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Abstract: The contribution of renewable energies to the reduction of the impact of fossil fuels sources
and especially energy supply in remote areas has occupied a role more and more important during
last decades. The estimation of renewable power plants performances by means of deterministic
models is usually limited by the innate variability of the energy resources. The accuracy of energy
production forecasting results may be inadequate. An accurate feasibility analysis requires taking into
account the randomness of the primary resource operations and the effect of component failures in the
energy production process. This paper treats a novel approach to the estimation of energy production
in a real photovoltaic power plant by means of dynamic reliability analysis based on Stochastic
Hybrid Fault Tree Automaton (SHyFTA). The comparison between real data, deterministic model and
SHyFTA model confirm how the latter better estimate energy production than deterministic model.

Keywords: renewable energy; stochastic hybrid automaton; aging; photovoltaic power plant;
Monte Carlo simulation

1. Introduction

The contribution of renewable resources to the reduction of fossil consumption and the
provisioning of energy in remote locations [1–3] have been two major drivers for the renewable
industry which expect to grow up to three times within the next two decades [4]. The greatest issue to
face is linked with the intermittent nature of the renewable resources, which affect the stability of the
electrical power grid, unable to manage the power fluctuations of renewable power plants production
and the difficulties with energy storage [5].

Moreover, technologies for energy production are very different due to the characteristics of
renewable resources and accordingly, they require a complex feasibility study before installation.
There are different requirements that renewable power plant models should satisfy in order to be
effective and reusable, as shown in Table 1.
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Table 1. Desirable requirements for a model of a renewable power plant.

a. Account for the variability of the primary resource and its effects on the system
b. Consider the performance deterioration caused by the fault of the system components
c. Estimate the plant performance, within a recognized tolerance
d. Allow a flexible re-design and application of the model

Traditionally, the design and dimensioning of renewable power plants is carried out through
deterministic mathematical models of the process of energy transformation [6]. However, these methods
are not able to satisfy all the criteria displayed in Table 1, including (a) and (b). Indeed, the randomness
of the primary resource and possible downtimes in the energy conversion process are critical in
the performance evaluation of a renewable power plant. These properties affect directly the design
and dimensioning of the system, life cycle cost predictions [7], and the life-cycle activities that must
be planned to guarantee a minimum level of continuity of service such as production plans and
maintenance strategies [8].

The performance of a power plant not only depends on the availability of the primary resource,
but also on the plant availability. The availability of a system is defined as the probability of a system
to operate satisfactorily at a given point in time under stated operation conditions [9] and it can be
computed for any type of industrial system comprised of different components through quantitative
stochastic modelling methods The models typically adopted are shown in Table 2. They can be divided
in three different groups: static, dynamic and hybrid-dynamic models [10,11]. Static or Boolean
models are the simplest models as they can be solved directly with combinatorial logic. They have
driven the penetration of reliability theory within the industrial field. For this reason, most of the
reliability and risk assessment reports, including many examples of renewable power plants [12–20],
are still based on static models. Dynamic models have been introduced to handle more complex
stochastic and temporal dependencies among the system components. However, the failure probability
functions of system components are constant, with the assumption that the operation conditions do not
affect the failure behavior of the components. In [21], Borges reviewed the most important renewable
energies (wind, photovoltaic, hydroelectric and biomass) and linked their characteristic model of power
generation with simplified versions of availability models, made up of a small number of operational
states. In [17,18] a dynamic fault tree model of a wind turbine is evaluated. The main limitation of
static and dynamic models is that they assume constant failure behavior and operation conditions.
For instance, in [12] the mean time to failure of a photovoltaic inverter is a constant value and its
failure is independent from the rest of the system parameters. However, this is an idealistic assumption
because environmental factors and operating conditions may change modifying the performance
and system availability. This is even more critical in renewable power plants which are continuously
influenced by the randomness of the renewable resource. Moreover, they are not intended to be
used for the performance evaluation of a system in terms of process output, as they are limited to
dependability attributes [9], such as reliability, availability, safety and maintainability.

Hybrid-dynamic models [22], known also as Dynamic Reliability models, were conceived to
simplify the modelling effort of complex systems and solve dynamic reliability problems. Dynamic
Reliability is based on a decomposition of the system process so as to identify and model independently
the physical and the stochastic dynamic of the system process. This dual nature of a Dynamic Reliability
model allows the mathematical evaluation of several performance and of dependability attributes of
a system. Dynamic reliability makes use of non-linear functions to adapt the system failure probability
according to system operating conditions. This leads to more accurate reliability modelling that is
able to account for environmental and operational changes of the working conditions. Moreover,
recent works have shown its potential as a tool for the dimensioning of a system [11,23] and the
understanding of other aspects of the life cycle of a system that characterizes the regime operations,
like availability and maintenance. However, to the best of authors’ knowledge, dynamic reliability has
not been applied for the evaluation of a renewable power plant system.
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Table 2. Main characteristics of the models used to in dependability assessment.

