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Abstract

This paper proposes the design of a bipedal robotic controller where the function between the sensory input and motor output
is treated as a black box derived from human data. In order to achieve this, we investigated the causal relationship between
ground contact information from the feet and leg muscle activity n human walking and calculated filter functions which
transform sensory signals to motor actions. A minimal, nonlinear, and robust control system was created and subsequently
analysed by applying it to our bipedal robot RunBot III without any central pattern generators or precise trajectory control. The
results demonstrate that our controller can generate stable robotic walking. This indicates that complex locomotion patterns
can result from a simple model based on reflexes and supports the premise that human-derived control strategies have potential
applications in robotics or assistive devices.

Keywords Reflexive rhythmic generator - Robotics - Bipedal locomotion - Limit cycle walking - Biological inspiration -

Human walking

1 Introduction

Human walking is an inherently complicated task requir-
ing the coordination of several degrees of freedom coupled
with highly nonlinear dynamics (Inman et al. 1981). Loco-
motion arises through the interaction of neural activity and
the biomechanical body with the environment. The human
must be understood as an integrated system, particularly in
motor control, where the behavioural consequences of neu-
ral activity depend on the muscle properties, limb geometry
and mechanics. In this paper, we argue that the existence
of these biomechanical constraints can be exploited to sim-
plify the problem of locomotion control. This hypothesis
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was tested through the development of a multi-joint bipedal
robotic walker (named RunBot III) with a simple mechanical
design and a minimal reflexive controller.

The central nervous system (CNS) is responsible for gen-
erating, coordinating and adjusting the motor output to suit
the walking environment (Nielsen 2003). This system can
be divided into two levels, where the top level is the brain
and the low level is in the spinal cord. The brain control
can be seen as being task-based, having minimal degrees
of freedom, while the flexibility of the muscle activity is
driven by local circuits in the spinal cord (Bernstein 1967).
At the spinal level, the direct motor responses, in the form of
local or monosynaptic reflexes, are elicited by afferent sig-
nals from the skin, tendons, and muscles. The spinal circuits
can produce reproducible and stable gaits and are known to
play a dominant role in invertebrates and vertebrates (Brown
1911; Lundberg 1979; Grillner 1985; Fedirchuk et al. 1998;
Rossignol 2000). These biological neural networks in the
spinal level are often referred to as central pattern generators
(CPGs). However, in humans, CPGs appear to be less crucial
for walking and have not been conclusively identified in adult
studies (Eidelberg et al. 1981; Hultborn and Nielsen 2007).
This finding may indicate that human walking has a higher
dependence on intact peripheral feedback and supraspinal
control compared to other species. Reflexes have been found
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to not only contribute to the timing of the stepping but also to
the adaptation of the gait pattern and reaction to perturbation.
Task- and phase-dependent cutaneous reflexes contribute sig-
nificantly to the response mechanism in reaction to sudden
disturbances (Eng et al. 1994; Zehr et al. 1997) and stabili-
sation (Rossignol et al. 2005). Load-dependent reflexes play
an essential role in regulating the timing of the gait cycle
(Dietz and Duysens 2000; Sinkjer et al. 2000) and muscle
activations during locomotion, especially in the stance phase
(Akazawa et al. 1982). However, overall the debate over the
extent of neuronal control in human walking is still ongoing
and is unlikely to be resolved in the near future.

Human walking has been extensively studied in the field of
biomechanics, often through the measurement of kinematics
and kinetics, electromygraphic (EMG) activity (Sutherland
2001; Rose et al. 2006), ground reaction forces (Allard et al.
1998; Bamberg et al. 2008; Whittle 2014), and energy expen-
diture. Over the decades, the assessment of human gait has
yielded a tremendous amount of information. What has been
concluded is that the role of the biomechanics of the mus-
culoskeletal system is an inherent part of the human control
system. Bernstein (1967) stated that “The coordination of
movement is the process of mastering redundant degrees of
freedom of the moving organ, in other words, its conver-
sion to a controllable system.” The biomechanical patterns
observed over the stride period remain relatively consis-
tent, regardless of the walking speed (Winter 1983a). This
is supportive evidence for CNS locomotion control but also
suggests that in human locomotion, the role of peripheral
feedback is essential in maintaining the phasic relationship
of the motor patterns.

Biomechanical patterns are often used to validate theo-
ries or identify the strategies employed by the CNS. For
instance, studies of mechanical perturbations during walk-
ing have been undertaken in order to investigate the role of
reflexes in locomotion (Akazawa et al. 1982; Capaday and
Stein 1986; Yang et al. 1991; Kearney et al. 1999). EMG
signals measured during the gait cycle can be viewed as the
resulting motor output of what has been programmed in the
CNS (Sherrington 1916). At the kinematic level, the EMG
patterns are also a function of the gait kinematics (Grill-
ner 1985). The relationships between gait kinematics and
EMG patterns have previously been estimated by muscle-
based simulations of dynamic walking (Zajac et al. 2002,
2003). Moving further, a better comprehension of the rela-
tionships which exist between the neuro-musculo-skeletal
system would significantly advance the understanding of
locomotor control.

