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Abstract

This paper investigates the use of the Time Of Arrival (TOA) and Doppler
shift to allow a small formation of CubeSats to navigate beyond low Earth
orbit (LEO). The idea is to use a one way communication, from one or more
ground stations to two or more CubeSats, to reconstruct an estimation of
the position and velocity of the formation with respect to Earth. The paper
considers the use of the difference in TOA and Doppler measurements to
mitigate the error introduced by the onboard clock. These measurements are
combined with inter-satellite distance and velocity measurements based on a
two-way communication between pairs of spacecraft. The paper will provide
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an estimation of the error in position and velocity that can be obtained by
a combination of these measurements. The reference case for these analyses
will be a transfer trajectory to the Moon.

Keywords: cubesat; orbit determination; deep space; TOA;

1. Introduction

There is a growing interest in using nanosatellites (like CubeSats) beyond
LEO. From the proposed NASA Mars mission MarCO (Asmar & Matousek
(2008)) to more recent mission studies for CubeSats to the Moon and aster-
oids, the goal is to achieve significant scientific results with small, low-cost
and compact spacecraft. The challenge in all these cases is to achieve mission
objectives with limited resources.

Given the low cost of the platform some limitations can be mitigated by
using more than one nanosatellite working in team and distributing tasks
and resources. The paper is proposing a combination of measurements that
can be used to autonomously determine position and velocity of CubeSats
flying in formation in deep space or in the vicinity of a minor body. The
limited power on-board a CubeSat might not be sufficient to implement tra-
ditional tracking techniques for orbit determination based on ground support
(Differential One-way Range (DOR) or delta-DOR for example). Further-
more, the precision of the clocks on-board a CubeSat might not allow for
one way ranging and range rate measurements with sufficient accuracy if no
synchronisation strategy is applied.

The paper is investigating the possibility to exploit the inter-satellite link
between two, or more CubeSats, together with different combinations of Time
Of Arrival (TOA), Time Difference Of Arrival (TDOA) and Frequency Of
Arrival (FOA) to estimate position and velocity with respect to a known
beacon. The approach is similar to known techniques for the localisation of
a source given the known position of different receivers (see Torrieri (1984);
Ulman (2001); Ho & Chan (1997); Mason (2004)) albeit it assumes one or
more known ground emitters and unknown space receivers. The signal emit-
ted from one or more ground stations (the known beacons), and received by
two or more spacecraft, provides information on time, frequency and location
of emission. The time and frequency at which the signal is received depend
on the position and velocity of the spacecraft. In general two spacecraft
will receive the same signal at different times and with different frequency
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shifts. If the CubeSats can measure, with reasonable accuracy, their rela-
tive position and velocity, the knowledge of the relative position between the
two spacecraft in combination with the time and frequency difference of the
received signal are sufficient to estimate the position and velocity with re-
spect to the known beacon. The paper explores two scenarios: one with two
beacons and two receivers and one with a single beacon and three receivers.
The analysis is theoretical in that it does not consider real stations or a real
mission, though ranges of errors in TOA, FOA and intersatellite links are
compatible with current technology.

The paper is organised as follows. First the dynamics and measurement
models are introduced, followed by an analytical derivation of the state esti-
mation solution for both the three-spacecraft one station case and the two-
spacecraft two-station cases. This analysis provides insight into the number
of possible solutions as a function of the geometric configuration of the space-
craft and ground stations. Then, some numerical experiments are used to
quantify the estimation error. The reference case is a trajectory to the Moon.

2. Dynamic Model and Formation Design

The dynamics of the spacecraft is defined in the Earth Centred Inertial
reference frame et epoch and subject only to the spherical homogeneous
gravity filed of the Earth. In this framework one can approximate the position
of the spacecraft in the formation with respect to a given reference orbit as:

δxr =
r

a
δa+

ae sin θ√
1− e2

δM − a cos θ δe

δyθ =
r

(1− e2)3/2
(1 + e cos θ)2 δM + rδω (1)

+
r sin θ

(1− e2)
(2 + e cos θ) δe+ r cos i δΩ

δzh = r (sin θ∗δi− cos θ∗ sin i δΩ)

where δr = [δxr, δyθ, δzh]
T is the relative position vector of a spacecraft in

a radial, transversal, out-of-plane reference frame attached to the reference
orbit, θ is the true anomaly along the reference orbit, θ∗ = θ + ω, r, a, e, i
and ω are respectively the radius, semi-major axis, eccentricity, inclination,
argument of the pricentre of the reference orbit, and δa, δe, δi, δΩ, δω, δM
are the variations of the orbital parameters.
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By properly setting the values of the variation of the orbital parameters,
one can design the desired formation with the required separation among
spacecraft. In order to test the orbit determination approach, we propose
a formation that rests in the θ − h plane and that brings the spacecraft
periodically at close distance. As it will be demonstrated in the following,
this geometry presents no singularities for most of the orbit and allows one to
study the sensitivity of the determination error to the inter-satellite distance.