Process
Reliability Assessment Dynamic Reliability

Static Models Dynamic Models Hybrid-Dynamic Models

Physical
Static working

conditions; Single-state
operating components

Static working conditions;
Single-state operating

components

Dynamic working conditions;
Multi-state operating components

Stochastic

Boolean components;
Fixed probability of

failure; Independence
of components

Multi-state degradation
components; Fixed

probability of failure;
Time-event

sequence dependencies

Multi-state degradation
components; Dynamic probability

of failure; Time-event
sequence dependencies

Modelling
Techniques

Reliability Block
Diagrams; Fault Trees

Dynamic Reliability Block
Diagrams; Dynamic Fault
Trees; Markov Processes

Stochastic Automaton Models;
Regime Switching Models;

Piecewise Markov Processes

Satisfied Criteria
(Table 1) c *, d; c *, e; a, b, c **, d;

* Performance evaluations limited to reliability/availability in static working scenario; ** Not intended to evaluate
the performance of a system in terms of process output.

When implementing the hybrid-pair approach for renewable power plants, the energy
transformation process can be broken down in two models, as shown in Figure 1: the deterministic
block defines the energy transformation performed by a renewable power plant and the stochastic
block models the system failure logic.

Among the possible approaches, the one based on Stochastic Automaton [24–27] can be coded
and simulated to satisfy all the criteria mentioned in Table 1. For this reason, the Stochastic Hybrid
Fault Tree Automaton (SHyFTA) [25] is chosen as a suitable modelling formalism and the main
steps for the design of a SHyFTA model for a renewable power plant are summarized. In this work,
the Matlab-Simulink framework (The MathWorks, Natick, MA, United States) has been used, because
it offers a friendly graphical user interface that allows easy design, coding and debugging the model.

The application of the proposed approach is discussed with the aid of a case study on a real
photovoltaic power plant to quantify the energy production throughout the entire power plant lifetime
and compare it with the one provided using a pure deterministic model (Figure 1).
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Figure 1. Mutual dependency between the deterministic and the stochastic model.

The rest of this paper is organized as follows. Section 2 introduces the theoretical background of
Stochastic Hybrid Fault tree Automaton. In Section 3 the case study is discussed and Section 4 presents
the simulation framework offered by the Matlab-Simulink to implement the SHyFTA model and run
the simulations. Finally, Section 5 summarizes conclusions and discusses future work.
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2. Stochastic Hybrid Fault Tree Automaton: Concept and Implementation in Renewable Power Plants

The mathematical formulation of SHyFTA is presented in [25], therefore interested readers
can refer to it for further information. A SHyFTA model is made up of a deterministic and
a stochastic process.

The deterministic process is expressed in terms of a set of ordinary or partial differential equations,
whereas the stochastic process is built up using the Dynamic Fault Tree formalism [28,29].

Wearing-out of components is modelled using a Weibull pdf (probability density function) with
shape factor β > 1 (i.e., the failure rate is increasing with respect to time):

λ(L) = β/γ·(L/γ)β−1 (1)

The non-linear variable L(t) of Equation (1) represents the component aging. It can be computed
solving the Deterministic Piecewise Markov Process [30], described with the differential equation
Equation (2) [31,32], where ion is the piecewise discrete variable assuming value 1 if the component is
switched on and 0 if it is switched off.

dL(t)
dt

= ion where ion =

{
1, if the component is switched on
0, if the component is switched off

(2)

This last relationship allows a more realistic wearing-out of a component because the age L in
Equation (2) increases only when the component is working.

In a SHyFTA, the stochastic process is described by a Dynamic Fault Tree (DFT) model,
a well-known technique of reliability engineering able to model complex time-dependent interactions
among the components of a system. DFT has gained the interest of researchers and risk practitioners
thanks to the graphical formalism constituted by Boolean gates and the powerful set of dynamic gates
shown in Table 3 [33]. The design of a Dynamic Fault Tree starts with the definition of a top-event that
represents an undesired scenario of the system. Following a top-down procedure, the causes of the
top-event must be identified and analyzed in order to the combinations that determine the top-event
occurrence. The combination logics are expressed using the gates that take in inputs the intermediate
and the basic events. These latter generally correspond with the system component fault and cannot
be further decomposed.

Table 3. Dynamic gates of Dynamic Fault Tree.

Name Graphical Representation Description (N Input)

SPARE
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Table 3. Cont.

Name Graphical Representation Description (N Input)

SEQ
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The main input of the deterministic process is the time-series of the primary renewable resource.
Generally, these information are obtained with a site assessment and can be refined registering the
meteo data for several years in order to enrich the statistical sample to use in the model.

The discrete components identified in the study of the renewable power plant must have
a counterpart in the stochastic fault tree model. In this way, any variation of the health and of
the operating conditions of the components affects the failure behavior and the performance of the
system. For the fault tree model, it is important to identify a top-event, representing an undesired
operational condition of the system and its elementary causes, the so-called basic events. Basic events
must be combined together by the use of temporal and logic gates (AND, OR, VOTING k/N, PAND,
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SPARE, FDEP, SEQ) and they can be repeated (i.e., they appear two or more times in the fault tree as
inputs of two or more different gates) although they represent a unique event within the real system.

The main stochastic inputs of a SHyFTA model are the probability density functions (pdf) of the
components of the fault tree. When a component is modelled with a hybrid basic event, the pdf is
not static and, in this case, a set of different pdf must be defined. Although the complete shutdown
of a renewable power plant consisting of several generating units is very unlikely, the modelling of
this scenario as the Top Event of the fault tree allows the evaluation of several performance indicators.
Among them, the instantaneous active and reactive power, the energy production within a time-period
and the service availability that corresponds with the probability of the renewable power plant to
produce a base power and guarantee the continuity of service [8,34] for a well-defined demand curve.
These key performance indicators (KPI) can provide important indications for suitable dimensioning
of the power plant and the life cycle activities like production plans and the maintenance schedule.

