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MICROSATELLITE FORMATION FLYING USING PULSED PLASMA
THRUSTER AND SOLAR SAILING AT EARTH MOON L4

Junquan Li; Steve Greenland] Craig Clark} and Mark A. Post®

This paper presents a deep space formation flying mission using microsatellites
with pulsed plasma thrusters and solar sails as propulsion systems. The circular
restricted three body problem with consideration of solar gravitation was used
as the equation of motion. Formation flying near Earth Moon triangular libration
points uses short period trajectories as relative references. Simulation results using
a nonaffine control strategy are provided to demonstrate the effectiveness of the
proposed propulsion systems for formation flying near triangular libration points.

INTRODUCTION

The libration points are the equilibrium solutions of the classical circular restricted three body
problem (see Reference 1). Libration point missions can provide unobstructed views of deep space
and celestial bodies (see Reference 2). Most libration point missions have been deployed at the
Sun Earth L1 (ISEE-3, WIND, SOHO, ACE, TRIANA) or L2 points (MAP, WSO, PLANK, GAIA,
JSWT, Constellation X) (see Reference 3). The reasons for choosing these points are based on the
mission requirements, or avoidance of the higher costs and engineering challenges associated with
travelling longer distances to reach the other libration points in the Sun Earth. The collinear libration
point of the Earth Moon system is suitable for space based observation missions due to the fact that
the Sun, Earth and Moon are always behind the spacecraft with half of the celestial sphere available
at all times. Also, the thermal stability of this region is favorable for non-cryogenic missions such
as visible light telescopes. The collinear points is far enough away from Earth to avoid the effects of
the atmosphere and space debris and close enough to allow a constant communications geometry.
The triangular libration points (L4 and L5) are the locations of small bodies in the solar system (see
Reference 4). L4 and L5 of the Earth Moon system were considered for the use of space colonies
(see Reference 5). Communication between the triangular points to the Earth or between two trian-
gular points can form a space VLBI (very long baseline interferometry) array and can enhance the
accuracy of astronomical observations. Missions to the triangular libration points in the Sun Earth
Moon system and even other libration points in the Solar system will become feasible in the near
future making use of the stable properties near the triangular libration points. With recent renewed
efforts to return to the Moon, it is likely that these points will be used for lunar mission support pur-
poses. In the circular restricted three body problem, motion about these points is bounded, making
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Figure 1. Circular Restricted Three body Problem at System Barycenter

them ideal locations for a variety of applications, including imaging interferometery and communi-
cation relay satellites. Satellite formation flying involves two or more spacecraft flying in particular
configurations and working cooperatively towards achieving mission goals (see Reference 6). The
successful miniaturization of satellite subsystems now makes microsatellites suitable candidates for
many future missions (see Reference 7). Linear and nonlinear methods have been used for deep
space spacecraft formation keeping and formation maneuvering (see References 8 and 9). In this
paper, we present the mission concept of a 50 kg class microsatellite using a pulsed plasma thruster
and solar sail with closed loop nonlinear control algorithms for microsatellite formation flying con-
trol near the Earth Moon L4 point. Simulation results for formation flying of this microsatellite with
nonlinear control algorithms to maintain natural formation trajectories will be presented.

EARTH MOON TRIANGULAR LIBRATION POINT ORBITS
Circular Restricted Three Body Problem

In celestial mechanics, the motion of three point masses with the influence of their gravitational
attraction, assuming the primary and secondary body are on circular orbits, is known as the circular
restricted three body problem (see Figure 1). The rotating coordinate frame has the origin in the
barycenter of Earth and Moon (see Reference 10). The distance between Earth and Moon is R. The
distances between Earth, Moon and the barycenter are R; and Ry. The distances between Earth,
Moon and the spacecraft are r; and ro. The mass of the Earth, Moon and Spacecraft are M7, Mo,
and m respectively. By defining a reference frame that rotates with the primaries, it is possible to
determine five equilibrium solutions, known as libration or Lagrange points. A spacecraft placed at
one of these locations can theoretically remain stationary with respect to the two primary bodies,
FEarth and M oon. The libration points L1, Lo and L3 are collinear with the Earth Moon line while
the L4 and Ly points form an equilateral triangle with Earth Moon line. p = m For Earth
Moon system, p = 0.012151.