Classical control approaches employed in bipedal robotics
aim to realise dynamic walking by generating a physically
feasible motion based on a simple biped model with pre-
cise joint-angle or trajectory-based control, including centre
of mass (CoM) (Kato et al. 1974), zero moment position
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(ZMP) (Vukobratovi¢ 1973) or virtual model based methods
(Prattetal. 2001). This control strategy has been impressively
applied to a series of humanoid robots, such as the well-
published bipedal walker ASIMO (Sakagami et al. 2002).
However, the gait is less efficient compared to human walk-
ing due to high gains required for precision control in the
actuators and frequency response of these systems.

A potential solution to this issue came with the advent
of dynamic walkers. (McGeer 1990) initially showed that
a purely passive dynamic walker with simple mechanics is
capable of stable walking. Studies have demonstrated that
complex locomotion control can be simplified with the intro-
duction of an appropriate mechanical design (Collins and
Ruina 2005; Wisse and Van Frankenhuyzen 2006; Geng
et al. 2006; Iida et al 2008). Local oscillators, such as
central pattern generators (CPGs) with limited sensory feed-
back, have been successfully used in a range of dynamic
walkers (Collins and Ruina 2005; Wisse 2005; Wisse and
Van Frankenhuyzen 2006; Tida et al 2008). However, as a
biologically inspired approach, the existence of CPGs is not
conclusively described in human walking control. This has
promoted the development of locomotion controllers based
on reflexes rather than on CPGs (Geyer et al. 2003; Geng
et al. 2006). The original RunBot, developed by Geng et al.
(2006), was the first dynamic walker exclusively controlled
by a purely reflexive controller. RunBot attempted a bio-
logically inspired approach where the sensory signals were
translated into motor signals with the help of a neural network
incorporating neuronal processing without using precise tra-
jectories or CPG control (Geng et al. 2006; Manoonpong et al.
2007). However, this strategy has limitations in providing a
model of the human nervous system, which has significant
complexity with numerous unknown variables and the exact
functions of neural networks are speculative.

Rather than extending the complexity of previous neural
control systems for “biologically inspired” robotic walking,
we propose the opposite strategy of a relatively simplistic
and novel abstract controller based on actual human walk-
ing data. Human walking can be regarded as a generalised
control system (Duysens et al. 2002). To create a mini-
malistic closed-loop system, only knowledge of the causal
relationship between foot contact information and the motor
activation, which was taken as the muscle activation (EMG),
was necessary for our study. We took a black box approach
to modelling the CNS during walking and studied how the
sensory inputs could be translated into functional motor out-
puts. The calculation of transfer functions relating sensory
information and muscle EMG has been discussed in detail in
our previous study (Macleod et al. 2014) where the transfer
functions were applied to a prior generation of the RunBot
(RunBot II) as a proof of concept. The stable gait cycle gen-
erated indicated that the approach had potential for use in
robotic control. The present paper extends the work and here
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we would like to propose a novel model of sensorimotor con-
trol based on reflexes where the addition of ankle control is
considered. To guide our modelling, we conducted a human
data collection study involving ten healthy participants. The
human data provided quantifiable information about the cou-
pling between sensory input and motor output to support the
design of the model. To demonstrate the feasibility of using
this mechanism for robot control, we implemented our model
to control the walking motion of a specifically developed
biped walker—RunBot III.

The paper is structured as follows: Sect. 2 describes the
human walking data collection procedure and data analysis.
Section 3 details our robotic model derived from the human
data. In Sect. 4 we present the results of our robotic exper-
iments and finally, Sect. 5 is devoted to a discussion of the
findings.

2 Human walking study
2.1 Ethics statement and walking data collection

The human walking data collection study was granted ethical
approval by the University of Strathclyde ethics committee.
Ten subjects, four males and six females, with a mean age of
26.5 years (range 23-30 years) were recruited at the Depart-
ment of Biomedical Engineering, University of Strathclyde
and provided informed written consent before taking part.
The data collection comprised of measuring leg muscle
EMG and foot contact information during treadmill walking
using the setup shown in Fig. 1. EMG from four muscles
in both legs was recorded simultaneously during walking.
These muscles were chosen due to their different roles in a
gait cycle: two muscles [tibialis anterior (TA) and lateral gas-

USB-DUX Sigma
and EMG/FSR

(b) amplifier -

Fig.1 a Subject walking on the treadmill during a data collection trial.
b setup for the treadmill walking trials. The USB-DUX Sigma data
acquisition device and EMG/FSR amplifier were worn in a bag around
the subject’s waist. Surface EMG electrodes were used to record the
muscle activity during the treadmill walking. FSR insoles were placed
in the subject’s shoes and measured contact signals under different areas
of the feet

trocnemius (LG)] in the shank and two [biceps femoris (BF)
and rectus femoris (RF)] in the thigh. Force-sensing resistors
(FSRs) (Interlink Electronics, CA, USA) were embedded in
standard shoe insoles at four different positions under the
feet (toe, 1st metatarsal, Sth metatarsal, and heel) to record
foot contact information. All data were recorded with a sam-
pling frequency of 1 kHz using a USB-DUX Sigma data
acquisition device (Incite Technology Ltd, Stirling, UK). The
treadmill speed was automatically varied using a control
programme with small increments or decrements in speed
between 0.05 and 0.1 m/s. Here the aim was to limit any
dependency on the recorded data with the walking speed.
The treadmill control programme generated approximately
100 steps from the participant and the complete sequence had
a total walking speed range of 0.39 m/s.