The formulation of the SHyFTA is completed when the stochastic and the deterministic models
are coupled through shared variables. A typical example of coupling is the failure of a component (in
the stochastic model) that nullifies the contribution of the same component within the deterministic
process (e.g., an inverter that fails will no longer output AC power). Other possible couplings can link
the operational conditions of a component with its health status and failure behavior.

3. Case Study: A Photovoltaic Power Plant

There have been proposed different fault tree models of renewable power plants that can be used
as reference models to build up a SHyFTA [12–18]. In this paper, the case study of a photovoltaic
power plant is presented.

The analyzed power plant is a grid-connected photovoltaic power plant with no trackers implemented
by a private company in 2011, located in Sicily (37.1751◦ N 16.1596◦ E) close to Syracuse (see Table 4).

Table 4. PV system characteristics.

Location 37.1751◦ N 16.1596◦ E

Ppeak 419.52 kWp
N◦ inverters 2

N◦ strings boxes 4 (for inverter)
N◦ strings 138

N◦ modules 2208 (16 for each string)
Azimuth Angle (β) 180◦

Tilt 30◦

The power plant is characterized by a peak power, Ppeak = 419.5 kW and by two identical DC/AC
inverters of 220 kWp. There are 4 string boxes for each inverter: 3 accomodate 17 strings and 1 accomodates
18 strings. The strings are connected in parallel while the modules are in series (Figures 3 and 4). Tables 4–6
summarize the main characteristics of the system.

To be compliant with the Italian Producer Electrical Regulation (IPER) of 2011, known also as
Terzo Conto Energia [35], the power plant is connected to the national grid and the energy production
is 100% devoted to the grid. The IPER states that the power plant must stop in case of disconnection
from the national grid and forbids the use of energy storage systems. There is a strong economic
advantage for adhering to the IPER of 2011. In fact, for the first 20 years of life of the power plant,
there is a fixed economic subsidy for all the energy produced. Moreover, the energy not instantaneously
consumed by the producer is tracked and sold with a price dictated by the energy market. Therefore,
the power plant contributes to the company activities by supplying the internal consumption and
providing a profit due to the economic incentive (subsidy) and the sale of the energy not consumed.
Table 7 shows the value of the Subsidy (it is fixed by the IPER [35]) and the corresponding price of
buy/sell per one kWh of energy. This latter is a rough value of the energy price in the energy market
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(2011). The column Total is the sum of the previous contributes and it is used to estimate the payback
generated by the energy produced by the power plant.
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Figure 4. Power Inverter configuration.

Table 5. PV module main characteristics.

Ppeak 190 W (Monocrystalline)

Panel efficiency (η) 15%
Vmp 37 V
Imp 5.04 A
Voc 45.1 V
Isc 5.35 A

NOCT 45 ± 2 ◦C
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Table 6. Inverter mail characteristics.

Pacmax 220 kW

Voltage range MPPT 485 V < VMPPT < 950 V
N◦ independent MPPT 4

ηmax 98%
Vacr 320 V

Iacmax 450 A
Idcmax 492 A

Table 7. IPER 2011 Subsidy. Price * is based on an average value of the energy price in the energy
market (2011) [35].

Power (kW) Subsidy Price * Total (∑∑∑)

1 < P ≤ 3 0.362 0.25 0.612
3 < P ≤ 20 0.339 0.21 0.549

20 < P ≤ 200 0.321 0.18 0.501
200 < P ≤ 1.000 0.314 0.15 0.464

* Apex of Price.

With reference to Figures 3 and 4 it is possible to identify the main components of the photovoltaic
power plant.

The components of the photovoltaic power plant can be grouped into the following functional
blocks (Figure 5):

1. PV Module (PVM), constitutes the PV module strings of the power plants (PVS);
2. Direct Current Section (DCS), made up of string protection diodes (SPR), DC disconnectors

(DCD) and surge protection devices (SPD);
3. Alternating Current Section (ACS),made up of inverters (INV), surge protection devices (SPD)

and AC circuit breakers (ACB);
4. Grid Connector Coupling (GCC), made up of grid protection (GPR), an AC disconnector (ACD),

a differential circuit breaker (DCB) and a transformer (TRA).
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Next we apply the steps discussed in Section 2 to build up the SHyFTA model.
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3.1. Definition of the Deterministic Process

The photovoltaic conversion starts in the PVM stage where PV modules capture the solar
irradiance that is converted into a DC power. They are organized in electrical strings connected
in series and parallel to constitute a panel. In the same manner, several panels are connected to form
arrays of generators and sum up to a higher direct current (DC) power.

As a first approximation, the electrical power generated with a simple configuration (same tilt
and orientation for all modules/strings) [36] can be defined as follows:

P = ηI0 sin(α)S (3)

where I0 is the orthogonal solar irradiance to the direction of solar radiation [W/m2]; α is the angle of
the module/string with respect to the incident solar radiation; S is the area of the module [m2]; and η

is the system efficiency that is always less than 1.
The total efficiency can be expressed as:

η =
n

∏
i=0

ηi (4)

where n is the number of loss effects considered at each ith stage of the power plant.
At the PVM stage, meteorological factors (e.g., wind speed, cloud transients in PV units, incident

irradiance or ambient temperature) or yearly deterioration can reduce the efficiency of the photovoltaic
modules. Using Equation (3) we can compute the efficiency of the module, ηm, by considering the
variation of the temperature [37]:{

ηm = ηstd {1− ρ(Tc − Tc,std)}
Tc−Ta

G = constant
(5)

where ηstd and Tc,std are respectively the efficiency and the module temperature at standard conditions,
ρ is the power coefficient (percentage variation of power for 1 ◦C), Tc and Ta are the module and
ambient temperatures and G is the global irradiance on the module.

