. For n = m+ 1 there is a table (S′, Σ) such that
S is obtained from S by closing the table (S′, Σ). By I.H. we know that S′ ⊆ X ′
and by the definition of the algorithm we have S ⊆ S′ ∪

⋃
x′∈S′ Base(γ(x′)). But

as we saw at the beginning of our proof the latter is a subset of X ′ which shows
that S ⊆ X ′ as required.

Consequently, we obtain an upper bound for the number of elements of S for
each table S.

Lemma 5. Let (S,Σ) be a table computed by the Lco algorithm with teacher
(X, γ, x). Then #S ≤ #Y .

Proof. By Lemma 1 we know that (Y, δ, y) is the quotient of the smallest pointed
subcoalgebra (X ′, γ′, x) of (X, γ, x) and by the previous lemma we have S ⊆ X ′.
The quotient map from (X ′, γ′) to (Y, δ) is a coalgebra morphism and preserves
the truth of modal formulas. Therefore, for any element of x′ ∈ S ⊆ X ′ there
exists a y ∈ Y such that x′ ≡ y, in other words there is a function f : S → Y
such that x ≡ f(x). We also know that (S,Σ) is sharp which means that x1 ≡ y
and x2 ≡ y implies x1 = x2. Therefore the function f : S → Y has to be injective
which shows that #S ≤ #Y as required.

This finishes the argument for why there is a finite upper bound on the number
of states stored in a table. Let us now turn to what happens in case the current
table is not closed.

Lemma 6. Let (S,Σ) be a table computed by the Lco algorithm with teacher
(X, γ, x). If (S,Σ) is not closed then Lco computes a closed table (S′, Σ) such
that #S < #S′.

Proof. Suppose (S,Σ) is a table that is not closed. While (S,Σ) is not closed, the
Lco algorithm extends the collection of states S by elements of X as described
in the previous section. By Lemma 5 this can only happen finitely often which
implies that after finitely many additions to S the table will be closed as required.

Finally we need to investigate what happens in case the teacher is providing a
counterexample.

Lemma 7. Let (S,Σ) be a closed and sharp table computed by the Lco algorithm
with teacher (X, γ, x). If the teacher provides a counterexample ϕ, then (S,Σ′) is
not closed where Σ′ is the smallest set of formulas that contains Σ ∪ {ϕ} and
that is closed under subformulas.



Proof. Suppose for a contradiction that (S,Σ′) is closed (obviously it will be
sharp). For every set Z ⊆ X let fZ : |Z|Σ′ → |Z|Σ given by fZ(|x′|Σ′) := |x′|Σ
for all x′ ∈ Z. Note this is well-defined as Σ′ ⊇ Σ and thus x1 ≡Σ′ x2 implies
x1 ≡Σ x2. We now claim that fS is a pointed T -coalgebra morphism from the
(S,Σ′)-filtration of (X, γ, x) to its (S,Σ) filtration. To check this we first note
that fX ◦ | |Σ′ = | |Σ . Let x′ ∈ S be arbitrary. We calculate:

γS,Σ(fS(|x′|Σ′)) = γS,Σ(|x′|Σ) = (T | |Σ)(γ(x′)) = T (fX ◦ | |Σ′)(γ(x′))

= TfX(T | |Σ′(γ(x′)))
T | |

Σ′ (γ(x′)) ∈ T |S|
Σ′

= TfS(T | |Σ′(γ(x′)))

which shows that fS is indeed a pointed T -coalgebra morphism between the
filtrations. This is, however, a contradiction to Σ′ containing a counterexample,
i.e. a formula ϕ ∈ F(Λ) such that w.l.o.g. |x|Σ′ |= ϕ and |x|Σ 6|= ϕ.

This finishes the proofs of the claims that are necessary to prove Theorem 3.
In summary, we have proved termination and correctness of our algorithm.
Remarkably, if we measure the complexity of the algorithm in the number of
logical and equivalence queries, our algorithm meets similar bounds as Angluin’s
L∗-algorithm. The main difference is that the run-time of our algorithm also
depends on the maximal number of successors a state of the original coalgebra
has - in the case of finite automata the branching is bounded by a constant,
namely the size of the input alphabet. We need the following definitions for our
complexity considerations:

– The size of a formula is the number of its distinct subformulas.
– A T -coalgebra (X, γ) is k-branching if there exists some k ∈ ω such that for

all x ∈ X we have #Base(γ(x)) ≤ k.

Proposition 1. Let (X, γ, x) be a k-branching pointed T -coalgebra, let n be the
size of the behavioural equivalent well-pointed T -coalgebra that the algorithm
learns and let m be the maximal size of the counterexample provided by the
Teacher. Then the algorithm terminates after asking O(k ·m · n2) logical queries
and at most n equivalence queries.