The equations of motion of the spacecraft in the barycenter frame can now be expressed as
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At the equilibrium points, for Z components, the velocity and acceleration relative the two larger
bodies are zero. For triangular equilibrium points, the Y component does not equal zero. Solving
the above equation, the equilibrium points can be written as X1 = —0.8369, X2 = —1.1560,
X3 =1.005 X1, =p—05and Yz, , = +v/3/2 (see Reference 11).

The linearized motion of Equations (1) to (3) and the stability analysis of the L4 points are well
studied by Wiesel and Wie (see References 12 and 13). The natural motion about L4 can be
conceptualized as the long and short period motions. In the Earth Moon system, the long motions
and short motions are 92 and 28 days (see Reference 10).

The general solution for the triangular point orbits can be written as
x = Ajcos(sit) + Ersin(sit) + Aacos(sat) + Easin(sat)
Yy = /hcos(slt) + Elsin(slt) + AQCOS(SQt) + Ezsin(szt) (6)

z = zpcos(s;t) + @sin(sit)
Si

where A; o, ALQ, Eq 2, and ELQ are related to the mass parameter p, the initial states and con-
stants. The parameters s; = 0.297931, and sy = 0.954587.

xo = A1 + A
Yo = A1 + 1212
To = 151 + Easg @)

o = E1s1 + Easy
where
Ay =0 [25;F; — 2.598(p — 0.5) A;]
By = —0;[25;A; + 2.598(p — 0.5) Ej] 8)
Vi =1/8>+9/4

The solution to the equations of motion is based on the linearized equations of motion of the
CR3BP and therefore is only valid in the vicinity of the associated libration points. In a realistic
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Figure 2. Trajectory at L4 Short Period Motion 200 Orbits without Solar Gravitation
and Without Active Control

system, the eccentricity and third body perturbations should be taken into account. Also, the pertur-
bations in the trajectory will make the libration point orbits unstable. For station keeping problems,
Gomez and Howell considered the multiple shooting station keeping strategy and the reconstruction
of a nominal orbit (see References 14 and 15). Lei and Xu used a three order solution to replace
Equation 6 and also transformed the station keeping to a nonlinear optimization programming prob-
lem (see Reference 16). Zhang and Hou studied the transfer orbits to a short period orbit around the
triangular libration points in the Earth Moon System (see Reference 4).

Microsatellites can be launched into an Earth parking orbit with an altitude of about 200 km
or 400 km. The drift duration in the parking orbit can be freely chosen, as in the Gaia mission,
which allows to select a launch time to minimizing the effort for the insertion manoeuvrings (see
Reference 17). Moon gravity assist can be used (see Reference 18). The first part of the maneuver
is to transfer the microsatellite from the parking orbit to perilune. The second part is to transfer the
microsatellite from the perilune to the nominal orbit. A microsatellite without control is assumed
to be placed into L4 short periodic orbit in 200 orbits shown in Figure 2 in this paper. If solar
gravitation is be considered, this satellite will follow the trajectory in 200 orbits shown in Figure 3.

Circular Three Body Problem with Solar Gravitation Modeling

The bicircular four body problem is a simplified version of the circular restricted three body
problem with the consideration of solar gravitation and eccentricity (see Reference 19). In this
paper, solar gravitation is considered instead of eccentricity. Tapley and Lewallen were the first
group to study the Sun’s influence on spacecraft motion near the Earth Moon Libration points (see
Reference 20). The reference frames used to develop the nonlinear equations of motion are shown
in Figure 4 (see Reference 20). The mass of Earth, Moon, Spacecraft and Sun are denoted as m; ,
ma, mg and my. The distances between Earth, Moon and Sun to the libration point are r1, r2 and
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Figure 3. Trajectory at L4 Short Period Motion 200 Orbits with Solar Gravitation
and Without Active Control

rg. The gravitation constants of Earth, Moon and Sun are denoted as p; , po and pusz. The inertial
reference frame I — XY Z is located at the the mass centre, or barycenter, of the two primaries. The
X axis points towards to the vernal equinox of date. Y lies in the Earth Moon orbit plane. The Z
axis points to the direction of the angular velocity vector for the Earth Moon configuration. Also,
the L4 libration point frame L, — XY Z is similar to the I — XY Z frame, except that the origin is
shifted to the L4 point. The X axis lies along the Earth Moon line, and Y lies in the Earth Moon
Orbit plane. Z coincides with the Z axis. € is the angular velocity of the Earth Moon mass center
around the Sun. R, Ry and R3 are the distances from the Earth, Moon, and Sun to the Earth Moon
mass center. ¢ is the inclination of the Earth Moon orbit plane to the ecliptic. ¥ and 6 are the angular
positions of the Sun and the Earth Moon Line with respect to the vernal equinox. ¥ is measured in
the ecliptic (U = Qt + ¥p). Q = 1.99092¢ — 7 rad/s. 6 is measured in the Earth Moon orbit plane
(0 = wt + 0p). w = 2.665075637¢ — 6 rad/s. X'p and Y}J are coordinates of the libration points.