To account for the degradation rate, Dr, corresponding with the percentage of efficiency lost every
year [38], it is possible to use a linear equation model:

ηn = ηηfirst(1− nDr) (6)

where ηfirst is the nominal efficiency at the first year, while ηn is the efficiency calculated at the nth year.
The performance degradation occurring in the PVM stage reduces the DC power, but does not

stop the power production unless the DC breakers and disconnectors of the DCS stage interrupt the
circuit or the cables fail. In fact, with reference to Figure 6, a single PV generator can contribute to the
power generation of the system if the circuit path from the PVM stage to the GCC is closed.

Before connecting to the grid, the DC current is converted in alternating current. The DC/AC
inverter of the AC section performs this transformation with an efficiency that depends on the input
load. At this stage, inverters can also affect the performance of the system [39] and the algebraic model
presented in [40,41] illustrates this effect:

ηACS =
P(t)AC
P(t)DC

= 1−
P(t)loss
P(t)DC

(7)

The total power of the plant is the sum of the AC powers of the two PV generators:

PGCC(t) = PACS1(t) + PACS2(t) (8)
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For this reason, it is possible to understand that the photovoltaic plant is able to produce energy if at
least one of the two PV generators is in operation. To compute the energy produced and measured by the
generation meter (GM) in the GCC stage it is possible to integrate the PGCC in the time interval [t2, t1]:

EGM(t) =
∫ t2

t1
PGCC(t)dt (9)

The other components involved in a photovoltaic system are protection, cables, breakers,
disconnectors and transformers. These components all play an important role in the energy production
because if one of them interrupts the circuit path to the GCC, the PV generator in the open path cannot
contribute to the power generation. A more critical condition occurs if the circuit path stuck open
inside the GCC stage. In this case, all the power plant has to stop the production because it gets
disconnected from the national grid, causing the complete system unavailability. To address these
circumstances, the stochastic fault tree model, object of the next subsection, has to be designed.

3.2. Definition of the Stochastic Process

The fault tree model in Figure 6 describes the failure behavior of the plant. This model is
constituted by an OR gate (TE) that takes as input an OR gate (GCC = OR (GPR, ACD, DCB, TRA))
and an AND gate (PV GEN = AND (PV GEN 1, PV GEN 2)), modelling the failure behavior of
the PV generators. The plant production unavailability occurs if both PV generators fail or if one
of the components of the GCC fails. Figure 7 shows the failure behavior of a single PV generator.
The failure/repair rates of the components are shown in Table 8. Failure rates have been taken from [12].
Note that the inverter has been modeled as a hybrid basic event using a Weibull distribution whose
failure parameters depend on the aging variable that, in turn, is bounded to the solar radiation of
the deterministic process. In fact, the inverter is in mode on when the DC voltage produced from PV
strings is high enough to make it work, and obviously these PV strings produce energy accordingly
solar radiation. Otherwise, the inverter stays in stand-by mode, waiting for the sun irradiance to
increase (e.g., during the night time).
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gate symbol (triangle) because these sub-systems are developed into another fault tree model.

As for repair rates, it was assumed that electrical components like breakers, disconnectors, string
box and protection can be restored to as-good-as-new within two working days after a fault.

According to the agreements with the inverter manufacturer, the repair of the inverter takes
between three and four weeks, considering the whole process of inspection, ordering, delivery
and replacement. For the PV strings it was assumed a periodic inspection would take place every
six months.
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Table 8. Failure/repair rates and steady state availability of the components of the PV plant.

Component λ: Failure Rate [h−1] µ: Repair Rate [h−1]

PVS PV Strings 2.43 × 10−5 2.3 × 10−4

SPR String Protection 0.313 × 10−6 2.08 × 10−2

DCD DC Disconnector 0.2 × 10−6 2.08 × 10−2

SPD Surge Protection 0.313 × 10−6 2.08 × 10−2

ACB AC Circuit Breaker 5.71 × 10−6 2.08 × 10−2

GPR Grid Protection 5.71 × 10−6 2.08 × 10−2

ACD AC Disconnector 0.034 × 10−6 2.08 × 10−2

STB String box 0.015 × 10−3 2.08 × 10−2

DCB Diff. Circuit Breaker 5.71 × 10−6 2.08 × 10−2

TRA Transformer 1.4 × 10−6 2.28 × 10−4

INV Inverter Aging Weibull 1.7 × 10−3

4. Simulation of the SHyFTA Model

Figure 8 depicts the hybrid-pair model of the case study with the corresponding mapping into
a SHyFTA.
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It is possible to identify the main discrete components of the PV system and the corresponding
variables, respectively Xi and i, of the deterministic and stochastic processes. The variables XPV1/2,
XDC1/2, XACS1/2 and XPROD are the powers generated at the different stages of a PV generator. XIRR

and XEXT represent respectively the sun irradiance and the external temperature of the environment.
These two variables are inputs of the model and, according to Equations (3)–(6), affect the power
generation and the conversion efficiency of the PVM components. Randomness of these input is
achieved exploiting the historical data series of the last five years retrieved by the SCADA of the power
plant. For each iteration of the Monte Carlo simulation process, the value of XIRR and XEXT of the ith
hour of the day is fixed extracting a random value in the uniform range between the minimum and
maximum value of the corresponding ith hour of the day. The ACS conversion depends on Equation (7)
and the actual energy produced by the power plant is described by Equations (8) and (9).