2.2 Data analysis

The EMG signals were filtered using a band-pass filter (50—
200 Hz), full-wave rectified and low-pass filtered (6 Hz) to
obtain the linear envelope of the EMG. The EMG and FSR
sequences were then normalised in amplitude to between 0
and 1 and scaled from 0 to 100% in every stride to elimi-
nate the effect of inter-subject variation in walking speed. To
visualise the relationship between the foot contact and EMG,
muscle activity recorded over a given period was averaged in
relation to the foot contact to produce an event related aver-
age, or ERA. The indication that a motor neuron pool has
received suppressed or facilitatory synaptic input is given by
troughs or peaks in the ERA of the processed EMG (David-
son et al. 2007).

The entire processed EMG signals, X, (m = BF, RF, TA,
LG) and FSR signals F; [i = contralateral heel (CH), ipsilat-
eral heel (IH), ipsilateral toe (IT)], were then used to produce
an estimated EMG output signal for each muscle Y, using
the least mean squares (LMS) approach through the convolu-
tion of the filter impulse response 4,, ; with the FSR contact
signal F;.

Yin = Fi % hy (D

The error signal E is calculated as the difference between
the measured EMG signal X, and the estimated EMG signal
Y.

E=Xy—Yn 2

The filter coefficients were updated by an optimisation
algorithm driven by the error signal. The duration of the filter
response was set to the length of two strides.

hmipr1 =hmi +E-Fi - 3

where p is the learning rate of the adaptive filter, which was
set to 0.001.
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Fig. 2 Diagram indicates how the muscle EMG signals are elicited
and related to the ground contact information in one gait cycle. The
features of the transfer function coefficients are identified correspond-
ing to muscle activity promoting joint movements in human walking.
The TA transfer function has two peaks that are responsible for ankle
plantarflexion at heel strike (HS) and dorsiflexion after toe off (TO),

When given an input of a typical FSR contact signal, the
filter produces a muscle activation signal. To compensate for
the difference in foot contact sensory feedback between the
human and robotic systeml, the filter coefficients %, ; from
the human data were convolved with averaged FSR signals
F; over two strides:

Hm,i hm,i * Fi

= “
A half Hanning window was used to extract the filter
coefficients for one stride and the amplitude normalised to
between 0 and 1. The response of the transfer function, Hy, ;,
is therefore equivalent to applying a typical FSR signal mea-
sured in human gait, but the RunBot can use an impulse signal
to trigger the response. An example of the filter’s output for
one stride is shown in Fig. 2, together with the correspond-
ing FSR signals. Further details regarding the human data
processing are described in Macleod et al. (2014).

2.3 Muscle functions

A key step was to define the transfer functions related to
muscle activation, which in turn promote the biomechanical
movements. First these muscle transfer functions need to be

! The heel and toe contact information in humans are continuous ana-
logue signals, while foot contact switches (ON/OFF) were implemented
in the RunBot III.
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respectively. The peak in the LG produces ankle push-off and is related
to heel off (HO) during walking. The RF transfer function is related to
two joint movements: hip flexion at the TO and knee extension when
the hip reaches its anterior extreme angle (AEA). The first peak in the
BF transfer function is related to hip extension in the stance phase after
HS, and the second peak promotes knee flexion in the early swing phase

translated into joint motions to create an abstract closed-loop
control system.

2.3.1 Rectus femoris

The RF is a bifunctional muscle responsible for hip flex-
ion in the swing phase and knee extension in the late swing
and stance phase. Two peaks are observed in the RF transfer
function (Fig. 2). One peak corresponding to the hip flex-
ion relates to the ipsilateral Toe Off (TO). Another peak,
which coincides with the late swing, is identified as the mus-
cle activity that is responsible for the knee extension. Itis also
observed that the knee extension at the late swing phase does
not follow any foot contact as it occurs before the ipsilateral
Heel Strike (HS). In accordance with the reflexive neuronal
controller implemented in the RunBot (Geng et al. 2006),
we assumed that the anterior extreme angle (AEA) of the hip
activates the RF muscle for knee extension.

2.3.2 Biceps femoris

The BF muscle responds to the hip extension in the stance
phase and the knee flexion in the swing phase. By comparing
the BF transfer function with the foot contact information, as
shown in Fig. 2, the muscle activity can be identified as fol-
lowing the ipsilateral HS for the hip extension and ipsilateral
TO for the knee flexion (Macleod et al. 2014).
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2.3.3 Lateral gastrocnemius

The LG muscle is primarily responsible for ankle plantarflex-
ion but also takes a minor role in knee extension (Drake
et al. 2014). A peak is observed during the late stance phase
when the LG muscle shortens to plantarflex the ankle, Fig. 2.
The ankle plantarflexion has function to smooth the transi-
tion from double support to the swing phase (Mochon and
McMahon 1980). It should be noted that only the ankle plan-
tarflexion is considered as the primary muscle function in
our study. Another peak is observed during the early stance
phase, which is caused by the muscle lengthening while the
hip extends forwards. This LG transfer function is excluded
because the eccentric muscle contraction cannot be directly
related to a dynamic movement.

2.3.4 Tibialis anterior

The TA muscle has two distinct roles during human walk-
ing: (1) to dorsiflex the ankle during the swing phase for
foot clearance and placement; (2) to contract during ankle
plantarflexion at the initial foot contact with the ground. It
was ascertained in Fig. 2 that the muscle has a peak activity
during the early stance to generate force to lower the foot,
where the muscle works as a reverse muscle (Hamilton et al.
2012). Another peak in TA activity is closely related to the
ipsilateral TO, corresponding to ankle dorsiflexion during the
swing phase.