The orbital parameters of the reference orbit are reported in Table 1. In
the following we will study two cases: a formation of three spacecraft receiv-
ing the signal of a single ground station and a formation of two spacecraft
receiving the signal of two ground stations. The δ elements for the two for-
mations are in Table 2 and the nominal trajectories in the θ − h plane can
be found in Figs. 1 and 2.

Table 1: Orbital elements of the reference trajectory

a [km] e i [deg] Ω [deg] ω [deg] ν0 [deg]
195539 0.966 7 0 0 0

Table 2: Delta Orbital elements of the two formations

δa [km] δe δi [rad] δΩ [rad] δω [rad] δM [rad]
3-s/c formation

s/c 1 0 0 4e− 4 −14e− 4 −1e− 4 0
s/c 2 0 0 4e− 4 14e− 4 −2.8e− 3 0
s/c 3 0 0 4e− 4 14e− 4 1e− 4 0

2-s/c formation
s/c 1 0 0 −2e− 3 −4e− 4 0 0
s/c 2 0 0 2e− 3 4e− 4 0 0

3. Measurement Model

In this section we describe the type of measurements considered for the
determination of position and velocity of the CubeSats. Four types of mea-
surements are considered: the relative position and velocity via inter-satellite
link, the Time Difference of Arrival and the Time Of Arrival of the signal
received from one or more beacons and the Doppler shift.
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Figure 1: Three spacecraft formation in the θ − h plane.

r
θ
 [km]

-150 -100 -50 0 50 100 150

r h
 [

k
m

]

-100

-80

-60

-40

-20

0

20

40

60

80

100

s/c1

s/c2

Figure 2: Two spacecraft formation in the θ − h plane.

3.1. Inter-spacecraft Measurements

The set of inter-spacecraft measurements is represented by the relative po-
sition and velocity vectors between two spacecraft in the formation expressed
as modulus, local azimuth and elevation angles ((Vetrisano & Vasile , 2016)).
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The observation equation for the position vector is given by:

zr = hr (ri, rj) = [dr ϕr ψr]
T + ζr (2)

where ζr = [ζdr ζϕr ζψr ]
T is the measurement noise. This simple measurement

is providing the complete spacecraft-to-spacecraft vector in inertial space.
Given spacecraft with state ri and spacecraft with state rj the spacecraft-
to-spacecraft vector is ∆rij = [dr cosψr cosφr, dr sinψr cosφr, dr sinφr, ]

T
ij. In

the case where the relative velocity is also computed, the measurement vector
in equation (2) is extended by the relative velocity vector:

zṙ = hṙ (ṙi, ṙj) = [dv ϕv ψv]
T + ζv (3)

where ζv = [ζdv ζϕv ζψv ]T is the measurement noise. The error is due to the
attitude error of the spacecraft and to the telemetry error. In the following,
the accuracy in the knowledge of the pointing vector is estimated to be
between 1e-4 and 1e-3 radians which is compatible with recent advances in
attitude sensors for Cubesats (see Dzamba et al. (2014)). Indeed this is only
part of the error in the reconstruction of the relative position and velocity
vectors. In this paper, however, as working assumption, we consider only
the attitude error and we will provide a trend curve that shows the increase
in the estimation of the state of the spacecraft as the error in the relative
position and velocity vectors increases.

3.2. Time Of Arrival and Time Difference Of Arrival

For a source with coordinates sj and a receiver with coordinates r1 the
Time Of Arrival can be written as:

(t1 − tj) =
1

c

√
(r1 − sj)T (r1 − sj) (4)

and if one squares both sides:

(t1 − tj)2 =
1

c2
(rT1 r1 − sTj r1 − rT1 sj + sTj sj) (5)

If the same signal from sj is received by a second spacecraft r2 we have:

(t2 − tj)2 =
1

c2
(rT2 r2 − sTj r2 − rT2 sj + sTj sj) (6)
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ans by subtracting (6) from (5) one gets the TDOA expression:

(t2 − tj)2 − (t1 − tj)2 =
1

c2
(rT1 r1 − rT2 r2 − sTj r1 + sTj r2 − rT1 sj + rT2 sj) (7)

where we have six unknowns. The inter-satellite link provides three equations
that relate r1 to r2, therefore, the number of unknowns are reduced to three.
Thus, with only two receivers and one beacon the problem cannot be com-
pletely solved and additional conditions are required. If one more stations is
used as a beacon, then the problem becomes completely solvable. Likewise if
we had three receivers then the unknowns would be 9, the inter-satellite link
would provide 6 equations and the TOA (or TDOA) other 3. In this case
the problem can also be completely solved.