Among the variables computed in the deterministic process, Xaging = L is the time input
of the Weibull pdf characterizing the failure behavior of the inverter in the stochastic process
(see Equation (2)).

In the stochastic process, the basic events are characterized with two operational states,
SS = {Good, Bad}. The health status of each basic event is an element of the vector S that, as input of
the deterministic process, realizes the coupling between the basic event of the stochastic process and
its corresponding discrete component modelled in the deterministic process.

The SHyFTA model has been coded in Matlab and Simulink to implement a software resolution
of the hybrid-pair model based on a discrete event Monte Carlo simulation [42]. The Matlab scripts
perform the computation related with the global variables of the simulation, including the stopping
logic algorithm of the Monte Carlo simulation. The Simulink program is used to create the hybrid-pair
model because both the deterministic and the stochastic process can be assembled with the built-in
blocks available in the Simulink library. As for the dynamic gates, the MatCarloRE [43] library can be
used (Figure 9).
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The Matlab ‘Initialization Script’ (Table 9) to set up the parameters of the SHyFTA simulation is
shown in Table 9 and is launched one time to start the simulation process. Lines (1–3) are configurable
methods that must contain the parameters of the simulation. The InitHS() load the historical data
series and perform a randomization process so as to vary these input data at each iteration of the
Monte Carlo simulation. The InitDP() initializes the parameters of the Deterministic Process, like unit
conversion factors (if needed), physical constants and variables (that may vary during the iteration)
and so on. The InitSP() initializes the corresponding failure and repair rates used in the Simulink
blocks of the Stochastic Process to characterize the Basic Events of the Fault Tree. Moreover, for
each Basic Event, this method computes the time of failure of the corresponding component using
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the inversion law t = F−1(λ). Note that for the Hybrid Basic Events of the inverters, variable failure
rates are updated during the simulation of an iteration in order to consider the variation of the aging
variable. From lines (4–11), the other variables required for the Monte Carlo simulation are initialized
and line (12) sets the name of the Simulink model (which corresponds with the .slx file) that will be
called at the beginning of the simulation (in our code it is named ‘hybrid_pair_1’). With line (13) the
variables initialized with the Matlab script are passed to the Simulink environment and line (14) starts
the simulation.

Table 9. The initialization script implemented in Matlab.

Initialization Script

# Initialization of global setting. The variables are used within the Hybrid-Pair model in Simulink
1: InitHS(); # call a method that load and randomize the input historical series
2: InitDP(); # call a method to initialize the parameters used in the Simulink deterministic block
3: InitSP(); # call a method to initialize the parameters of the Basic Events in the Simulink stochastic block
4: iter = 0; # Monte Carlo iteration counter
5: N_ITER = 1000000; #max number of iterations
6: estimator = 0; # global variable to adopt as estimator
7: iterEstimator = 0; # variable to adopt as estimator within the nth iteration
8: error = 0; # global variable to adopt to evaluate the error
9: alfa_conf = 0.99; # is the confidence level used to evaluate if the error is within the confidence interval
10: missionTime = 40173; # the unit of measure (hours) has to be the same of the failure/repair rates
11: deltaT = 1; # this corresponds with the integration-step (in hours) of the simulation process
12: bdroot = ‘hybrid_pair_1’; # this variable handles the Simulink hybrid-pair model that starts the simulation
13: set_param (bdroot,’SimulationCommand’,’Update’); #this command updates the variables of the Simulink
models that are set in the Matlab scripts
14: set_param (bdroot,’SimulationCommand’,’Start’); #this command gives the control to the Simulink engine
and restart the simulation

When the simulation starts with the first iteration, the time variable of the Simulink (Ts) increases
according to the step of integration (deltaT), so that Ts = Ts + deltaT. Meanwhile, the Deterministic
Block performs the computation of the equations Equations (3)–(9), whereas the Basic Events of
the Stochastic Block updates the status of its corresponding component only when Ts reaches the
time of failure of the corresponding Basic Event. This behavior is obtained using an assertion block
(see Figure 10) inside the Basic Event block that calls the method NextEventBE() in case the assertion
condition is verified.
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The NextEventBE() method is shown and commented in Table 10.
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Table 10. The NextEventBE script implemented in Matlab.

