Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Effect of preferential dissolution on erosion-corrosion for chromium steel in alkali slurry

Stack, M.M. and Chi, K. (2002) Effect of preferential dissolution on erosion-corrosion for chromium steel in alkali slurry. Transactions of the Non-Ferrous Metal Society of China, 12 (5). pp. 931-935. ISSN 1003-6326

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An investigation was carried out concerning the effect of preferential dissolution on the erosion-corrosion for a chromium steel in 1mol/L NaOH. Preliminary tests using a potentiodynamic technique were performed in order to establish the presence of preferential dissolution in the alkali solution with and without the alumina particles at different rotation speeds. For purposes of quantifying the observed phenomena a potentiostatic mass loss method was also used. The results show that the active peaks occur at potential between +0.4 and +0.5V on the polarization curves, which indicates that there is a preferential dissolution for chromium steel under erosion-corrosion conditions and the ferrite phase acts as a sacrificial anode in favor of (Fe,Cr)7C3 phase. Addition of particles can promote the preferential dissolution at different rotation speeds. The combined effects of erosion-corrosion results in total mass loss rates to be greater than the sum effects of each process taken alone, thus showing a strong synergism between erosion and corrosion due to preferential dissolution.