The equations of motion with the Earth, Moon and Sun gravitation forces expressed in the I —
XY Z frame, are
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Figure 4. Three Dimensional Illustration of the Coordinate Systems and Microsatel-
lites Formation Flying Geometry

where

x5 = R3(cosVcond + cosisin¥sind) — X,,
y3 = —R3(cosWUsind — cosisinUsinf) — Y, (10)

z3 = R3sinWUsint

SPACECRAFT WITH SOLAR SAIL PROPULSION SYSTEM

The spacecraft propulsion system is responsible for providing thrust. Current L1 and L2 missions
usually use a hydrazine fuel based propulsion system. The development of a solar radiation pressure
propulsion system has been recently made possible due to advancements in material technology.
This innovative technique has the potential to become a viable alternative to chemical propulsion
for space mission applications.

Solar Radiation Pressure Model

Solar Radiation Pressure propulsion is based on Newton’s third law (see Reference 21). When
light reflects off of a surface, the momentum carried by photons will be transferred to the surface.
A perfectly reflective surface can almost double the momentum transfer. Solar Radiation Pressure
(SRP) imparts a small amount of force on the sail surface; about 1 x 1076 N / m? at Earth radii. Solar
sailing is the concept of using solar radiation pressure to generate useful thrust. In order to harness
SRP, solar sails are typically conceived as large area thin films supported by an ultra-lightweight
structure. The net solar radiation pressure force is a function of the area of the solar sail and its



orientation. A non-perfectly reflecting solar sail model can be written as

Fspp = W(

fs : ﬁ){prsfs + [prd(fs : 'fl) + pa]ﬁ} (11)

The optical parameters for the non-perfectly reflecting behaviour of the solar sail are the reflec-
tion coefficient ps, the specular reflection factor s, the front side €; and back side &, emission
coefficients, and the front side By and back side B;, non-Lambertian coefficients. rg is the in-

coming sun vector. n is the normal vector to the sunline. p,; = l(1 — Sps)- Prd = SPs-

2
Pa = % [Bf(l —s)ps+(1— ps)sfjjﬁ%;’&’ . The solar sail lightness number is

_2p A

Hs m

B (12)

where 15 is the solar gravitational parameter, A is the sail reference area and m is the satellite mass.

The solar radiation pressure model can be written as

JF:S'RP = (QO + Q) (f's : ﬁ){prsfs + [prd(fs : fl) + pa]ﬁ} (13)
where the solar sail characteristic acceleration is given by

_ 2poA
T om

Qo (14)
The variable ¢ is additional control input that represents the variation of the solar sail characteristic
acceleration. This is accomplished by varying the solar sail surface area.

The reflectivity, area mass ratio, sail surface and sail orientation can be used as the solar sail
control inputs. Typical solar sail designs will be composed of aluminized mylar or Kapton film
supported by an underlying lightweight truss. Reference 22 uses an electrochromic material on
the solar sail and PID control for L1 artificial Lagrange points mission. This electrochromic ma-
terial was tested on IKAROS mission (see Reference 23). Mingotti and Mclnnes also used the
electrochromic material for a Femto Spacecraft (see Reference 24). In order to utilize solar radia-
tion pressure force to control a spacecraft, the orientation of the solar sail needs to be continuously
changed to generate the required control accelerations (see Reference 25). The constantly changing
spacecraft orientation during formation keeping may interfere with mission pointing requirements.
The development of the proposed SRP formation control strategy does not require drastic changes
to existing libration point spacecraft (Gaia). The solar sail for the microsatellite formation flying at
L4 in this paper will use the models in Figures 5 or 7. The proposed sail can use the model in Figure
5. The variable sail reflectivity and sail orientation can be combined for fine control. There are high
reflectivity materials which will exploit the solar radiation pressure to produce a propulsive thrust
and electrochromic materials which will be used to modulate the thrust without varying the sail at-
titude (shown in Figure 6). There are also flexible thin film solar cells on the sail which will be used
to provide the electric power for the payload and the electrochromic material. Another possibility
is to use the model shown in Figure 7 (similar to the model used in Reference 26 which is currently
under development at Clyde Space). The advantage of this solar sail is to use the controllable sail
surface which is less difficult to control than electrochromic materials. The variable sail surface and
sail orientation can be combined for fine control.
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Figure 6. Solar Sail Model using High Reflectivity Material, Electrochromic Material
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Solar Radiation Pressure in the Sun/Earth Moon System

