Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Information scent, searching and stopping : modelling SERP level stopping behaviour

Maxwell, David and Azzopardi, Leif (2018) Information scent, searching and stopping : modelling SERP level stopping behaviour. In: Advances in Information Retrieval - 40th European Conference on IR Research, ECIR 2018, Proceedings. Springer-Verlag, Berlin, pp. 210-222. ISBN 9783319769400

[img]
Preview
Text (Maxwell-Azzopardi-ECIR-2018-Information-scent-searching-and-stopping-modelling-SERP-level-stopping-behaviour)
Maxwell_Azzopardi_ECIR_2018_Information_scent_searching_and_stopping_modelling_SERP_level_stopping_behaviour.pdf
Accepted Author Manuscript

Download (569kB) | Preview

Abstract

Current models and measures of the \emph{Interactive Information Retrieval (IIR)} process typically assume that a searcher will always examine the first snippet in a given \emph{Search Engine Results Page (SERP)}, and then with some probability or cutoff, he or she will stop examining snippets and/or documents in the ranked list (snippet level stopping). Prior work has however shown that searchers will form an initial impression of the SERP, and will often abandon a page without clicking on or inspecting in detail any snippets or documents. That is, the \emph{information scent} affects their decision to continue. In this work, we examine whether considering the information scent of a page leads to better predictions of stopping behaviour. In a simulated analysis, grounded with data from a prior user study, we show that introducing a SERP level stopping strategy can improve the performance attained by simulated users, resulting in an increase in gain across most snippet level stopping strategies. When compared to actual search and stopping behaviour, incorporating SERP level stopping offers a closer approximation than without. These findings show that models and measures that na\"{i}vely assume snippets and documents in a ranked list are actually examined in detail are less accurate, and that modelling SERP level stopping is required to create more realistic models of the search process.