3.3. Frequency Of Arrival

If the receiver on spacecraft 1 can measure the Doppler shift we can say
that:

∆f1
c

f0

=
(r1 − sj)

T (ṙ1 − ṡj)

r1

(8)

which introduces 3 additional unknowns. If one had two stations and two
spacecraft then the Doppler equations would be 4 plus 3 equations giving the
relative velocity via inter-satellite link. These 7 equations plus the 3 relative
positions and 2 equations (7), one per station, allows one to completely solve
the problem.

Note that even in this case if more than two stations or more than two
spacecraft were available the Doppler shift would provide the velocities of the
spacecraft with respect to the station provided that the inter-satellite link
was giving the relative velocity among spacecraft.

3.4. Time and Frequency Error Estimations

The main problem with the use of the TOA is the drift and stability of the
internal clock of the receiver. In a two way communication system this error
can be eliminated by synchronisation of the on board and ground clocks.
However, in a one way communication solution the spacecraft needs to reset
its clock only using the reference signal coming from ground.

Recent advances in technology for cubesats offer chip scale atomic clocks
with an Allan Deviation of 8e-12 for a TAU of 100s and an ageing rate of
less that 1e-9 per year (Conklin et al. (2014)). It is interesting to note that
a study by Bloch et al. (2002) shows very good performance in space with
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minimum effect of radiations on atomic clocks. Allan Deviation σy introduces
a time deviation σx that can be quantified as (see Riley (2008)):

σx =
τ√
3
modσy (9)

where modσy is the modified Allan Deviation. This deviation has to be added
to the initial error between the terrestrial clock and the on board clock and
other two sources of error: the frequency drift ∆f and ageing rate D. The
total error is:

ε
TOA

= δt0 + (∆f/f0)t+ 0.5Dt2 + σx (10)

It is reasonable to assume that δt0 = 0 and there an initial tuning of the
clocks once the spacecraft is in orbit so that ∆f = 0. However, as the
mission progresses, radiations, temperature variability and ageing, plus the
contribution of Allan Deviation will progressively increase the time error.

We assume that the formation is able to synchronise their clocks using a
standard two way communication system and standard clock synchronisation
algorithm, such as Barkley’s algorithm or equivalent. This synchronisation
however, does not completely remove the error in (10). If the clocks are
well characterised, one can assume that the model can be used to filter the
drift and correct the TOA. Although this is a reasonable assumption here we
provide also a reset mechanism to partially synchronise the clocks on board
with the source.

The idea is based on a heart-beat concept in which the receiver compares
the local time increments with the reference time increment transmitted by
the ground station. If one calls t0 the exact universal time of the ground
station and tl the local time on the spacecraft, the spacecraft is expected
to receive a first pulse at time tl1 corresponding to a transmission time t01.
After a time interval ∆t0 the ground station sends a second pulse. When the
pulse is received the spacecraft register the time tl2 such that:

tl2 = tl1 + ∆t0 +
∆r

c
+ ε

TOA
(11)

where ∆tl = tl2−tl1 is the Time Difference Of Arrival at the same spacecraft,
∆r is the displacement in the direction of propagation of the radio wave, and
ε
TOA

is the accumulated error of the clock on board. If the frequency at which
the two clocks are synchronised is high, ∆t0 is small and one can assume a
linear model for the displacement such that:

∆tl = ∆t0 +
ṙ∆t0
c

+ ε
TOA

(12)
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The local velocity can be derived from the Frequency Of Arrival:

ṙ =
∆fc

f0

+ ε
FOA

(13)

From which one has that:

ε
TOA

= ∆tl −∆t0 −
∆f∆t0
f0

− ε
FOA

∆t0
c

(14)

The error in velocity ε
FOA

depends on the error in the Doppler shift mea-
surement. This error depends on the observation time To, and can be ap-
proximated to be 1/To. In order to remove the drift accumulated in the time
interval ∆t0 the ratio ε

FOA
/c has to be smaller than the expected drift of the

clock. For a standard clock the expected drift is 1e-6 per second, which gives
a required accuracy of the Doppler measurement of less than 300 m/s or
12kHz assuming a carrier in X band at 12GHz. This accuracy only requires
an observation time of 8.3276e-5s. Having said that, it is desirable to reduce
the error in TOA down to less than a millisecond, as will be shown later. In
this case we can impose a Doppler error of 1 m/s that corresponds to 40Hz
and an observation time of 2.42e-2s.

Note that additional corrections are required to account for the acceler-
ation acting on the spacecraft that has an impact on ∆r. For example at
the Earth-Moon distance the acceleration on the spacecraft introduces a dif-
ference in ∆r of about 1.3e-4 m over 10s and a prediction error of 4.5e-13s.
Furthermore, this approach requires constant communication with the sta-
tion. In the case of a black-out this system is not sufficient and a model of
the clock is required.