NextEventBE Script

1: set_param(bdroot,’SimulationCommand’,’Stop’);
2: if (currentStatus == 1) #the status of the Basic Event has been GOOD until the assertion raised
3: currentStatus = 0; # update the status neglecting the GOOD
4: nextBEEventTime = InvertRepairDistribution(repairRate); # find the next repair time
5: else
6: currentStatus = 1; # update the status neglecting the BAD
7: nextBEEventTime = InvertFaultDistribution(failureRate); #find the next failure time
8: end
9: set_param (bdroot,’SimulationCommand’,’Update’); #this command updates the variables of the Simulink
models that are set in the Matlab scripts
10: set_param (bdroot,’SimulationCommand’,’Start’); #this command gives the control to the Simulink engine
and start the simulation of the first iteration

As for the Hybrid Basic Events, the Simulink block is different and is shown in Figure 11.
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The Hybrid Basic Event block requires a complex logic able to evaluate at each step of the iteration
(for each deltaT) the status of the component. This is performed in the Failure Logic where the function
‘failure rate’ takes as input the aging and the characteristic parameters of the probability density
function of the component in order to evaluate if the component is failed or working. This last logic
is realized comparing the instantaneous probability of failure with a random number in [0, 1]. If the
output of the f(u) function is smaller than the uniform random number the component has failed and
the Failure Logic block raises the ComputeNextRepair() function inside the corresponding assertion
block. Notice that the Failure Logic block has an enabling condition that is modified to False by the
ComputeNextRepair() function when the component gets failed. Moreover, the ComputeNextRepair()



Energies 2018, 11, 306 15 of 22

computes the next time of restoration and passes the control to the Repair Logic block that works with
the same logic of the normal Basic Event block.

Figure 12 shows the highest-level Simulink block of the hybrid-pair model that constitutes the
SHyFTA of our case of study. It is possible to identify the shared variables between the deterministic
and the stochastic processes, where Eps is the vector that contains the statuses of all the Basic Events of
the photovoltaic power plant, Top Event is the output of the Fault Tree and the aging variable is the
real-time variable that is computed in the deterministic process (using an integrator block) solving
Equation (2) and that is passed to the stochastic process to evaluate the dynamic failure rate of Equation
(1). Several trials must be performed in order to bind with the desired accuracy (or confidence interval)
the estimator of the measure to compute. In order to run multiple times a Simulink model, an assertion
block that controls the elapsing of the mission time must be added. This assertion block is activated as
soon the clock of Simulink reaches the mission time Tm. It invokes a Matlab script that handles the
transition to another Monte Carlo iteration. The instructions of the Matlab script invoked by the block
MissionTimeElapsed are resumed in Table 11.
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Table 11. The MissionTimeElapsed script in Matlab.

MissionTimeElapsed Script

# Initialization of global setting. The variables are used within the Hybrid-Pair model in Simulink
1: if (iter<N_ITER)
2: set_param(bdroot,’SimulationCommand’,’Stop’)
3: UpdateGlobalVariables();
4: completed = VerifySimulationAccuracy();
5: if (completed==0)
6: iter = iter + 1;
7: iterEstimator = 0;
8: if (iter%2==1) # select the Simulink hybrid_pair model of the next iteration
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Table 11. Cont.

MissionTimeElapsed Script

9: bdroot = ‘hybrid_pair_2’;
10: else
11: bdroot = ‘hybrid_pair_1’;
12: end
13: InitSP(); # initialize the parameters of the Basic Events in the Simulink stochastic block
14: InitDP(); # initialize the parameters used in the Simulink deterministic block
15: InitHS(); # load and randomize the input historical series
16: iterEstimator = 0; # reset the estimator for the next iteration
17: set_param (bdroot,’SimulationCommand’,’Update’);
18: set_param (bdroot,’SimulationCommand’,’Start’);
19: else
20: disp (‘Simulation Completed. Accuracy required reached’);
21: end
22: end
23: disp (‘Simulation over. Accuracy required not reached’);

In particular, the script stops the Simulink simulation (line 2), updates the global variables and the
estimator of the Matlab workspace (with the method UpdateGlobalVariables()) using the information
generated in the Simulink environment (line 3) and verify if the accuracy required by the Monte Carlo
setting is reached (line 4). If the variable ‘completed’ is not True (=1), lines (6–18) resets the simulation
parameters to prepare for a next iteration. Before calling the built-in method of Simulink ‘set_param’
(line 17) to update the Simulink workspace for a new iteration, an important setting has to be performed
(lines 8–12). In fact, Simulink cannot restart the simulation of the model that has stopped. In other
words, a Simulink model cannot trigger its own restart. In order to overcome this issue, the final
Simulink implementation requires a couple of identical model that alternate each other, at any iteration.
In our case study, they are respectively named, ‘hybrid_pair_1’ and ‘hybrid_pair_2’, corresponding
with two different “.slx” Simulinkfile models. The global variable ‘bdroot’ is used to alternate these
two identical Simulink models. Finally, in line 17, the Monte Carlo simulation is started again for
another iteration.

For the photovoltaic power plant, we are interested in the active power production measured at
the generation meter, PGCC. Therefore, at each trial k of the Monte Carlo simulation, the output
of the SHyFTA model is the time-series Pk

GCC(t). This last variable is updated in the method
UpdateGlobalVariables(). When the desired confidence interval is met the simulation is stopped
and the mean active power for each sample of the time series is computed as follows:

E[(PGCC)] =
1
N

[
N

∑
k=1

Pk
GCC(t)

]
(10)

where N is the number of Monte Carlo trials so far completed.
The estimator error associated to the desired confidence interval can be computed as follows [44]:

Err = Za/2 ×
σ√
N

(11)

where Za/2 is the confidence coefficient, a is the confidence level, σ is the standard deviation of the
Monte Carlo simulation and N is the number of Monte Carlo trials.