Proof. Let (S,Σ) be a table occurring during the run of the algorithm. By
Lemma 5 we have #S ≤ n. Furthermore, the size of Σ is bound by m · (n− 1) as
each counterexample is of size at most m and at most n− 1 counterexamples can
be added to Σ as the addition of a counterexample always results in an increase
of the size of S by Lemmas 7 and 6. To check closedness of a table (S,Σ) we need
to ask logical queries about the elements of S and their successors. Therefore,
we need at most (k + 1) · n ·m · (n− 1) such queries. This shows that we need
O(k ·m · n2) logical queries. The upper bound on equivalence queries is obvious.

Our discussion demonstrates that the move from deterministic finite automata
to T -coalgebras does not essentially alter the number of queries. At this stage
we cannot predict how fast queries can be answered in practice. To answer this
question we plan to implement our algorithm in the near future.



4 Examples

We will illustrate our algorithm with two examples: One known example on
learning Mealy machines and one example that is to the best of our knowledge
new, an Angluin learning algorithm for discrete Markov chains. While learning
probabilistic automata is an active area [20–22], existing work uses other learning
paradigms and focuses on constructing minimal automata for a probabilistic
language rather than - as our algorithm does - on bisimulation quotients of
transition systems.

Example 4 (Mealy machines). In the first example we show how the algorithm
learns functions L : I+ → O, i.e. maps from finite sequences over I to elements of
O where I and O are finite sets that constitute the input and output alphabet,
respectively. The “regularity” assumption on L is that L can be represented by a
finite Mealy machine. The latter are a generalization of deterministic automata
where each transition has an associated input and output letter. Such Mealy
machines correspond to coalgebras for the Mealy functor T = ( × O)I [15].
Learning L is equivalent to learning a finite representation of the coalgebra

I∗
γ→ (I∗ × O)I with designated point λ ∈ I∗, where γ(w)(a) = 〈wa, L(wa)〉.

Recall the expressive language from Example 3 for the Mealy functor.
As a concrete example, we want to learn the function L represented by the

Mealy machine in the following diagram, where the input alphabet is I = {a, b}
and the output alphabet is O = {x, y}:

q0 q1

q2q3

a/x

b/x b/x

a/y

a/x

b/x

a/x

b/x

According to the algorithm 1, the first thing to do is checking if the starting
table T = ({λ}, {>}) is closed. The table is trivially closed, as > is always true
and the first conjecture of the algorithm is as follows:

|λ| a/x

b/x

As the conjecture is incorrect the teacher returns a counterexample, e.g. the
formula [a]pa/y. We update the set Σ of formulas with this new formula together
with all its subformulas. Note that this process is a well-known variant of the one
described in [6] where the counterexample is usually added to the set S of states
and not to Σ. We use this variant that allows to automatically maintain the
table consistent (cf. [19]), in order to be sure to have a sharp table at every step.

The table is now T = ({λ}, {>, pa/y, [a]pa/y}) and it is not closed. Therefore,
we add another state to the set of states according to the else part of the if -
statement 1. We pick a state x′ ∈ |S|Σ such that its successors’ equivalence classes



are not represented in S, in symbols: |Base(γ(x′))|Σ 6⊆ |S|Σ . In our particular
case, we can pick only λ; the two successors of λ are 〈a, x〉 and 〈b, x〉 and we
have Base(γ(λ)) = {a, b}. We take one element of this set, say a, the equivalence
class of a is not equal to |λ|Σ , therefore we add a to S and we remove it from
Base(γ(λ)). We do the same for b. Because |b|Σ /∈ |{λ, a}|Σ , b is also added to S.

This procedure can be seen as the standard table filling process in the L*-
algorithm: in the lower part of the table, we identify those states that do not
have a corresponding representative in the set of states S and we add them in
the upper part of the table; in our case both a and b have to be added. The
entries of the table are 1 and 0, according to the truth values which the formula
assumes in a particular state. We can schematically see this process in Table
1, where the values in the first column are shorthands for π1(γ(w)(a)), i.e., we
write wa for the state reached from w after reading input a.

Table 1. From a not closed table to a closed one

> pa/y [a]pa/y
λ 1 0 1

a 1 1 1
b 1 0 0

⇒

> pa/y [a]pa/y
λ 1 0 1
a 1 1 1
b 1 0 0

aa 1 1 1
ab 1 0 0
ba 1 0 1
bb 1 0 1

Having added a and b to S, we have a new table: T = ({λ, a, b}, {>, pa/y, [a]pa/y}),
that is closed. Now, we can make our conjecture:

|λ| |a|

|b|

a/x

b/x

a/y

a/x

b/x

a/x

b/x

But the conjecture is incorrect and we again receive a counterexample, e.g.
[a][b][b][a]pa/x. The resulting table is not closed, as |Base(γ(a))|Σ 6⊆ |S|Σ . Indeed,
the successor of a, aa, should satisfy [a][b][b][a]pa/x, whereas the formula is false
in a. We only pick the element aa from Base(γ(a)) = {aa, ab} as the equivalence
class of ab is already represented. The new table is: T = ({λ, a, b, aa}, Σ).

Closing the table with aa, we go to else 2 and we compute our conjecture.
Table 2 on page 16 represents this step. No counterexamples are given back,
therefore the conjecture is the right one and we have the same automaton Aut(T )
describing the Mealy machine we wanted to learn.