2.3.5 Extract transfer functions

The motor actions were subsequently related to the functional
roles of each muscle. The joint movements are activated and
inhibited by sensory feedback as shown in Fig. 2. The elicit-
ing and inhibiting sensory signals of muscle activations are
summarised in Table 1. The transfer functions for joint move-
ments are derived following Eq. 5.

Hm i(t + ts) 0 <t= (te - ts)
H, 1) = ’ 5
m.a(t) 0 otherwise ©)

where #; and 7, are the identifiable start and end timings asso-
ciated with the sensory input and joint movement. a indicates
the corresponding joint movement where a = hip flexion
(HF), hip extension (HE), knee flexion (KF), knee extension
(KE), ankle plantarflexion (AP), ankle dorsiflexion (AD).

2.4 Filter function optimisation

The muscle’s response to an activation signal has a character-
istic shape which closely matches the impulse time response

Table1 A summary of 7, and 7, of transfer functions related to muscle-
joint functions

Muscle Joint function Sensory input ts fe
TA AP IT HS HO
AD IH TO HS
LG AP IH HO TO
RF HF IH TO AEA
KE CH AEA HO
BF HE IH HS HO
KF CH TO AEA

AP ankle plantarflexion, AD ankle dorsiflexion, HF hip flexion, HE hip
extension, KF' knee flexion, KE knee extension /H ipsilateral heel, IT
ipsilateral toe, CH contralateral heel HS heel strke, HO heel off, 7O toe
off, AEA anterior extreme angle

curve of a damped, linear, second-order differential system
(Milner-Brown et al. 1973). In the previous study the mus-
cle transfer functions were optimised using a curve fitting
process to remove spurious artefacts and resampled at a spe-
cific sampling frequency to fit the mechanical system of the
RunBot IT (Macleod et al. 2014). Conversely, in this paper,
a second-order low-pass Bessel filter; see Eq. 6, was used to
optimise the muscle transfer functions,

sin <ﬁ> (6)
2t

| —1.5¢
Hit)=g e T

where g is the gain parameter to normalise the amplitude and
7 is the time constant of a second-order low-pass Bessel filter,

T =

T This approach was feasible as the second-order
T

model belclaves like a low-pass filter that produces a delay
between the neuronal excitation and the active state of the
muscle (Reeve and Webb 2003).

The impulse response of the filter function was used to
effectively curve fit the desired characteristics of the average
muscle transfer function from the population using the least-
square error method by adjusting the cut-off frequency f,.
The resulting transfer functions H were normalised to a value
range between 0 and 1 with the gain coefficient g. The transfer
functions in the form of an IIR filter could easily be adapted
for the RunBot. The transfer functions created correspond
to one gait cycle in duration, which is defined as the time
interval between two successive foot contacts. The results of
the curve fitting process are provided in Fig. 3 and Table 2.

In summary, we obtained the transfer functions that relate
sensory inputs to joint movement outputs. An abstract closed-
loop robotic model is proposed in the next section based on
these functions.
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Fig.3 Plots of the filter functions related to one stride. Each impulse response of the filter function (red dashed line) curve fits the corresponding

average muscle transfer function from all subjects (black solid line)

Table 2 Filter functions for

each joint Muscle Filter function T g Sum of squared error (SSR)
TA Ha pys 0.11 15.75 0.26
Hip 0.29 41.41 1.07
LG Ha pyo 0.20 28.47 0.37
BF Hu g 0.17 23.98 0.93
Hy.r 0.23 32.54 1.60
RF Hy r 0.18 25.32 0.20
Hy g 0.32 45.53 2.17

Filter functions for each joint. The filter function was used to curve fit the characteristics of the muscle

functions in the normalised gait cycle

3 Robotic model
3.1 Mechanical design of the RunBot Il

The RunBot III has a height of 0.3 m from foot to hip joint
axis and a total weight of 552 g. It has two legs, two feet,
and a small torso body attached to a boom for constrict-
ing its walking path to a planar circle. The robot consists
of six actuated joints: two hip joints, two knee joints, and
two ankle joints. The hips and ankles are directly actuated
by DC servo motors HS-625MG (Hitec RCD, USA) and
HS-85+MG (Hitec RCD, USA), respectively. The compliant
knees are actuated by DC servo motors HS-85+MG (Hitec
RCD, USA) via springs (ENTEX STOCK SPRINGS, UK).
All built-in pulse width modulation circuits are disconnected

@ Springer

and control voltages are applied directly to the motors. The
motor positions are measured via potentiometers. The out-
put voltages are sent to a computer running Linux through
D/A acquisition devices (USB-DUX, Incite Technology Ltd,
UK). The boom can rotate freely in all three axes (pitch, roll,
and yaw). A summary of the robot is detailed in Table 3.

