Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Information scent, searching and stopping : modelling SERP level stopping behaviour

Maxwell, David and Azzopardi, Leif (2018) Information scent, searching and stopping : modelling SERP level stopping behaviour. In: Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Proceedings. Springer-Verlag, Berlin, pp. 210-222. ISBN 9783319769400

Text (Maxwell-Azzopardi-ECIR-2018-Information-scent-searching-and-stopping-modelling-SERP-level-stopping-behaviour)
Accepted Author Manuscript

Download (569kB) | Preview


Current models and measures of the \emph{Interactive Information Retrieval (IIR)} process typically assume that a searcher will always examine the first snippet in a given \emph{Search Engine Results Page (SERP)}, and then with some probability or cutoff, he or she will stop examining snippets and/or documents in the ranked list (snippet level stopping). Prior work has however shown that searchers will form an initial impression of the SERP, and will often abandon a page without clicking on or inspecting in detail any snippets or documents. That is, the \emph{information scent} affects their decision to continue. In this work, we examine whether considering the information scent of a page leads to better predictions of stopping behaviour. In a simulated analysis, grounded with data from a prior user study, we show that introducing a SERP level stopping strategy can improve the performance attained by simulated users, resulting in an increase in gain across most snippet level stopping strategies. When compared to actual search and stopping behaviour, incorporating SERP level stopping offers a closer approximation than without. These findings show that models and measures that na\"{i}vely assume snippets and documents in a ranked list are actually examined in detail are less accurate, and that modelling SERP level stopping is required to create more realistic models of the search process.