In the following the assumption is that once this filtering of the time
error is applied the only residual error is Allan Deviation with a resulting
range between 1e-8s and 1e-7s depending on the quality of the clock. In the
following we will not consider possible relativistic effects and we assume that a
correction for atmospheric disturbances is added to the ground transmission.

4. Analytical Solution of the Orbit Determination Problem

In this section we derive an analytical solution to the problem of deter-
mining the position and velocity of the spacecraft in the formation by using
TOA and FOA measurements only. A separate derivation will be presented
for the three-spacecraft one-station and for the two-spacecraft two-station
case.
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4.1. Case 1: 3 spacecraft 1 station

We consider the case in which a single station with coordinates s =
[sx, sy, sz]

T is broadcasting a signal within a cone with aperture βs. The
signal contains the time at which the signal was generated, the coordinates
of the station and the direction of the boresight of the station in inertial
space. Three spacecraft receive the signal at times t1, t2 and t3. Space-
craft 1 is identified by the vector r1 = [x1, y1, z1]T and the relative position
vectors with respect to spacecraft 2 and 3 are ∆r12 = [x12, y12, z12]T and
∆r13 = [x13, y13, z13]T . The TOA for the three spacecraft can be written in
the following way:

R1 = c2(t1 − t0)2 = (x1 − sx)2 + (y1 − sy)2 + (z1 − sz)2

R2 = c2(t2 − t0)2 = (x1 − sx + x12)2 + (y1 − sy + y12)2 + (z1 − sz + z12)2

R3 = c2(t3 − t0)2 = (x1 − sx + x13)2 + (y1 − sy + y13)2 + (z1 − sz + z13)2

(15)
Before proceeding, it is convenient to use the transformed position vector
r∗1 = r1 − s. After replacing r∗1 in Eqs. (15) and developing the last two
equations one can write:

R2 −R1 −R12 = 2(x∗1x12 + y∗1y12 + z∗1z12)
R3 −R1 −R13 = 2(x∗1x13 + y∗1y13 + z∗1z13)

(16)

where R12 = x2
12 + y2

12 + z2
12 and R13 = x2

13 + y2
13 + z2

13. It is worth noting,
at this point, that, in virtue of Eqs. (16) the systematic error in the TOA of
spacecraft 2 and 3 is automatically filtered out. If x12 and x13 are not zero,
by multiplying the first equation in (16) by x13 and the second by −x12 one
can solve with respect to y∗1 to get:

∆1 = (R2 −R12 −R1)x13 − (R3 −R13 −R1)x12 (17)

and

y∗1 =
∆1 − b1z

∗
1

a1

(18)

with a1 = 2(y12x13−y13x12) and b1 = 2(z12x13− z13x12). Expression (18) can
now be inserted into the first of Eqs. (16) to derive an expression for x∗1:

x∗1 =
∆2 − b2z

∗
1

a2

(19)

with ∆2 = R2−R12−R1−2y∗1∆1/a1, a2 = 2x1 and b2 = (2z∗1−2y∗1b1/a1). Fi-
nally if one substitutes the expressions for y∗1 and x∗1 into the first of Eqs. (15)
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the problem reduces to the solution of the following second order algebraic
equation in z∗1 :

Az∗1
2 +Bz∗1 + C = 0 (20)

with solutions:

z∗1,12 =
−B ±

√
B2 − 4AC

2A
(21)

and:
A = 1 +

b22
a22

+
b21
a21

B = −2
(

∆2b2
a22

+ ∆1b1
a21

)
C =

∆2
2

a22
+

∆2
1

a21
−R1

(22)

The R1 term in C introduces the TOA systematic error (drift and ageing)
in the estimation of the position vector. However, if four spacecraft were
available one could obtain two equations (20) and remove the systematic
error in C by subtracting one to the other. In the following we will not
consider the case with more than three spacecraft but we will assume that
the error in TOA can be reduced down to the time deviation only. If x12 and
x13 are zero, or x1 is zero, system of Eqs.(15) can be solved with respect to x∗1
or y∗1 leading again to only two solutions. However, there are cases in which
system (15) presents more than two solutions and other cases in which only
one solution is possible. In general we can prove the following proposition.

Proposition 1. Given system (15), if the TOA and the intersatellite position
vector are measured with infinite precision the following statements are true:

1. If ‖∆r12 ∧∆r13‖ > 0 and B2− 4AC > 0, system of equations Eqs.(15)
has two distinct solutions.

2. If ‖∆r12 ∧∆r13‖ > 0 and B2− 4AC = 0, system of equations Eqs.(15)
has one solution.

3. If ‖∆r12 ∧ ∆r13‖ = 0, system of equations Eqs.(15) has no unique
solution and the locus of all possible solutions is a cylinder.