Note that there is a difference with the standard Angluin algorithm adapted
for Mealy machines. Usually the entries of the tables are the output values that



Table 2. Changing of the table according to the Base-step of the algorithm

> pa/y [a]pa/y pa/x [a]pa/x [b][a]pa/x [b][b][a]pa/x [a][b][b][a]pa/x
λ 1 0 1 1 0 1 0 1
a 1 1 1 0 0 1 1 1
b 1 0 0 1 1 0 1 0

aa 1 1 1 0 0 1 1 1
ab 1 0 0 1 1 1 0 1
ba 1 0 1 1 0 1 0 1
bb 1 0 1 1 0 1 0 1

⇓

> pa/y [a]pa/y pa/x [a]pa/x [b][a]pa/x [b][b][a]pa/x [a][b][b][a]pa/x
λ 1 0 1 1 0 1 0 1
a 1 1 1 0 0 1 1 1
b 1 0 0 1 1 0 1 0
aa 1 1 1 0 0 1 1 1

ab 1 0 0 1 1 1 0 1
ba 1 0 1 1 0 1 0 1
bb 1 0 1 1 0 1 0 1
aaa 1 1 1 0 0 1 1 1
aab 1 1 1 0 0 1 1 1

the Mealy automata produce. This is not the case in our algorithm. The entries
are always the values 1 or 0 according to the truth values of the formulas, whereas
the output values are given by the function γ.

Example 5 (Discrete Markov Chain). In this example we show that our algorithm
can learn bisimulation quotients of (discrete) probabilistic transition systems.
We confine ourselves to a finite example and we model probabilistic transition
systems as PAt × Dω -coalgebras where At is a set of propositional variables
- in our example we will assume At = {p} for a single proposition p. Note,
however, that the input model of our learning algorithm could be infinite and
that our coalgebraic framework is general enough to cover a large variety of
probabilistic systems [23]. Recall an expressive language for this example from
Example 3. Consider now the following pointed PAt×Dω -coalgebra based on
X = {x0, x1, . . . , x6} with initial state x0 and transition map γ, where transitions
are labelled with their likelihoods and proposition p holds exclusively at state x5:



x0

x1

x2

x3

x4

x5 p

x6

0,1

0,2

0,4

0,3

0,7

0.3

1

0,8

0,2

1

0,9

0,1 1

The algorithm tries to learn a minimal pointed coalgebra that is behaviourally
equivalent to (X, γ, x0). As always the algorithm starts with table ({x0}, {>}).
This table is trivially closed and our first conjecture will be a state at which
p does not hold and with a loop of probability 1. The teacher has to reject
the conjecture and provides a counter example, e.g. the formula ϕ = L0.2L1p
as x0 |= ϕ and |x0| 6|= ϕ. This leads to the new table ({x0}, Σ1) with Σ1 =
{L0.2L1p, L1p, p,>}). We have Base(γ(x0)) = {x2, x3, x4, x6} and it is easy to
see that |{x2, x3, x4, x6}|Σ1

6⊆ |{x0}|Σ1
. Therefore the table is not closed. It

can easily be checked that x2 ≡Σ1
x3 and x4 ≡Σ1

x6 and closing the table
leads to ({x0, x2, x4}, Σ1). We have Base(γ(x4)) = {x5} and obviously |x5|Σ1

6∈
|{x0, x2, x4}|Σ1 as x5 is the only state satisfying proposition p. Closing the table
we arrive at ({x0, x2, x4, x5}, Σ1) and this table is closed as readers can easily
convince themselves. The table leads to the correct conjecture:

|x0|

|x2|

|x4|

|x5| p

0,3

0,71 1

1

5 Conclusions

While the last example was simple it demonstrates how our algorithm can be
used to determine the quotient of a discrete Markov chain modulo behavioural
equivalence, i.e. bisimilarity. Other transition systems can be quotiented in the
same way. This is interesting as bisimulation quotients play an important role in
verification [24] and as the complexity of standard algorithms is determined by
the size of the system before taking the quotient whereas the complexity of the
learning algorithm depends on the size of the potentially much smaller quotient.
To explore the practical usefulness of our algorithm in these cases we are planning



to provide an implementation in the near future. The biggest challenge will in
our view be to implement a teacher that provides “good” counterexamples.

There are many more questions concerning our work that we would like to
clarify: Our approach is currently very much based on the category of sets. This
excludes for example the important example of linear weighted automata [2]. We
believe that our arguments can be extended by (i) building on a duality between
algebras and coalgebras and (ii) understanding how filtrations translate via this
duality. There are some partial answers to the latter question in the modal logic
literature (cf. e.g. [25, 26]) but modal logicians usually focus on properties of
filtrations that do not play a role in learning. Closely related to this question
is a more diagrammatic understanding of termination and correctness of our
algorithm: we believe that all essential ingredients for this are contained in our
work but we need to understand filtrations on a more abstract, categorical level.
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