The use of the active power as an estimator of the Monte Carlo simulation has an advantage.
In fact, it can be noted that the cumulative error, made up by the instantaneous samples of the time
series PGCC(t), corresponds to an energy. In this way, it is possible to provide an appropriate estimation
of the active energy aside a confidence interval using the cumulative error of the estimator.
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Energy Production Estimation

In order to test the accuracy of the proposed methodology, the results of the SHyFTA and the
deterministic models have been compared with the real data of energy production, collected by the
SCADA system of the photovoltaic plant at the time these data were provided. The collected data
includes the hourly aggregated power, energy, solar irradiance and external temperature for the first
four years and half of life, corresponding to 40,173 h.

For the SHyFTA simulation, a confidence level of 0.99 was set for each data point PGCC(t).
There was not any stopping condition set for the simulation and with 10,000 iterations, the cumulative
absolute error of the time series sums up to the 0.16%, that corresponds to ±4681 kWh.

To compute the energy production from the time-series of the estimated active power PGCC(t)
Equation (9) must be used. Table 12 displays a comparison among the real data, the deterministic and
the SHyFTA models in terms of energy produced and payback generated under the regime of IPER
2011. It is possible to notice that the results of the SHyFTA at the end of the observation period (see last
row of Table 12 and Figure 13) matches with the real data aside the absolute error of the Monte Carlo
simulation (±4681 kWh). We can observe that at the beginning of the simulation, the deterministic and
the SHyFTA model are very close to the real data and the reason is that at the beginning of the power
plant life there are no faults and performance degradation which affect the system. However, after
a few months, the gap between the real data and the deterministic model starts to increase, whereas
the difference with respect to the SHyFTA remains bounded to a maximum relative error of 2%, as
shown in Figure 14 that plot the absolute relative error with respect to real data.

Table 12. Comparison among the real data, the deterministic and the SHyFTA model in terms of energy
produced and positive payback generated under the regime of IPER 2011.

Year Real Prod. (kWh) Payback (€) Deterministic (kWh) Payback (€) SHyFTA (kWh) Payback (€)

1 534,844 248,168 552,606 256,409 532,777 (±829) 247,208 (±378)
2 1,164,600 540,374 1,213,319 562,980 1,163,503 (±1909) 539,865 (±879)
3 1,765,200 819,053 1,873,664 869,380 1,791,692 (±3030) 831,345 (±1394)
4 2,375,546 1,102,253 2,487,950 1,154,409 2,375,685 (±4115) 1,102,318 (±1893)

4.6 * 2,806,253 1,302,101 2,929,946 1,359,495 2,809,286 (±4681) 1,303,509 (±2153)

* corresponds with 40,173 h.

Energies 2018, 11, x FOR PEER REVIEW  17 of 22 

 

To compute the energy production from the time-series of the estimated active power PGCC(t) 
Equation (9) must be used. Table 12 displays a comparison among the real data, the deterministic and 
the SHyFTA models in terms of energy produced and payback generated under the regime of IPER 
2011. It is possible to notice that the results of the SHyFTA at the end of the observation period (see 
last row of Table 12 and Figure 13) matches with the real data aside the absolute error of the Monte 
Carlo simulation (±4681 kWh). We can observe that at the beginning of the simulation, the 
deterministic and the SHyFTA model are very close to the real data and the reason is that at the 
beginning of the power plant life there are no faults and performance degradation which affect the 
system. However, after a few months, the gap between the real data and the deterministic model 
starts to increase, whereas the difference with respect to the SHyFTA remains bounded to a maximum 
relative error of 2%, as shown in Figure 14 that plot the absolute relative error with respect to real 
data. 

Table 12. Comparison among the real data, the deterministic and the SHyFTA model in terms of 
energy produced and positive payback generated under the regime of IPER 2011. 

Year Real Prod. (kWh) 
Payback 

(€) 
Deterministic

(kWh) 
Payback (€) SHyFTA (kWh) Payback (€) 

1 534,844 248,168 552,606 256,409 532,777 (±829) 247,208 (±378) 
2 1,164,600 540,374 1,213,319 562,980 1,163,503 (±1909) 539,865 (±879) 
3 1,765,200 819,053 1,873,664 869,380 1,791,692 (±3030) 831,345 (±1394) 
4 2,375,546 1,102,253 2,487,950 1,154,409 2,375,685 (±4115) 1,102,318 (±1893) 

4.6 * 2,806,253 1,302,101 2,929,946 1,359,495 2,809,286 (±4681) 1,303,509 (±2153) 

* corresponds with 40,173 h. 

 

Figure 13. Comparison between the energy produced by the deterministic model, the SHyFTA and 
the real system. 
Figure 13. Comparison between the energy produced by the deterministic model, the SHyFTA and the
real system.



Energies 2018, 11, 306 18 of 22Energies 2018, 11, x FOR PEER REVIEW  18 of 22 

 

 

Figure 14. Comparison between the relative error of the deterministic model and the SHyFTA. 

At this point, having tested the accuracy of the proposed method, it is possible to forecast the 
production of energy over 20 years of life in order to provide the owner of the plant with a more 
accurate estimation of production and economical revenues. To achieve this result, the simulation 
with the SHyFTA is extended to 20 years assuming that the physical input of the solar radiation and 
ambient temperature follow the same evolution described by the historical time series of the last 5 
years. The Monte Carlo simulation has been set such to respect the same confidence level of the 
previous simulation. Under this setting, the absolute cumulative error of the time series sums up to 
0.18%, that corresponds to ±20,480 kWh. 

