Investigating Honey Bee Colony Losses from Surveys of Beekeepers

Alison Gray and Magnus Peterson

Department of Mathematics and Statistics, University of Strathclyde; a.j.gray@strath.ac.uk

University of Strathclyde Science

Importance of honey bees

- Honey bees are a major pollinator group providing essential pollination of crops to maintain yield and variety of food crops
- Products of the beehive: honey, wax, propolis, royal jelly, pollen
- Honey bees face many threats, including: lack of forage and reduced diversity of forage owing to intensive agriculture, pests, parasites and diseases, effects of pesticides used on crops, and adverse weather.

Figure 1: A healthy honey bee colony

Colony losses

- A huge amount of research worldwide was sparked by sudden unexplained large-scale colony losses in the USA in the winters 2006/7 and 2007/8^{1,2} (Fig. 2)
- termed Colony Collapse Disorder (CCD)² owing to
 - rapid disappearance of most adult worker bees, leaving brood, queen and food stores
 - lack of dead worker bees inside and near the hive, and with
 - delayed invasion of hive pests and robbing of honey by nearby colonies

Figure 2: A lost colony at spring inspection (www.coloss.org)

- CCD has occurred elsewhere to a more limited extent³, and is now less common
- Large losses in the past presented differently and were more readily explained
- Honey bee colony losses routinely occur over winter particularly, but at a lower level.

Monitoring colony losses

- National monitoring of beekeeping experience and colony losses began in many countries
- The COLOSS (Prevention of honey bee COlony LOSSes) honey bee research association was formed in 2008
 - now involves 942 members from 97 countries (Fig. 3)
 - a core activity is monitoring colony losses and understanding risk factors.

Figure 3: Global reach of COLOSS (www.coloss.org)

Surveys in Scotland 2006-2017

• We began surveys of beekeepers in 2006^{4,5}, to study beekeeping experience as a result of the *Varroa* mite moving north (Fig. 4):

Figure 4: *Varroa* mite, and on a honey bee (http://entnemdept.ufl.edu/creatures/misc/bees/varroa_mite.htm)

- Sampling design: initially a quota-type survey in 2006, subsequently geographically stratified random sampling of the membership of the Scottish Beekeepers Association (SBA)
- Survey mode: postal surveys 2008-2012, then mixed online/postal survey till 2016
- In 2017 an online only survey of 1201 SBA members with a valid email address
- Survey sample sizes: 100 in 2006 rising to 400 in 2016
- Response rates: 77% in 2006, about 45% postal only, 60-65% online/postal, 42% in 2017.

Beekeeper profile in Scotland

 A typical beekeeper is male, aged 60+, has 1 apiary, 3 colonies of local hybrid bees and 5 years experience (Fig. 5)

Winter losses in Scotland

Overall proportion of colonies lost varies (Fig.6)

Figure 6: Winter loss rates in Scotland

Winter loss rates internationally

• Varying patterns of loss rates between countries and regions from year to year (Fig. 7) ^{6,7,8}

Figure 7: Some results from the COLOSS monitoring group

Ongoing work

- Monitoring patterns and trends in loss rates
- Risk factors include queen problems, *Varroa* treatment strategy, forage availability and pesticides ^{7,9}
- Current work is identifying the role of temperature and rainfall levels at critical times of year using generalised linear mixed models (GLMMs) for the risk of colony loss.

References

- 1. Neumann, P. & Carreck, N.L. (2010). Honey bee colony losses. *J. Apicultural Research*, 49, 1-6.
 2. vanEngelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K.,, & Pettis, J.S. (2009). Colony Collapse Disorder: a descriptive study. PLoS ONE 4(8), e6481.
- 3. Dainat, B., vanEngelsdorp, D. & Neumann, P. (2012). Colony collapse disorder in Europe. *Environmental Microbiology Reports*, 4(1), 123-125.
 4. Peterson, M., Gray, A.J., & Teale, A. (2009). Colony losses in Scotland in 2004-2006 from a sample survey. *J. Apicultural Research*, 48(2), 145-146.
- 5. Gray, A.J., Peterson, M. & Teale, A. (2010). An update on recent colony losses in Scotland from a sample survey covering 2006-2008. J. Apicultural Research, 49(1), 129-131.
 6. van der Zee, R., Pisa, L., Andonov, S., ..., & Wilkins, S. (2012). Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J. Apicultural
- Research, 51(1), 100-114.
 7. van der Zee, R., Brodschneider, R.,, & Gray, A. (2014). Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: analysis of winter loss rates and mixed
- effects modelling of risk factors for winter loss. *J. Apicultural Research*, 53(1), 19-34.

 8. Brodschneider, R., Gray, A., van der Zee, R.,, & Woehl, S.. (2016). Preliminary analysis of loss rates of honey bee colonies during winter 2015/16 from the COLOSS survey. *J. Apicultural Research*, 53(1), 19-34.
- 55(5), 375-378.
 9. van der Zee, R., Gray, A.J., Pisa, L.W., de Rijk, T.C. (2015). An observational study of honey bee colony winter losses and their association with *Varroa destructor*, neonicotinoids and other risk factors. PLoS ONE 10(7), e0131611(7).