The most significant change to previous versions in the
mechanical design of our robot is the ankle-foot segment.
The curved feet with rigid ankles used in previous generations
(Fig. 4b) were replaced by flat feet with actuated ankle joints,
as seen in Fig. 4c. A microswitch sensor (Maplin, UK) is
placed in the foot to detect the foot contact with the ground.
The foot surface is supplemented with a rubber pad with high
friction and appropriate shock absorbing capability.
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Table 3 Specification of RunBot IIT

Parameters Value
Mass (g) 552
Dimension of thigh (cm) 4x02x11
Dimension of shank (cm) 4x0.2x10
Dimension of foot (cm) 6x1x1
Total height (cm) 30
DC motor
Flat Foot

|
Foot Switch

Fig. 4 Mechanical design of the RunBot III. a RunBot III with the
actuated ankle joint. b The original RunBot with the rigid ankle joint
(Geng et al. 2006). ¢ Ankle-foot design

The RunBot III was used to validate our learn-from-human
approach with regard to developing human-like walking with
similar key characteristics such as joint kinematics. The ankle
was of particular interest in the controller as the ankle has
been identified as a major power generator in human walking
(Winter 1983b). Its influence in human walking has been
investigated in numerous studies (Winter 1983b; Sutherland
et al. 1980; Neptune et al. 2001; Nadeau et al. 1999). Thus
the functional impact of ankle movement in the RunBot III
was one of our main concerns in this paper.

3.2 Sensory feedback from ground contact

The closed-loop interaction between a neural controller and
the biomechanical system is created by implementing our
black box controller in the RunBot I1I, see Fig. 5. In our model
the generation of walking depends primarily on the ground
contact information. Each leg comprises of a hip, knee and
ankle with a flexor and extensor mechanism in each joint. The
flexor/extensor are elicited by afferent sensory inputs from
the feet and utilise reciprocal inhibition. The three joints are
coupled to generate a stable limit cycle walking.

The loading and unloading of the leg generates the
impulses which elicit the reflexes according to:

(N

1 F <6f
0 otherwise

where F is a real-time voltage signal from a microswitch
sensor in the foot? and O is the threshold to define the ground
contact statue G (1 = foot contact, 0 = foot off). O(G’) is
a positive impulse signal from the derived ground contact
sensory input G and ®(—G’) is an impulse signal indicating
that the foot is lifted off the ground.

3.3 Motor output generation

The controller has a hierarchical structure with three loop
controls: leg control, intra-joint control and local joint con-
trol. The sensory input from the foot excites the extensors
of the ipsilateral leg and flexors of the contralateral leg, so-
called leg control. In intra-leg control, when the hip achieves
its AEA during the swing phase, the AEA signal will activate
an extensor reflex at the ipsilateral knee. The local joint reflex
arises in joint control to inhibit the motor output to prevent
the hyperflexion or hyperextension of the joint.

The total motor outputs are defined by Uy, x4, F/E/P/D
and generated by convolving the summation of sensory feed-
back signals with the corresponding transfer functions, Eq 8:

Unr = BH,FﬁH,F * (wn FO(GE))
Un.e = Bu.eHu % (0, rO(G)))
Uk r = BK,FﬁK,F * (g FO(Gy))
Uk.E= BK,EﬁK,E s (0K . EO(—Br.H.F))
Uap = Ua prys +Ua pyo

= Ba pysHa pyg * (04, pys©(G)))

+BA Pyo Ha Pyo * (04 Py ©(=G)))

Uap = BapHap (wa,pO(G()) (8)

where G is the ground contact signal with 7 defining the ipsi-
lateral leg and C presenting the contralateral leg, and w the
weights of the connections between the sensory inputs and
motor outputs. B are signals from the stretch receptors that
inhibit the motor outputs when the joints flexing or extending
beyond an extreme angle threshold. ®(—Bl, H,r) defining
the moment that the ipsilateral hip achieves the AEA during
the swing phase is used as an impulse trigger signal to elite
knee extension of the ipsilateral leg.

Transfer functions H translate sensory impulse signals
into motor neural activations. They were modelled by a time
parameter T and a gain coefficient g, equivalent to human
transfer function (Eq. 6). Because the coefficients t derived

2 Although it has been observed that toe off is an essential event for
indicating the start of the swing phase, RunBot III does not feature a toe
contact sensor and the foot was designed as a whole rigid body. Instead,
the contralateral foot contact was used as the trigger of the swing phase
of the leg as in previous RunBot iterations. The foot contact detected by
the foot switch as shown in Fig. 4c concurs with heel strike in human
walking while the foot off indicates the heel off event.
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from human data (Table 1) were determined in a normalised
gait cycle, they were multiplied with predicted stride time
before being applied to the robotic control as initial values.
The 7 values in Eq. 8 were carefully tuned.

3.4 Reflex to robotic control

The flexor and extensor reflexes were used to generate the
motor command to drive the corresponding joint actuator.
The voltage of the joint motor is obtained similarly to that
presented in the reflexive model discussed in Geng et al.
(2006); Manoonpong et al. (2007):

Vg = sy-ag - Uy r—UpnE)
Vg = sk -ak - (Uk,F — Uk E) 9
Va= sa-as-(Uar—UaEg)

where V is the input voltage of the motor, o represents a
servo amplifier coefficient and U and U are the outputs of
extensor and flexor motor neurons. s is +1 or —1, which indi-
cates the signs of the motor voltages of flexion and extension
in the joint, depending on the polarity of the motor.

The integration of the reflex outputs were mapped to the
biped robot, which is actuated by a single DC motor for each
joint.

4 Experimental results

The next stage was to apply the reflexive control model to the
RunBot IIT and to analyse the resultant gait. The parameters,
such like servo amplifier coefficients of motors « and load
receptor thresholds 6, were determined in order to achieve
a stable walking pattern. The optimised choice was selected
based on the stability and the walking speed by trials and
errors (Table 4).

