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Abstract— This paper presents a non-nested algorithm for
the solution of multi-objective min-max problems (MOMMP)
in worst-case optimization. The algorithm has been devised for
evidence-based robust optimization, where the lack of a defined
probabilistic behaviour of the uncertain parameters makes it
impossible to apply sample-based techniques and forces the
designer to identify the worst case over the subdomains of the
uncertainty space. In evidence theory, the robustness of the
solutions is measured in terms of the Belief in the realization
of the value of the design budgets, which acts as a lower bound
to the unknown cumulative distribution function of the budget.
Thus a means of finding robust solutions in preliminary design
consists on applying the minimax model, where the worst-case
budget over the uncertainty space is optimized over the control
space. The paper proposes a novel heuristic to solve MOMMP
and demonstrates its capability to approximate the worst-case
Pareto front at a very reduced cost with respect to approaches
based on nested optimization

I. INTRODUCTION

Worst-case scenario optimization provides the best possi-

ble solution in the worst possible condition. From a game-

theoretic point of view it can be seen as the best response of a

system to the best move of its opponent, Nature. Worst-case

problems are common in several fields: decision making,

robust control, risk analysis, resilient design, etc.

In the context of model-based space systems engineering,

worst-case scenario optimization can be used to effectively

account for both aleatory and epistemic uncertainty in the

framework of evidence theory [9], and thus obtain optimal

solutions under severe uncertainty. Furthermore, these solu-

tions constitute a first step towards the derivation of optimal

design margins in a more general case.

In evidence theory, both input and model uncertainty is

defined by means of basic probability assignments (bpa) as-

sociated to subsets of the events space Ω. After combination

of several possibly conflicting evidence sources [5] [14], a

multivalued mapping of probability masses is assigned to all

non-zero-probability subsets, or focal elements. Assuming

uncorrelated uncertainties, this mapping can be generally

represented by considering a family of potentially superpos-

ing and/or disjoint hyperrectangular subsets of Ω that we

will from now refer to as U , the uncertainty space. The bpa

structure of U can be used to infer the Belief and Plausibility

curves of a design, which can be viewed as a lower and upper

1PhD Candidate, Department of Mechanical & Aerospace Engi-
neering, University of Strathclyde, 75 Montrose Street, Glasgow, UK
(carlos.ortega@strath.ac.uk).

2Professor, Department of Mechanical & Aerospace Engineering,
University of Strathclyde, 75 Montrose Street, Glasgow, UK
(massimiliano.vasile@strath.ac.uk).

bound, respectively, to the unknown cumulative probability

function of the system budget for that design.

The drawback of this holistic approach for uncertainty

quantification is that it leads to exponential complexity with

respect to the number of uncertain variables and is therefore

rarely affordable for complex engineering systems.

Nonetheless, with clever transformations and adequate

optimizers, the min-max approach can tackle the uncertainty

space as a whole, detecting rare events and offering a

first, conservative solution to the robust optimality problem.

This solution provided, strategies for reduced-cost estimation

of the Belief curve by means of worst-case optimization

under certain assumptions were proposed in [13] and applied

to single-objective estimation of robust-optimal spacecraft

designs in [1], and will be refined in future works by the

authors. Cost-efficient min-max optimization is hence a key

building block towards computationally-affordable robust

design under inhomogeneous sources of uncertainty.

II. WORST-CASE OPTIMIZATION

Worst-case optimization can be formulated without loss of

generality as bi-level min-max optimization over the design

space D and the uncertainty space U , i.e.:

{d∗,u∗}= argmin
d∈D

max
u∈U

( f (d,u)) , (1)

where f (d,u) is the model of the system budget to be

minimized, and d∗ represents the worst-case-optimal design,

with u∗ its worst-case coordinates in the uncertainty space.

When multiple conflicting but statistically uncorrelated cri-

teria f 1, f 2, . . . , f n f need to be simultaneously satisfied, one

can formulate worst-case scenario optimization as a multi-

objective min-max optimization problem with parallel max-

imization of each objective over the uncertainty space,

{d∗,ul∗}= argmin
d∈D

max
u∈U

[ f l(d,ul)]T , l ∈ {1, . . . ,n f } . (2)

The maxima over U representing the worst possible case

for each of the criteria are simultaneously optimized, in the

Pareto sense, over the design space D. Note that this differs

from multi-objective bi-level optimization as in [4] in the

mode of failure not being assumed equal for all the criteria

during the design phase. In this paper MACSminmax, a cost-

efficient approach for the solution of such problems building

on the work presented in [2], will be proposed an discussed.