Figure 15 shows the results obtained and Table 13 allows a further comparison between the 
deterministic and the SHyFTA. In this case, it is possible to recognize at the end of the 20th year, a 
difference of about 545,000 kWh (±20,480 kWh) of loss of energy productivity. Under the regime of 
IPER 2011, at the end of the economic investment established at the 20th year from the start of the 
power plant, this lack of energy production corresponds to a cash short of about 250,000 € (±9421 €). 

 

Figure 15. Energy production estimation throughout the life time of the power plant (20 years). 

Figure 14. Comparison between the relative error of the deterministic model and the SHyFTA.

At this point, having tested the accuracy of the proposed method, it is possible to forecast the
production of energy over 20 years of life in order to provide the owner of the plant with a more
accurate estimation of production and economical revenues. To achieve this result, the simulation
with the SHyFTA is extended to 20 years assuming that the physical input of the solar radiation and
ambient temperature follow the same evolution described by the historical time series of the last
5 years. The Monte Carlo simulation has been set such to respect the same confidence level of the
previous simulation. Under this setting, the absolute cumulative error of the time series sums up to
0.18%, that corresponds to ±20,480 kWh.

Figure 15 shows the results obtained and Table 13 allows a further comparison between the
deterministic and the SHyFTA. In this case, it is possible to recognize at the end of the 20th year,
a difference of about 545,000 kWh (±20,480 kWh) of loss of energy productivity. Under the regime
of IPER 2011, at the end of the economic investment established at the 20th year from the start of the
power plant, this lack of energy production corresponds to a cash short of about 250,000 € (±9421 €).
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Table 13. Comparison between the deterministic and the SHyFTA model throughout the remaining
years of the plant life in terms of energy produced and positive payback generated under the regime of
IPER 2011.

Year Deterministic (kWh) Payback (€) SHyFTA (kWh) Payback (€)

5 3,151,996 1,462,526 3,005,940 (±5166) 1,394,756 (±2375)
10 6,111,600 2,835,782 5,817,056 (±10,270) 2,699,114 (±4724)
15 8,955,165 4,155,197 8,516,286 (±15,352) 3,951,557 (±7062)
20 11,682,162 5,420,523 11,137,157 (±20,480) 5,167,641 (±9421)

5. Conclusions

In this paper dynamic reliability is proposed as valuable paradigm for the modelling and the
evaluation of renewable power plants. Dynamic reliability can address the limitations of traditional
deterministic models, which are unable to account for the randomness of the primary resource and the
concept of plant dependability.

Stochastic Hybrid Fault Tree Automaton (SHyFTA) has been presented as a valid modelling
approach to evaluate the performance of renewable power plants. SHyFTA is able to model (i) the
randomness of the primary resource; (ii) the performance deterioration; (iii) the faults and repair
processes of the system components. Moreover, a SHyFTA model can be easily redesigned and
simulated so as to assess the effect of alternative design decision on system performance.

In this paper, the main steps for the modeling of a SHyFTA have been defined and a case of
study of real photovoltaic power plant was discussed. To demonstrate the accuracy of the results
achieved with a SHyFTA simulation, the production of energy of the photovoltaic power plant has been
estimated and compared with the deterministic model, exploiting as benchmark the data of production
of the real photovoltaic power plant. Further comparisons between the SHyFTA and the deterministic
model have been discussed also in terms of cash short, when estimating the expected productivity
throughout the entire lifetime of the power plant (20 years). Further researches can exploit the potential
of the SHyFTA model that can be easily modified to evaluate more appropriate design solutions
which can include the use of trackers, or the integration with a system of batteries. More generally,
it represents a valuable technique for the evaluation of other renewable technologies because the
model of energy conversion can be always linked with the basic events of the fault tree model and can
account, on the base of a statistic input, for randomness of productivity and system availability.

The SHyFTA analysis is based on Monte Carlo simulations, and therefore, the accuracy of
the results and simulation times can require long computation time before to retrieve results with
an acceptable precision. In conclusion, the main benefits of the proposed approach are twofold: on the
one hand it allows to perform an estimation of the main process measures and on the other hand
provides important information about the system health.
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Nomenclature

G Global irradiance β Shape factor (Weibull function)
IPER Italian Producer Electrical Regulation γ Scale parameter (Weibull function)
SHyFTA Stochastic Hybrid Fault Tree Automaton λ Failure rate
ACB Alternate current circuit breaker µ Repair rate
ACD Alternate current disconnector α Tilt angle
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ACS Alternate current section η Efficiency
L(t) Aging I0 Orthogonal solar irradiance
MPPT Maximum Power Point Tracking SCADA Supervisory Control & Data Acquisition
NOCT Nominal Operating Cell Temperature S Module Area
Pk

GCC(t) Active Power at the generation meter pdf Probability density function
Pac Alternate current power ηm Solar module efficiency
Tc Solar module temperature ηfirst Efficiency (first year)
Ta Ambient temperature ηinverter Inverter efficiency
Tc,std Module temperature (standard conditions) ηn Efficiency (nth year)
A Availability ηstd Efficiency (standard conditions)
SSA Steady state availability ρ Power coefficient
U Unavailability Dr Degradation rate
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