Table 4 Optimal parameters for the RunBot III

~

H 6 (Deg) o
T g w
L/R
Hip F 0.23 85.89 1 120/100 1.5
E 0.23 85.89 1 75165
Knee F 0.13 37.94 1 90/90 3
E 0.13 37.94 1 0/0
Ankle Pys 0.08 28.46 0.75 —10/—10 2
Pyo 0.13 37.94 0.75 —15/—15
D 0.05 18.99 1 15/15

@ Springer

FSR sensory feedback

/!

N

Fig. 5 Each joint has a flexor and extensor which inhibits each other.
Sensory feedback from foot contact information is sent back to the reflex
generator

4.1 Rhythmic behaviour: walking in a circular path

Video frames demonstrating one stride of RunBot III are
shown in Fig. 6 (top). Only the control of right leg (red) is
described here as the control model is symmetric, Fig. 5.

At (a), the right foot touches the ground which initiates the
stance phase of the ipsilateral leg The extensors of the right
leg are activated. At (b) and (c), the right hip and knee con-
tinue to extend and the foot rotates towards to the ground so
that the whole leg rotates forward like an inverted pendulum.
At (d), the lift-off of the right foot activates the ankle plan-
tarflexion in late stance phase. At (e), the left foot contacts
the ground. The two legs switch their swing and stance roles.
The left foot contact signal excites the swing phase of the
right leg and the flexors of the right leg are activated. At (f),
the right hip flexes forwards while the right knee and ankle
flexes to clear the foot from the ground in early swing phase.
At (g), the right hip reaches its AEA which causes the inhibi-
tion of the knee flexor and excitation of the knee extensor. At
(h) and (i), the right knee continues to extend until the leg is
straight. And finally at (j), the right foot contacts the ground
and the gait cycle returns to (a).

4.2 The relationship between the hip extension and
ankle push-off

To examine the coupling effect between the hip extensor
velocity and ankle plantar flexor velocity after HO and its
impact on the walking performance of the robot, the RunBot
IIT was driven by varying the servo amplifier coefficient of
the hip vy (from 1.3 and 1.6 with a step of 0.1) and the weight
parameter w4, py,, (from O to 1.25 with a step of 0.25).
Figure 7a describes how the walking speed performance
of RunBot III responds to all coupling combinations of these
two parameters. The robotic walking speed increases with
the addition of ankle push-off. When the weight w4, py,
increases from 0, a larger impulsive ankle push-off con-
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Fig.6 One stride of the RunBot III. Top: frames captured from a video
file of the robot walking. Bottom: the control voltages of the right leg
and left leg and the ground contact information (GL and GR). a Foot
touch down on right. b, ¢ The right foot contact triggers the extensors of
the right leg and flexors of the left leg. d The plantarflexion on the right

tributes to a shorter step duration and a larger step length
(Fig. 7b) resulting in a faster walking speed. Moreover,
a maximal speed was obtained when the weight wa p,,
reached 0.75. An excessive ankle push-off leads to a rel-
atively slow speed as it impedes on the natural walking
dynamics of the robot, producing shorter step length and
longer step time, see Fig. 7.

A coupling effect between the hip extensor velocity and
ankle plantarflexor velocity at late stance was observed in
Fig. 7a. The robot was able to perform a faster walking speed
with a lower hip velocity and a higher ankle push-off velocity
compared to the robot’s walking speed with a higher hip
velocity and a lower ankle push-off velocity. For instance,
a faster walking speed of 0.3484 + 0.0081 m/s (mean =+
SD) was obtained when w4, p,, and oy were respectively
set to 0.75 and 1.3 compared to a walking speed of 0.3118

in response to the heel off. e Ground contact on the left. f, g The right
leg initiates the swing phase while the left leg is in the stance phase. h
When the right hip reaches its AEA, the right knee starts to extend in
(i). j The right foot contacts the ground again and one stride finishes

£ 0.0087 m/s when w4, p,, was 0.25 and oy was 1.5. The
results demonstrate that there is a trade-off between the ankle
push-off velocity and the hip extensor velocity with regards
to the walking speed performance of the robot.

4.3 Stability analysis

We investigated the stability of the limit cycle walking model.
In regard to the dynamic interaction between the hip and
the ankle joints, the phase diagrams of the ankle angular
motion with the hip angular motion during a walking period
of 100 steps, with an augmented ankle push-off velocity, were
shown in Fig. 8.

Starting from the initial position, these diagrams show
the convergence of the walking cycle into a limit cycle.
Although the gait stability is affected by varying values of
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ankle push-off velocity w4, p,,, we can see that overall the
control system produces stable limit cycles. The RunBot III
produced the fastest walking speed when wa, p,,, Was set to
0.75. The corresponding phase plot (Fig. 7d) demonstrated
that the limit cycles were significantly less affected by per-
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turbations than the other settings and so appear more stable.
This suggests that the ankle push-off velocity significantly
affects the stability of the walking system because of a signif-
icant amount of energy generated from the ankle joint during
“push-off". limit cycles appear less stable when the weight
value was set to >0.75 as shown in Fig. 8e and f. Excessive
energy injection into the mechanical system may increase
the time for the biped walker to converge to a dynamic stable
condition and result in a slower walking speed (Fig. 7).