4. If all spacecraft are aligned with the boresight of the station, system of
equations Eqs.(15) has one degenerate solution.
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Proof. System (15) can be rewritten in the following compact form:

rT1 r1 = R1;

rT2 r2 = R2;

rT3 r3 = R3;

∆r21 = r2 − r1;

∆r31 = r3 − r1;

(23)

where the first three equations are the spacecraft TOAs and the last two
are the relative position vectors provided by the inter-spacecraft link. By
inserting the last two ones into the first three, one can obtain the reduced
system in r1: 

rT1 r1 = R1;

∆rT21r1 = Γ21;

∆rT31r1 = Γ31;

(24)

with Γ21 = (R2 − R1 − D2
21)/2, Γ31 = (R3 − R1 − D2

31)/2, D21 = ∆rT21∆r21

and D31 = ∆rT31∆r31.
System of Eqs. (24) represents the intersection between two planes and

a sphere that, in general, would have two distinct solutions or a unique one
when the straight line identified by the two planes is tangent to the sphere (see
Fig.3). When ‖∆r12 ∧∆r13‖ = 0 the spacecraft in the formation are aligned
along a straight line, and the left hand sides of the last two equations in (24)
are proportional to each other. In particular, if one calls u = ∆r21/||∆r21||
the unit vector in the direction of ∆r21, then one can reduce the probelm to
a single equation:

uT r1 =
Γ21

D21

(25)

Eq. (25)describes a cylinder whose axis is aligned with ∆r12 and with
radius:

Rcyl = r1 sinα; cosα =
Γ21

r1D21

(26)

When α = 0, the cylinder degenerates, the formation is oriented along the
boresight of the ground station and a unique solution exists.
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Figure 3: General case for the configuration with spacecraft 1, 2, 3 and 1 station S: 2
solutions. It can degenerate into a single one when the two points merge or into an infinite
set when the two planes overlap and the solutions form a circle.

When two distinct solutions exist, only one has to be considered. Given
that the information on the aperture of the visibility cone of the antenna is
transmitted with the signal, a simple discrimination criterion is to select the
position vector whose angle with respect to the boresight of the antenna is
smaller than the aperture of the visibility cone. A further piece of informa-
tion like the direction of the Sun can be used as an additional criterion to
discriminate the correct solution.

Once the full position vector [x∗1, y
∗
1, z

∗
1 ]T is available one can compute the

velocity vector starting from the following system that makes use of Doppler
measurements (or FOA):

V1 = c∆f01
f0

√
R1 = x∗1vx1 + y∗1vy1 + z∗1vz1

V2 = c∆f02
f0

√
R2 = (x∗1 + x12)(vx1 + ∆vx12) + (y∗1 + y12)(vy1 + ∆vy12)+

(z∗1 + z12)(vz1 + ∆vz12)

V3 = c∆f03
f0

√
R3 = (x∗1 + x13)(vx1 + ∆vx13) + (y∗1 + y13)(vy1 + ∆vy13)+

(z∗1 + z13)(vz1 + ∆vz13)
(27)

where ∆v12 and ∆v13 are the measured relative velocities of spacecraft 2
and 3 with respect to spacecraft 1 respectively. The velocity vector v1 is
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calculated with respect to the ground station and includes the rotation of
the Earth. System (27) is linear in the velocity vector v1 and can be solved
provided that the matrix: x∗1 y∗1 z∗1

x∗1 + x12 y∗1 + y12 z∗1 + z12

x∗1 + x13 y∗1 + y13 z∗1 + z13

 (28)

is full rank, which implies that the three position vectors of the three space-
craft should not be pairwise aligned.

4.2. Case 2: 2 spacecraft 2 stations

In the case of only two spacecraft, the time of arrival from a single sta-
tion is not sufficient to determine the complete position vector. A complete
solution can be computed by adding a second emitting station, synchro-
nized with the first one. Given stations with known inertial coordinates
s1 = [sx1 , sy1 , sz1 ]

T and s2 = [sx2 , sy2 , sz2 ]
T and spacecraft with inertial coor-

dinates r1 = [x1, y1, z1]T and r2 = [x2, y2, z2]T , it is assumed that the signals
from station 1 and 2 are received by spacecraft 1 at times t1 and t2 while
spacecraft 2 received the signal from station 2 at time t3. With this configu-
ration, the following system needs to be solved to get the position vector of
spacecraft 1:

R11 = c2(t1 − t0)2 = (x1 − sx1)2 + (y1 − sy1)2 + (z1 − sz1)2

R12 = c2(t2 − t0)2 = (x1 − sx2)2 + (y1 − sy2)2 + (z1 − sz2)2

R21 = c2(t3 − t0)2 = (x1 + x12 − sx1)2 + (y1 + y12 − sy1)2 + (z1 + y12 − sz1)2

(29)
Before proceeding, it is convenient to use the transformed position vector
r∗1 = r1 − s1 and s∗2 = s2 − s1. After substituting vectors r∗1 and s∗2 into (29)
and developing the last two equations, one gets:

R12 −R11 −RS2 = −(x∗1s
∗
x2

+ y∗1s
∗
y2

+ z1s
∗
z2

)
R21 −R11 −∆r12 = 2(x∗1x12 + y∗1y12 + z∗1z12)

(30)

where RS2 = s∗x2
2 + s∗y2

2 + s∗z2
2 and ∆r12 = x2

12 + y2
12 + z2

12. If x12 and xS2 are
not zero, by multiplying the first equation in (30) by s∗x2 and the second by
x12 one can solve with respect to y∗1 to get:

y∗1 =
∆1 − b1z

∗
1

a1

(31)
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where a1 = 2(y12s
∗
x2
−s∗y2x12), b1 = 2(z12s

∗
x2
−s∗z2x12) and ∆1 = 2(R12−R11−

RS2)x12 + (R21 −R11 −∆r12)s∗x2 . By substituting y∗1 in the first of (30) and
solving for x∗1 we get:

x∗1 =
∆2 − b2z

∗
1

a2

(32)

where a2 = 2x12, b2 = 2(z12 − y12b1/a1) and ∆2 = R21 − R11 − ∆r12 −
2y12∆1/a1; By substituting the values of x∗1 and y∗1 in (29) we reduce, again,
the problem to a second order algebraic equation in z∗1 with solutions:

z∗1,12 =
−B ±

√
B2 − 4AC

2A
(33)

with the coefficients A, B and C that have the same form as in (22):

A = 1 + b2
2/a

2
2 + b2

1/a
2
1

B = −2(∆2b2/a
2
2 + ∆1b1/a

2
1)

C = ∆2
2/a

2
2 + ∆2

1/a
2
1 −R11

(34)

Even in this case C contains the systematic error in TOA, which could be
mitigated by adding a spacecraft or a further TOA equation. As for the case
of three spacecraft and one station, one can prove the following proposition
that states that in general two solutions exist, except for some specific cases
in which infinite solutions or a single solution exist.

Proposition 2. Given system (29), if the TOA and the intersatellite position
vector are measured with infinite precision the following statements are true:

1. If ‖∆r12 ∧ s∗2‖ > 0 and B2 − 4AC > 0, system of equations Eqs.(29)
has two distinct solutions.

2. If ‖∆r12 ∧ s∗2‖ > 0 and B2 − 4AC = 0, system of equations Eqs.(29)
has one solution.

3. If ‖∆r12∧s∗2‖ = 0, system of equations Eqs.(29) has no unique solution
and the locus of all possible solutions is a cylinder.

Proof. The proof is analogous to the one for the three spacecraft one station
case where one of the two intersatellite vectors is replced by the station-to-
station vector .

Once the full position vector [x∗1, y
∗
1, z

∗
1 ]T is available one can compute the

velocity vector starting from the following system that makes use of Doppler
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measurements (or FOA):

V1 = c∆f01
f0

√
R11 = x∗1vx1 + y∗1vy1 + z∗1vz1

V2 = c∆f02
f0

√
R12 = (x∗1 − s∗x2)vx1 + (y∗1 − s∗y2)vy1 + (z∗1 − s∗z2)vz1

V3 = c∆f03
f0

√
R22 = (x∗1 + x12 − s∗x2)(vx1 + ∆vx12)+

(y∗1 + y12 − s∗y2)(vy1 + ∆vy12) + (z∗1 + z12 − s∗z2)(vz1 + ∆vz12)

(35)

where ∆v12 is the measured relative velocity of spacecraft 2 with respect to
spacecraft 1. The velocity vector v1 is calculated with respect to station 1
and includes the rotation of the Earth. Furthermore, it is assumed that the
velocity with respect to station 1 is almost the same as the one with respect
to station 2. Note that this is not always the case. For example if the two
spacecraft were moving in the equatorial plane and the stations were along
the equator at different meridians. In this case a spacecraft could see one
station moving away while the other is approaching. As it will be shown
in the following, this configuration is not ideal as it could lead to an infinite
number of solutions. A better configuration is with the two stations along the
same meridian. In this case the assumption on the velocities is acceptable.
System (35) is once again linear in v1 and can be solved provided that the
matrix:  x∗1 y∗1 z∗1

(x∗1 − s∗x2) (y∗1 − s∗y2) (z∗1 − s∗z2)
(x∗1 + x12 − s∗x2) (y∗1 + y12 − s∗y2) (z∗1 + z12 − s∗z2)

 (36)

is full rank, which implies that the position vector of spacecraft 1 with respect
to station 1 and 2 and the position vector of spacecraft 2 with respect to
station 2 should not be parallel.

