Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Transitions in microabrasion mechanisms for WC - Co (HVOF) coated steel

Stack, M.M. and Mathew, M.T. (2005) Transitions in microabrasion mechanisms for WC - Co (HVOF) coated steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219 (1). pp. 49-57. ISSN 1350-6501

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this work, the microabrasion of an HVOF (high-velocity oxy fuel) tungsten carbide (WC) - Co-based composite coating was investigated and compared with the performance of the substrate material, 316 stainless steel. The effects of sliding distance and applied load were investigated for both materials. Optical, scanning electron, and atomic force microscopy were used to characterize the surfaces following microabrasion. The results showed that the microabrasion rate peaked at intermediate loads for the materials. The critical load at which the peak was observed varied with sliding distance. There was a change in the performance of the coated versus the uncoated material, with the coating out-performing the substrate material at shorter sliding distances but with the reverse pattern occurring at longer sliding distances. The results were interpreted in terms of changes of microabrasion mechanisms as a function of increasing load and sliding distance. Microabrasion mechanisms were discussed based on the transition between wear volume as a function of load and sliding distance.