4.4 Comparison to human

Robotic behaviour can be used to provide insight into the
biological mechanism of human walking. It is thus of inter-
est to compare the measured results from the RunBot III to
human gait data:

1. The RunBot III achieved a similar relative walking speed
to humans. The relative walking speed is defined as a
speed corrected for leg length. The maximal relative
walking speed of the robot is 1.2 leg length/s compared
to the approximate relative walking speed of 1.45 leg
length/s where a human subject with an average height
of 1.75 m walks at a preferred speed of 1.4 m/s (Browning
et al. 2006).

2. The RunBot III attained a close efficiency of walking to
that of human with the addition of actuated ankle con-
trol. In the study of JudgeRoy et al. (1996), a ratio of
0.74 between step length and leg length used to represent
a human subject had an efficient ankle plantarflexor dur-
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Fig.9 Kinematic comparison between the robot and human joint angles
during one gait cycle. The averages (dashed line) with standard devia-
tion (gray shaded) across one gait cycle of the robot and human motion
(dotted line) are shown in one plot

ing the late stance phase. The robot had a step length of
0.7/1eg length when wa p,, and ay were, respectively,
set to 0.75 and 1.5 (see Fig. 7b), which shows a good
approximation to human walking. The addition of ankle
movement significantly contributes to the walking speed
of the RunBot III with a 16% increase in speed compared
to the RunBot II with a rigid ankle (Macleod et al. 2014)
(Fig. 10).

3. The robot joint motion quantitatively matched the human
data in literature [literature human data derived from
van der Linde (1999) as shown in Fig. 9]. Characteristics
and timing were similar while amplitude were slightly
different. Some differences were observed due to limi-
tations of the robotic design. The robot lacks the knee
flexion in the stance phase due to a mechanical stop in
the knee joint. In addition, because the isometric muscle
contractions during stance phase were not considered in
the model, the ankle joint was passively driven with the
leg inverse rotation after full ground contact, and there-
fore a slightly passive dorsiflexion was observed during
mid-stance.

5 Discussion

Our approach takes inspiration from the pattern of sensori-
motor coordination in humans (Taga 1995). The development
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Fig. 10 Speed comparison between the RunBot II and RunBot III with-
out ankle push-off (w4, p,, = 0) and with optimal ankle push-off
(wa,Pyo = 0.75). where * p < 0.05. % * p < 0.001

of a reflexive control system based on filter functions derived
from human walking data aimed to demonstrate that using
simple sensory feedback can be a successful method to adap-
tively coordinate the limb segment movements and generate a
stable walking in a robotic walker. We have shown that there
is a direct causal relationship between foot contact infor-
mation and muscle activity during human walking in our
previous study (Macleod et al. 2014). The causal relation-
ship allowed us to generate a reflexive robotic system, which
reproduces the activations of the relevant muscles after foot
contact. Our reflexive controller exploits the natural dynam-
ics of the RunBot III for locomotion generation without the
requirement of CPGs or trajectory control.

Walking can be considered as a nominally periodic
sequence of steps which although not locally stable at every
instant time, is stable at a whole, so-called limit cycle walking
(Hobbelen and Wisse 2008). This allows a robot to adapt its
gait to changing natural dynamics producing a convergence
to a desired motion using low or no feedback gains (Collins
and Ruina 2005; Wisse 2005; Wisse and Van Frankenhuyzen
2006). Most limit cycle walkers utilise an approach where
an oscillator controller, e.g. CPGs, and mechanical sys-
tems are dynamically coupled to generate stable limit cycle
stepping. This approach was promising in solving robot loco-
motion control as it aimed “to achieve a robust and adaptive
behaviour while coordinating a redundant high degree of
freedom system under the strong effect of physical body
dynamics” (Miyakoshi et al. 1998). This is more efficient
than using high feedback gain to constrain the robot walking
on an intended path. Our controller demonstrates that limit
cycle walking in RunBot is able to return naturally to the
desired trajectories following a disturbance without CPGs or
trajectory tracking.
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Local circuits in the spinal cord have been identified
as being responsible for locomotor movements in both
vertebrates and invertebrates (Brown 1911; Grillner 1985;
Rossignol 2000). Studies have revealed that in various animal
species locomotion is driven by CPGs, which generate the
rhythmic motor outputs without sensory or descending inputs
carrying specific timing information (Marder and Bucher
2001; Ijspeert 2008). CPGs have been identified in mam-
mals such as the cat but their existence in humans has not
been conclusively described (Ijspeert 2008). The difference
between humans and other species can be observed following
a complete spinal cord injury, humans become completely
paralysed below the injury, whereas rhythmic stepping can
be evoked in a cat after complete spinal transaction. This
demonstrates that human locomotion control is more depen-
dent on intact supraspinal control than is found in the cat
(Hultborn and Nielsen 2007). Unlike a CPG, areflex is alocal
motor response to a local sensory input. In human locomo-
tion, a chain of reflexes act together to control the limbs and
their integration contributes to the regulation of the locomo-
tion pattern (Zehr and Stein 1999). Reflexes are dependent
on task, phase, and context and therefore require modulation
using sensory feedback from peripheral afferents in order to
contribute effectively in locomotion, where the initial condi-
tions may change on every step.

Most bio-inspired robotic models have been built based
on CPGs generating basic components of rhythmic motor
patterns (Lewis et al. 2005; lida et al 2008; Klein 2011). Sen-
sory feedback has been used to regulate rhythmic activities
of the neural controller, compose coupled neural oscillators
and coordinate relevant movements of a neural-mechanical
system. However, the interaction between the nervous sys-
tem and mechanical system has often been modelled based
on neuronal processing algorithms, resulting in complicated
models with a high computation requirement.