4.3. TDOA Position Error

The analytical solution is assuming that one can reconstruct the position
of one spacecraft given the TOAs at the other spacecraft. If one considers the
three-spacecraft case, when spacecraft 2 receives the signal and communicates
with spacecraft 1, spacecraft 1 would have moved by a quantity ∆rsync. The
same would happen when spacecraft 3 receives the signal and communicates
with spacecraft 1. System of equations 15 does not include this correction
for simplicity of derivation. However, a more precise and correct estimation
would need to include ∆rsync. The error in position estimation however, can
be approximated as the local spacecraft velocity times twice the TDOA. This
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error is small compared to the noise in the intersatellite position vector and
in the TOA.

5. Measurement Analysis

In the previous section we derived an analytical solution for the orbit
determination problem and identified the cases in which the system is not
observable. The derivation assumed perfect measurements and infinite nu-
merical precision. On the other hand it is desirable to quantify the precision
of the OD solution when finite precision is considered and measurement errors
are introduced in the measurement chain.

In this section we present the results of a number of numerical simulations
in which the error in the estimation of position and velocity is quantified as a
function of the error in the measurements and of some geometric quantities,
in particular the relative position of the spacecraft and the stations.

5.1. Case 1: three-spacecraft one-station

We first analyse the dependency of the estimation error on the numerical
accuracy as the distance from the station increases. We call this error, par-
allax error. In order to do so we increase the apogee of the reference orbit
and keep the maximum relative distance of the spacecraft in the formation
constant. The simulations were run on an Intel Core i7, in Matlab with 64
bit precision. The resulting position error of spacecraft 1 with respect to the
Earth centered reference frame can be seen in Fig.4a for the nominal case of
the transfer up to the Moon distance. We consider only part of the transfer
orbit from a true anomaly between 135 and 225 degrees. Fig.4b shows the
estimation error but for an apogee 100 times higher. As one can see the peak
error increases by 4 orders of magnitude.

This is a numerical error that could be mitigated by a rescaling of the
equations, note, however, that the error remains small compared to the error
introduced by TOA, intersatellite link and FOA measurements.

The second set of analyses introduces errors in the TOA, the intersatel-
lite links and FOA. The signal produced by the station is received at three
different TOAs by the three spacecraft. The three spacecraft maintain a
knowledge of their relative position and local time by inter-satellite link and
synchronization of the clocks. In this analysis spacecraft number 1 maintains
its clock synchronized with the ground station using the technique presented
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Figure 4: Case 1 - Estimated position error vs true anomaly: a) nominal reference orbit,
b) apogee increased by a factor 100 with constant maximum distance among spacecraft.

in the previous section. Fig. 5a shows the estimation error along the tra-
jectory for an increasing error in the estimation of the intersatellite position
vector and TOA noise. The errors ζψr , ζφr , ζψv and ζφv in the directions of
the intersatellite position and velocity vectors range between 1e-4 and 1e-
3 radians. The relative ranging error is instead between 2e-3 and 2e-2 km
and is consistent with COTS qualified components like RelNav (Voronka
(2011)). The noise in the measurement of the TOA and, as mentioned be-
fore, corresponds only to the time deviation component with a value in the
range [1e − 8, 1e − 7]s. We consider a series of four stations at 45 degrees
of latitude north, spaced along the parallel by 90 degrees, so that at least
one station is always in view. The aperture of the antenna cone is assumed
to be 66.67 degrees which allows for an easy discrimination between the two
solutions of the orbit determination problem.

Fig. 5b shows the position error due to the noise in the TOA without any
intersatellite link noise. Taking the velocity error from RelNav, the error on
the measured radial velocity is in the interval [1e-6 5e-6] km/s for both the
intersatellite link and the Doppler from the ground station.

Fig. 6a and 6b show, respectively, the velocity error due to the combina-
tion of pointing error, TOA and FOA noise, and the error due to TOA and
FOA noise only.

Figure 7 shows the maximum error in position and velocity along the
transfer for different magnitudes of the values of ζψr , ζφr , ζψv and ζφv . The
maximum error is calculated over the output of 100 simulations. All the
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Figure 5: Case 1 - Position error along the Earth-Moon transfer:a) pointing accuracy error
between 1e-4 and 1e-3 radians, b) TOA relative error between 1e-8s and 1e-7s
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Figure 6: Case 1 - Velocity error along the Earth-Moon transfer considering: a) a pointing
accuracy error between 1e-4 and 1e-3 radians, b) a TOA relative error between 1e-8s and
1e-7s.

errors are 1-σ.

