Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Information scent, searching and stopping : modelling SERP level stopping behaviour

Maxwell, David and Azzopardi, Leif (2018) Information scent, searching and stopping : modelling SERP level stopping behaviour. In: Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Proceedings. Springer-Verlag, Berlin, pp. 210-222. ISBN 9783319769400

[img]
Preview
Text (Maxwell-Azzopardi-ECIR-2018-Information-scent-searching-and-stopping-modelling-SERP-level-stopping-behaviour)
Maxwell_Azzopardi_ECIR_2018_Information_scent_searching_and_stopping_modelling_SERP_level_stopping_behaviour.pdf
Accepted Author Manuscript

Download (569kB) | Preview

Abstract

Current models and measures of the \emph{Interactive Information Retrieval (IIR)} process typically assume that a searcher will always examine the first snippet in a given \emph{Search Engine Results Page (SERP)}, and then with some probability or cutoff, he or she will stop examining snippets and/or documents in the ranked list (snippet level stopping). Prior work has however shown that searchers will form an initial impression of the SERP, and will often abandon a page without clicking on or inspecting in detail any snippets or documents. That is, the \emph{information scent} affects their decision to continue. In this work, we examine whether considering the information scent of a page leads to better predictions of stopping behaviour. In a simulated analysis, grounded with data from a prior user study, we show that introducing a SERP level stopping strategy can improve the performance attained by simulated users, resulting in an increase in gain across most snippet level stopping strategies. When compared to actual search and stopping behaviour, incorporating SERP level stopping offers a closer approximation than without. These findings show that models and measures that na\"{i}vely assume snippets and documents in a ranked list are actually examined in detail are less accurate, and that modelling SERP level stopping is required to create more realistic models of the search process.