In the classical CR3BP there are only five libration points. Using solar radiation pressure, the
libration point locations become a function of the sail reflectivity number and orientation. The
constant acceleration from a solar sail can be used to generate artificial libration points in the Earth
Moon three body problem. This is achieved by directing the thrust due to solar radiation pressure in
the anti-sun direction thereby adding to the centripetal force in the rotating Earth Moon frame (see
References 25 and 27). Figure 8 show the proposed solar sailing microsatellite at L4 in the Earth
Moon System. In Figure 8, + is the angle between ds and 7. oy and i are the pitch and yaw angles
of the solar sail. If the sail surface is assumed to be ideal (see References 28 and 29), the solar

radiation pressure model Equation (13) can be written as
- 2 2.
fsrp = (% +q)(ds-n) n

The acceleration of x, y and z can be written as

2pA
TSRP = (W + q)r(cosay)?(cosan)?
2pA .
YSRpP = (% + q)r(cosay ) (cosan)?sinay
2pA
ZSRP = (% + q)k(cosaq)? (cosan)3sinay

5)

(16)

where  includes the inverse square acceleration dependency as the distance from the sun varies

(see Reference 29).
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FORMATION FLYING

Many researchers have studied the Libration point formation flying due to the many benefits
these missions offer. The success of these missions is tied to the ability of the control system to
regulate the trajectory of the formation spacecraft. Follower spacecraft are controlled using solar
radiation pressure on a sail and a pulsed plasma thruster. Both the leader and follower spacecraft
were assumed identical in solar sail area and mass. The leader spacecraft followed a predetermined
unperturbed reference trajectory. Large baseline formations with separation distances of 1 to 25 km
were utilized. The equations of motion developed in the previous sections describe the motion of
one spacecraft at the Earth Moon L, point. The follower reference trajectory is specified according
to mission objectives.

Equations of Motion

This section presents the equations of motion of the dynamics of a follower spacecraft relative
to a leader spacecraft. The formation dynamics in the CR3BP are formulated using two sets of
Equations (9)-(10) for the leader and follower spacecraft (shown in Figure 9). The dynamics of
the follower spacecraft relative to the leader satellite is expressed as /3' = /3' — L. Redefining the
coordinates [ x y =z ]T as relative coordinates (ie. * = xp — 1, Y = Yr — YL, 2 = ZF — 2,)
gives the CR3BP Spacecraft Formation Flying (SFF) equations of motion

=2 =mm gt (g )| e e (7 )
E=2y—v=—p | g t+lm -z | 5 — 5 )| e |m tlrz—z]| 53— 5
iy dip  di, d3p d3p  d3y

7

e ()|
“H3 |3 T3 LLI\ 3 T 3 z
dir dip  d3

10
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Y 1 1
_N3|:+[y3_yL](_)}+f
d3r dip i /]
ol a) el (g g)l o
="M AL\ =3~ — 3 )| T M2 2L\ =3~ — 3~
dir dip di dip dp  d3

- (- )]+
— U3 | 53— 23 — Z[L z
d3p )

fz» fy, and f. are the control inputs provided by x, y, z thrusters or solar sails. In this paper, Pulsed
Plasma Thrusters (PPT) will be installed on the x, y and z axes for SFF (see Reference 30). In
order to save fuel, y and z thrusters can be turned off. The x axis PPT thruster and the control of sail
pitch and yaw angles will be able to provide the thrust needed for SFF. If the x axis thruster fails,
the control of sail area, pitch and yaw angles will be able to provide thrust for SFF. The x1, x2, 11
and y, are given as

Tl = _(Xp - Ry)
To = —(Xp + RQ) (20)