5.2. Case 2: two-spacecraft two-station

Also in this case we first analyse the dependency of the estimation error
on the numerical accuracy as the distance from the stations increases. As
in the previous case we increase the apogee of the reference orbit and keep
the maximum relative distance of the spacecraft in the formation constant.
The resulting position error of spacecraft 1 with respect to the Earth centred
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Figure 7: Case 1 - Velocity and position error as a function of the input error magnitude
on the pointing accuracy

reference frame can be seen in Fig.8a for the nominal case of a transfer to
the Moon distance. Fig.8b shows the estimation error but for an apogee 100
times higher. As one can see the peak error increases, once again, by 4 orders
of magnitude.

The second set of analysis introduces errors in the TOA, FOA and in-
tersatellite links. The signals produced by the two stations is received at
three different TOAs by the two spacecraft. The two spacecraft maintain a
knowledge of their relative position and local time by inter-satellite link and
synchronisation of the clocks. In this analysis spacecraft number 1 maintains
its clock synchronised with the ground station using the technique presented
in the previous section. Fig. 9a shows the estimation error along the tra-
jectory for an increasing error in the estimation of the intersatellite position
and velocity vectors assuming a pointing accuracy that ranges between 1e-4
and 1e-3 radians and an increasing TOA error. As for the three-spacecraft
case, the relative ranging error is between 2e-3 and 2e-2 km and the noise
is given only by the time deviation component with values in the range
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Figure 8: Case2 - Estimated position error vs true anomaly: a) nominal reference orbit,
b) apogee increased by a factor 100

[1e − 8, 1e − 7]s. Even in this case, we consider a series of four stations at
45 degrees of latitude north, spaced along the parallel by 90 degrees. For
each northern station there is a southern station at 15 degrees south. Each
pair of northern and souther station is used a beacon for the two-spacecraft
two-station case. As before the aperture of the antenna cone is assumed to
be 66.67 degrees.

Fig. 9b shows the position error along the trajectory for an increasing noise
in the TOA only. For the estimation of the velocity vector the same error,
as in the three-spacecraft case, on the measured radial velocity is considered
for both the intersatellite link and the Doppler from the ground station. The
position of the stations on Earth is expected to be known with infinite preci-
sion and their clocks are perfectly synchronised. The location of the second
station in the pair is of significant importance for two main reasons: one is
the relative velocity with respect to the spacecraft given the approximation
introduced in the analytical derivation, the other is the ability to discrimi-
nate between the two solutions. We also moved the stations along the same
meridian to reduce their relative angular separation down to 1 degree. The
effect is similar to the parallax error of the three-spacecraft case but more
importantly it becomes more problematic to discriminate between the two
solutions unless the cone angle of the station reduces accordingly.

Fig. 10a and 10b show, respectively, the velocity error due to pointing
error, TOA and FOA noise, and the velocity error due to FOA and TOA
only. Figure 11 shows the maximum error in position and velocity along
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Figure 9: Case 2 - Position error along the Earth-Moon transfer:a) pointing accuracy error
between 1e-4 and 1e-3 radians, b) TOA relative error between 1e-8s and 1e-7s
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Figure 10: Case 2 - Velocity error along the Earth-Moon transfer considering: a) a pointing
accuracy error between 1e-4 and 1e-3 radians, b) a TOA relative error between 1e-8s and
1e-7s

the transfer for different errors in the magnitude of the pointing accuracy
error for Case 2. The maximum error is calculated over the output of 100
simulations. The slope in the loglog plot is about 2.7.

6. Final Remarks

The paper presented an analysis of the accuracy in position and velocity
estimation for a small formation of CubeSats beyond LEO. The underlying
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Figure 11: Case 2 - Velocity and position error as a function of the input error magnitude
on the pointing accuracy

assumption is that only one way communications from ground station to
CubeSat are available on a regular basis and the formation has to estimate
their position and velocity autonomously. It is further assumed that occa-
sional communications from the cubesat to the ground station are possible to
downlink telemetry. The paper explored different configurations with either
three spacecraft and one reference ground station or two spacecraft and two
reference ground station.

In both cases an analytical solution was derived to calculate both position
and velocity and it was demonstrated that two solutions are generally possible
except for some limited cases. In order to discriminate between the two
solutions the aperture of the antenna cone can be used although in some
cases a third bearing measurement might be required to avoid ambiguity. It
was found that both configurations provide similar results.The error in the
estimation of the position of the CubeSats is equally affected by the TOA
error and the pointing accuracy. The estimation error includes a parallax
error, due to numerical accuracy, that grows proportionally to the distance
from the source. It was shown that in both cases a few 10s of m/s accuracy in
velocity and hundreds of km in position is achievable in deep space without
any filtering or error model, except for the TOA, if the error in pointing
accuracy is limited to 1e-3 radians and the time deviation to 1e-7s. The
inclusion of multiple measurements can further improve the estimation of
both position and velocity. Future work will be dedicated to incorporate
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this measurement model in a filtering process and extend this techniques to
longer distances from the source.
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