III. MACSMINMAX

MACSminmax (Algorithm 2) is a multi-objective min-

max optimization meta-algorithm inspired by the relaxation
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Algorithm 1 Relaxation procedure (single-objective)

1: Initialise archive Au = {u1} and i = 1

2: while the termination condition is not met do

3: di← argmin
d∈D

{
max
u∈Au

f (d,u)

}

4: ui+1← argmax
u∈U

f (di,u)

5: Au← Au∪ui+1

6: i← i+1

7: end while

8: return {di,ui+1, f (di,ui+1)}

procedure proposed by Shimizu and Aiyoshi in [10]. It

includes as well additional heuristics for enhanced perfor-

mance, namely surrogate-assisted minimization and local-

search refinement. Let us break down this definition in the

following subsections.

A. The relaxation procedure

The relaxation approach to min-max optimization is de-

tailed in Algorithm 1. The basic idea behind such an ap-

proach is to relax the global optimality requirement in the

lower-level problem to a discrete search space Au that grows

at each iteration, thus progressively approximating the global

optimality condition. Convergence to the exact solution has

been proven in the single-objective case [10], provided that

the termination condition is adequately selected.

This approach aims at drastic reduction of the computa-

tional cost, with respect to nested methods, via sequential

minimization and maximization steps in lines 3 and 4 of

Algorithm 1. Nevertheless, in the experience of the authors,

its convergence rate is not sufficient to achieve so in a rea-

sonable number of function evaluations in problems complex

enough, e.g. presenting a multi-modal landscape in U whose

peaks change position with d. This was described as a sort of

red queen effect in [11], and becomes especially a drawback

when the method is extended directly to the multi-objective

case, in which the lower-level problem needs to be solved for

every point in the Pareto Front obtained in the minimization

step. In such a situation, the oscillation between suboptimal

and superoptimal candidate solutions can lead to a total

required amount of function evaluations equal or higher than

one would expect from a nested approach.

MACSminmax can be viewed as an extension of Algo-

rithm 1 to the multi-objective case, endowed with additional

heuristics to soften the aforementioned oscillations. Note

that this procedure does not implement any kind of single-

level optimization, but embeds calls to the solvers of choice,

the choice here being MACS (Multi-Agent Collaborative

Search, [16]) and MPAIDEA (Multi-Population Adaptive

Inflationary Differential Evolution Algorithm, [12]). In order

to preserve modularity of the implementation, this property

has been maintained through the extension presented hereby.

Nevertheless, future versions might dismiss this feature in

order to facilitate the exploration of self-adaptive heuristics

in min-max optimization.

B. Surrogate-assisted minimization

Unlike in Algorithm 1, an archive Ad is kept throughout

the optimization, containing a record of the outputs of the

minimizations in lines 11 and 13 of Algorithm 2 as well as

a sparse initial sample. The associated archive A f with the

fitness values of their maxima over each Al
u is updated as the

Al
u grow. Note that a maximization step has been conducted

for each individual in Ad , nonetheless the updates are still

necessary to mitigate as much as possible the well-known

noisy-function effect of bi-level heuristic optimization, espe-

cially when revisiting regions containing individuals found

early in the process, when the archive Au was small. This

allows a reduction in the number of function evaluations of

the maximization steps to have minimal impact on the overall

performance.

The minimization step is assisted by optimization of a

response surface built on the archives Ad and A f . This

is key for the softening of the oscillations mentioned in

Section III-A; the response surface models the structure of

worst cases for values of d not yet visited. This surrogate

modelling of the maxima in the archive catalyses the transfer

of information between the maximization and minimization

steps and thus largely accelerates min-max convergence in

problems where the arguments of the maxima in U change

chaotically along D.

On the other hand, applying only such a procedure is

insufficient to achieve adequate spreading of the solutions

in the Pareto Front. This is due to the low resolution

of the surrogate in parts of the D space that have not

been sufficiently explored, where maxima over U might be

overestimated. Therefore in the proposed procedure some

evaluations are devoted to the traditional minimization step

with maximization over the archive Au (line 5 of Algorithm

2), which always underestimates the maxima, favouring

unexplored regions. A yet unexplored option to compensate

this effect would be to use minimization procedures that

account for uncertainty in the surrogate predictions such as

EGO [6].

C. Local-search refinement

After the min-max optimization loop, a local search is

launched from each point in the archives Al
u using SQP (Se-

quential Quadratic Programming). This feature is triggered

by a flag, since it adds a substantial number of function

evaluations to the procedure and it is only necessary if the

problem to solve is multimodal and presents narrow basins

of attraction in U that change position with d. Nevertheless

in such problems it leads to huge gain in robustness of the

Pareto front, since it reduces notably the probability of false

outliers presenting deficient maximization in the solution, at

a cost proportional to the amount of outliers.