The relative distances between the leader and follower spacecraft with respect to Earth, Moon and
Sun can be specified

dip = \/ xp —x1)° + (yp — 1) + 2.2

d1F=\/xL+fv—l“1) +(yr+y— )’ + (21 +2)°

d2L:\/

(
(
(
szZ\/($L+x—x2) +(yr+y— )’ + (2 +2)°
(
(

xp — x9)? + (yr — y2)* + (21)° Q1)

d3p = \/ vp—a3)? + (yr — y3)” + (20 — 23)°

d3F=\/$L+x—fL’3) + (YL +y—ys)’ + (21 + 2 — 23)°

Reference Trajectory

The configuration of the spacecraft formation is directly related to the scientific objectives of the
mission. It may be possible to use natural motions as candidate trajectories for some applications in
the future, for this future mission study, the trajectories are based on the solution of the linearized
equations of motion for SFF in the CR3BP. The leader spacecraft reference motion’s period is
selected to be equal to that of the short period at L4. The relative reference trajectory can be written
based on Equation 6 (see Figure 10).

11
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24 = (A1p — Aqp)cos(sit) + (Evp — Erp)sin(sit) + (Asp — Asp)cos(sat) (22)
y? = (Alp — Ajp)cos(s1t) + (Elp — ElL)sz'n(slt) + (flgp — AQL)COS(SQt) (23)

(20 — 201)

2% = (zor — 2zo1,)cos(sit) + sin(s;t) 24)

84

DESIGN OF NONAFFINE CONTROL LAWS

The theoretical basis for developing the nonlinear control algorithms for the nonlinear non-
affine mathematical model using solar radiaton pressure is shown in this section(see References 31
and 32). The methods to decompose the original nonaffine system into an affine one in the control
part and a nonaffine part representing generalized modeling errors are the mean value theorem, the
Taylor series expansion and the contraction mapping method (see References 33, 34 and 35).

It is difficult to invert nonaffine nonlinearities to obtain the inverting control input. Fuzzy logic
Systems or neural networks are used to approximate the desired feedback control input (see Refer-
ence 36). First, a control method which can account for the nonaffine SRP control inputs is devel-
oped. The concept behind this method is to differentiate the nonlinear state equations once so that
the resultant augmented equations are linear in U and use this as the new control input. Based on the
Equations (16)-(19), the lower order states are defined as z; € R*! = [z y 2 2 2 |7, the higher
order states Ty € R3*! = [ & §j |7, the full state vector X € RY*! = [ Z; 25 |, and the reference
trajectory X% ¢ R = [#¢ 2d17. a1 e R> = [ gz 2 ]|T. s e R>* =[5 ¥ 7 |T.

12



Using Equations (16)-(19), the nonaffine nonlinear system can be written as

Ty = Pi(Z2) + G(U) (25)

For the purpose of control law development, rewrite nonaffine equations by the mean value theo-
rem and Equation (25) as affine system, so

fQ = Pl(.fQ) + J(U)U (26)

1 A Ap T B[P(#2) + G(U) + Fa] ] [ O63 ] '
= . . S+ : + U 27
[ T2 ] [ Ao Az ] [ 2 ] [ P(Z2) + Fao J(U) @0
where P(3) € R3*! is the nonlinear portion of the dynamics, G(U) € R3*! is the SRP acceler-

ation, J(U) € R¥*! = 9G(U)/0U, and B = [ 03x3 I3x3 |7 . Also, the higher and lower order
disturbances are Fy; € R6*! and Fjp € R3*! respectively.

The nonlinear term P(z2) represents the gravitational acceleration due to the Earth, Moon and
Sun.

—p1Pr1 — poPra — p3Pi3
P(22) = | —p1Po1 — poPog — 3 Pog
—p1 P31 — paPso — pu3Ps3

T

((xp +x — 561)2 +(yr+y— y1)2 + (2L + 2)2)3/2
1

((xp +x — 901)2 +(yr+y— y1)2 + (20 + Z)2)3/2
1

((xg — 21)* + (yp — 1) + 21.2)3/2

+ [x1 — xg] (28)

— |21 — ]

X

(zp + o — 362)2 +(yr+y— y2)2 + (21 + Z>2)3/2
1

((xr + 2 —22)* + (yp +y — y2)* + (21 + 2)%)3/2
1

(xr, — 22)* + (yr — y2)* + (21)7)3/2

Py =

+ [$2 — ZL] 29)

— [z —z1]