This study emphasised the potential of a human-inspired
framework in the design of a locomotion controller, which
utilises human data and output functions that appear to be
intrinsic to human walking. The neural-mechanical interac-
tion can be regarded as a black box where the muscles serve
as actuators and the limbs are regarded as linkages (Pandy
2001). Prentice et al. (1998) developed a neural network
model that replicated the role of CPGs in human locomotion,
based on gait cycle and EMG data recorded from one par-
ticipant walking on a treadmill. The model was limited in its
representation of certain aspects of the EMG profiles due to
lack of sensory feedback. Foot contact can be used alongside
EMG for analysis of muscle function as it provides spatial and
temporal information during locomotion. Different strategies
for generating control based on muscle activity and foot con-
tact have been studied for use in human motor control or
rehabilitation (review in Sinkjaer et al. 2003). However, to
the authors’ knowledge, the transfer functions which directly
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relate foot contact and muscle activity derived from human
data have not been employed to create a minimal closed-loop
controller based on the coupling between sensory inputs and
motor outputs.

Human leg mechanics can be encoded into autonomous
muscle reflexes (Geyer and Herr 2010). The variation in EMG
measurement is an important concern as natural variation of
leg length, muscle size, stride length, and other physiological
factors will influence muscle activity during walking. During
data acquisition we aimed to control variation due to walk-
ing speed as much as possible and the differences between
men and women were also considered. Further details and an
analysis of variation in transfer functions derived from dif-
ferent groups was discussed in our previous paper (Macleod
et al. 2014). Filter functions were used to optimise the EMG
transfer functions as the muscle response forms a character-
istic shape which closely matches the impulse time curve of a
damped, linear second-order differential system (Reeve and
Webb 2003). The time constant t describes the response time
(tr = 0.606871) of a burst activity from the excitation moment
to reaching its maximal amplitude instead of the duration of
transfer functions as the T determines the characteristic shape
of transfer function. The t derived from human data (Table 1)
based on the gait cycle (0 ~ 100%) will be easily adapted to
walking speeds by multiplying with the stride time. The use
of IR filter functions allowed us to increase the adaptability
and efficiency of our control system. Although the parame-
ters in RunBot III were determined by trial and error with the
aim of obtaining an optimal speed, an adaptive control of the
robotic speed is of significant interest and will be a subject
of further research.

Ankle push-off during late stance in human walking has
been described as having an important role in facilitating the
initiation of the swing phase (Neptune et al. 2001; Renjewski
and Seyfarth 2012; Lipfert et al. 2014). The results shown in
Fig. 7 demonstrate that the ankle push-off contributes greatly
to the walking speed of the RunBot IIl. The w4, py,,, equal
to 0 means that no ankle plantarflexion occurs during the
late stance phase. The increasing weight parameter wa, p,,
augments positive power generated in the ankle joint, result-
ing in increasing the walking speed. It should be noted that
the ejection power may produce a disturbance to the natural
dynamics and a decrease of speed if the wy4, p,,,, reaches its
threshold (Fig. 8) as the work may cause redirection of the
centre of mass (Lipfert et al. 2014). The neural controller
and mechanical system was dynamically coupled to gener-
ate a limit cycle walking in the robotic system, which allows
the RunBot III to exploit its natural dynamics following a
disturbance and converge back to a stable gait without any
trajectory control.

RunBot is driven by local reflexes without any trajectory
tracking algorithms or CPGs (Geng et al. 2006; Manoon-
pong et al. 2007). Phase switching of the legs is triggered by



Biological Cybernetics

ground contact signals. When one leg contacts the ground, the
signal triggers motors driving hip flexion/extension and knee
flexion/extension of the swing/stance legs. The original Run-
Bot attempted an approach to generate motor signals using a
biologically inspired neuronal processing model. However,
a control system comprised of neural networks is highly
speculative as the human nervous system is complex and
has numerous unknown variables. In our previous study, we
proved the hypothesis that transfer functions derived from
human data could be implemented in the reflexive controller
(Macleod et al. 2014). The relationship between the sensory
input and motor output can be regarded as a black box and
calculated by relating foot contact information and muscle
EMG signals recorded during human walking. In this paper,
the ankle control was initially implemented in the reflexive
controller based on the causal relationship between the foot
contact information and muscle EMG activity. The HO sig-
nal is used to activate the ankle push-off while the ground
contact signal triggers the ankle plantarflexor of the stance
leg and dorsiflexor of the swing leg.

We presented a human-inspired approach to bipedal
robotic walking by using only human data and the causal
relationship between the sensory feedback and motor out-
puts. To our knowledge, this is the first attempt to extract
biological reflex principles from human gait studies for con-
trolling robotic locomotion. The addition of ankle control
was initially considered within the reflexive controller to
advance our understanding of the role of the ankle in devel-
oping a functional and efficient gait. The RunBot III was
subsequently constructed and used to validate the control
principle. Stable walking in the RunBot III demonstrated
that the generated limit cycle was able to return naturally
to the desired trajectory following a disturbance after only a
short time without the addition of CPGs or trajectory con-
trol. The practical application of the strategy presented in this
paper indicate a promising future of a “human-inspired” gait
control approach utilised in robotic locomotion controller
design.
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