T

((xp +x — $3)2 +(yr+y— 1/3)2 + (2L +2— 23)2)3/2
1

((xp + = — .703)2 +(yr+y— y3)2 + (20 + 2 — 23)2)3/2
1

((wr — 3)” + (yr — ys)* + (21 — 23)")>/2

+ [x3 — x] 30)

13



Yy
((xp +x — 931)2 +(yr+y— 91)2 + (2 + 2)2)3/2
1
(wr +a—21) + (yr +y —1)* + (21 + 2)?)3/2
1
((xr — 21)* + (yr — 21)% + 21.2)3/

Py =

+ [y1 — vz

— [y1 =yl

Yy
((xp +x — $2)2 +(yr+y— 3/2)2 + (20 + 2)2)3/2
1

(zp + 2z — 562)2 +(yr +y — y2)2 + (21 + 2)2)3/2
1

(wr, — 22)* + (yr — y2)* + (21)7)3/2

Py =

+ [y2 — yi]

— [y2 — yi]

Yy
((xp +x — x3)2 +(yr+y— y3)2 + (20 + 2 — 23)2)3/2
1

Py3 =

+ [y3 — yr]
(xr + 7 —23)° + (yr +y — y3)° + (21 + 2 — 23)%)3/2

1
((xr —x3)* + (yr — y3)* + (21 — 23)°)3/2

— [y3 — vzl

z

(zp + 2z — 371)2 +(yr+y— yl)2 + (21 + Z)2)3/2
1

((xp +x — 961)2 +(yr +y— ?/1)2 + (2L + 2)2)3/2
1

((xr — x1)° + (yp — w1)° + 21.2)3/2

Py =

+ zr,

-z

z

(zp + 2 —22)* 4+ (yr +y — y2)* + (21 + 2)%)3/2
1

((xp +x — 162)2 +(yr+y— @/2)2 + (2L + 2)2)3/2
1

(1 — 22)* + (yr — y2)° + (21)°)3/2

P3y =

+ zr,

— Zr

z

((xp +x — 333)2 +(yr+y— 3/3)2 + (2L + 2 — 23)2)3/2
1

P33 =

+ [23 — 2]
((xp +x — x3)2 +(yr+y— y3)2 + (20 + 2 — 23)2)3/2

1
(zr, — 23)° + (yr — y3)” + (21, — 23)%)3/2

— 23 — 21]

14
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(% + q)k(cosaq)3(cosaz)?

GU) = (% + q)r(cosay )3 (cosaz)?sinan (37)
(% + q)r(cosay)?(cosaz)?sinay
where All = 03><3 and Alg = ngg.
) 1 00
Aan=1(0 1 0 (38)
0 00
0 20
App=1{ -2 0 0 (39)
0 00
B [ O3x3 ] (40)
I3x3

Note that the control input U € R3*! = [ ¢ ¢ a |7 does not appear linearly in Equations (17-19).
To develop a control law for this system, the order of the system is increased and U is used as the
actual control input. The desired reference trajectory X € R%*! can be expressed as

=L 5] an

The error dynamics of the system can be formulated using Equations (27) and (41) as

S [ An A S 0
[s —{Am AHs]+ ]* 2

A1 + Agyiiy®
[ B[P(x2) + G(U)] } N [ O6x3 } 0

where Atgl = Ay — Agl and AZQ = Agy — 121%2. The tracking error e € R6*! = X — Xd is

composed of the lower order tracking error (S = ¢ + Ke) and the higher order tracking error S.

P(3) J(U)

i ki 0 0 ki O O
K=|0 k 0 0 k 0 (43)
0 0 k3 0 0 kg

Nonaffine system using Solar Sail

The control law using solar sails were developed where all three control inputs U = [ ¢ ¢ o |7
are available. The error dynamics for this case are expressed as Equation (42).
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To complete the control design, a description of possible disturbances is included. The distur-
bance is assumed to be unknown and bounded. The sliding manifold can be written

ceR> =G5+ KS (44)
where ¢ = S + KS.
The Jacobian for this case is
A A
cglczQ —3(2% + q)/fczlch So —3(2% + q)/ﬁcilchSQI
J(U) = ngcgzgs()Q (% + q)K/(_chglcaZ‘Siz + Cilch) _3(% + q)’%calcizsonal
2pA 2pA
6(2)4163428061 _2(% + q)ﬁcilcQQ‘SalSO&Q (% + Q),{(_2calcg¢2 5(211 + CglciQ)
(45)
The control law is
U=1|¢ | =—Jw)! [na RS + Aoy + Aooiio + P(i2) — i (46)
Q

where 7 is a positive definite gain matrix

ne. 0 0
n=|0 mn 0 47)
0 0 7

If Fj; and Fyo are not zero, the use of the above control law will not be able to provide good
performance. The function P(Z3) + Fyo can be replaced with the function P(Zs). The fuzzy logic
system was chosen due to its universal approximation property. For an input vector X, which is
constructed of the measured states, the reference model outputs and the pseudo-control signal, the
output of the fuzzy logic system, is given by

P(X)=WT¢ (48)

where W is the output weighting matrix. The optimal output weighting can be given by

W* = arg min sup |P — P‘ (49)
WempxeD,
The weighting function can be written as
W = B¢o (50)

¢ is a vector of sigmoid activation functions. The N Gaussian membership functions are yyy;(0;)
(i=1-—N).
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¢ Hﬁ\; pwi(og)

- (51)
E;il HiV:1 MWi(Uz‘)

P—P(W*) =wp (52)
where wp is the approximation error and bounded in the compact set U,. HwPH < wp. Ap-
proximation errors can be reduced by increasing the number of fuzzy rules.
The control law can be rewritten as
.| e : . d
U=|¢ | = —J)" [na RS+ Ay + Agpiin + WTC — & } (53)
&
Stability Analysis
In this section, the stability of the control law using solar sails will be analyzed.
Theorem 1: For the system model in Equation (27), if the weighted tracking error is specified as

Equations (44) and (43), and the SRP control law is specified as Equations (50) and (53), then the
system tracking error e(t) will converge to zero.

Proof: TV to represent the fuzzy parameter errors is defined, where W = W* —W. W =W*—W.
In order to establish the stability of the control laws, the candidate Lyapunov function is considered

L L w1
== — 54
V(S) 57 0+25WW 54)
and it’s corresponding derivative is
. 1 e
V(S)=0ls+ BWTW (55)

N 1 e
=o" RS+ 5]+ G

. y i o 1 s
=l [KS + A9121 + Agodz + P(X) + J(U)U—i—fgd + EWTW

We can use the adaptive control law Equation (50) and the control law Equation (53):
V(o) = —oclno +@p (56)
which is negative definite. This indicates that V' is a non-increasing Lyapunov function in o-space.

This implies that as ¢ — 0o, V(t) = V. Thus 0 € £4. Defining \,;» (1) can be established
that as the minimum eigenvalue of the positive definite matrix 7.

V < =Xmin(m)||o|® + @p (57)

Similar to Theorem 1, o € £ is obtained. & € £, and o € £5() £ is deduced. Using Barbalat’s
lemma, it can be shown that ¢ — 0 as ¢ — co. Therefore, control law as specified by Equation (53)
ensures asymptotic convergence of the position and velocity tracking errors.
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Figure 11. Simulation Results with the Proposed Control Algorithm

RESULTS

To study the effectiveness of the developed SRP formation keeping control laws, the control
inputs of Equation (53), and the reference trajectories are numerically simulated using the full non-
linear model. The system parameters used in this study are listed in Table 1.

Table 1. Reference System Parameters

Parameter Value
A 150 [m?]
m 5.98 x 10%* [kg]
mo 7.35 X 1022[kg]
ms 1.99 x 103°[kg]
my 50 [kg]
7 0.987891
L2 0.012151
U3 328900.48

sy ,€5,€0, By, By 0.88,0.94,0.05,0.55,0.79, 0.55

The control angles are subject to the conditions |a1| < 7/2 and || < /2. The performance of
the proposed SRP L, formation keeping control strategy is examined (shown in Figure 11).

SUMMARY

Microsatellite formation flying mission located in the vicinity of the L4 libration point was stud-
ied. The system was comprised of a leader and follower spacecraft using Pulsed Plasma Thrusters
and Solar Sails. CR3BP equations were used along with a solar gravitation model. A proposed
nonaffine controller was developed based on the nonlinear equations of motion to account for the
nonaffine structure of the solar radiation pressure model control inputs. A control law that drives
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the system states to the sliding manifold thereby forcing the plant to follow the desired reference
trajectory was then formulated based on Lyapunov theory. Numerical results show that the proposed
control method was able to maintain the desired formation.
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