IV. NUMERICAL SET-UP

In Section V the performance of MACSminmax will be

demonstrated by means of six bi-objective test-cases defined

in Table I, where n = dim(D) = dim(U), i.e. the total

dimension of the problems is 2n. The expressions for the
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Algorithm 2 MACSminmax

1: n f eval = 0

2: Initialise archive Ad = {d1,d2, . . . ,dnd,0
}

3: for all d j ∈ Ad do

4: for all l ∈ {1, . . . ,n f } do

5: ul
max, j← argmax

u∈U
f l(d j,u) [MPAIDEA]

6: Al
u← Al

u∪{u
l
max, j}

7: end for

8: end for

9: A f ←{[max
ul∈Al

u

f l(d j,u
l) , l ∈ {1, . . . ,n f }],d j ∈ Ad}

10: while n f eval < n f eval,max do

11: dA
min← argmin

d∈D
[max
ul∈Al

u

f l(d,ul) , l ∈ {1, . . . ,n f }]
T [MACS]

12: Fit surrogate S(d) on data points {Ad , A f }

13: dS
min← argmin

d∈D
S(d) [MACS]

14: Ad ← Ad ∪dA
min∪dS

min

15: for all d j ∈ dA
min∪dS

min do

16: for all l ∈ {1, . . . ,n f } do

17: ul
max, j← argmax

u∈U
f l(d j,u) [MPAIDEA]

18: if d j /∈ dA
min or f l(d j,u

l
max, j)> max

ul∈Al
u

f l(d j,u
l) then

19: Al
u← Al

u∪{u
l
max, j}

20: end if

21: end for

22: end for

23: A f ←{[max
ul∈Al

u

f l(d j,u
l) , l ∈ {1, . . . ,n f }],d j ∈ Ad}

24: end while

25: if local search re f inement enabled then

26: A
re f .
d ←{Ø} , AND

d ←{arguments d j ∈ Ad of non-dominated entries f j ∈ A f }

27: while AND
d 6⊂ A

re f .
d do

28: for all d j ∈ AND
d \A

re f .
d do

29: for all l ∈ {1, . . . ,n f } do

30: Run multi-start local search with X0 ⊆ Al
u [SQP]

31: Use result to refine ul
max, j associated to d j and update A f

32: end for

33: A
re f .
d ← A

re f .
d ∪{d j}

34: end for

35: AND
d ←{arguments d j ∈ Ad of non-dominated entries f j ∈ A f }

36: end while

37: end if

38: return Non-dominated f∗i ∈ A f , their arguments d∗i ∈ Ad and associated u
l,∗
max, i , l ∈ {1, . . . ,n f }

fitness functions of these test cases are detailed in Table II

and their domains in U in Table III. Note that the definition

of different domains in U for each objective is not coherent

with a real-world problem, but has been allowed to maintain

control over the properties against which the algorithm is put

to test.

In all these cases, the only parameters that have been

adjusted are the number of function evaluations in the calls

to MACS and IDEA (see Algorithm 2), the fraction of

individuals selected from the archive-based or surrogate-

assisted minimizations each iteration, keeping the total con-

stant, and the enabling/disabling of local-search refinement

via SQP. Exhaustive tuning has not been conducted; the

selection has been based on the properties of the problem

and on qualitative performance assessment rather than on

maximization of the metrics.

The results are presented in Section V and compared to

those obtained by:

• A finely-tuned nested approach, using 10 to 20 times

the number of function evaluations of MACSminmax
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TABLE I

TEST CASES.

Test case f1 f2 D n

TC1 MV1 MV3 [1,5]n 2

TC2 MV2 MV8 [0,3]n 8

TC3 MV2 EM1 [1,5]n 8

TC4 MV8 MV9 [1,3]n 2

TC5 MV8 EM1 [1,5]n 4

TC6 MV10 MV9 [−4,2π]n 1

TABLE II

TEST FUNCTION EXPRESSIONS.

ID Expression

MV1 ∑
n
i=1 diu

2
i

MV2 ∑
n
i=1(di−ui)

2

MV3 ∑
n
i=1(5−di)(1+ cosui)+(di−1)(1+ sinui)

MV8 ∑
n
i=1(2π−ui)cos(ui−di)

MV9 ∑
n
i=1(di−ui)cos(−5ui +3di)

MV10 ∑
n
i=1(di +ui)cos(−ui(5|di|+5)+3di)

EM1 ∑
n
i=1(ui−3di)sinui +(di−2)2

TABLE III

TEST FUNCTION DOMAINS IN U .

ID U

MV1
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

MV2
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

MV3
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

MV8
[
[−π/2,−π/6]∪ [0,π]∪ [3π/4,3π/2]

]n

MV9
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

MV10
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

EM1
[
[−5,−4]∪ [−3,0]∪ [−1,3]

]n

experiment.

• The extension to multi-objective optimization of Algo-

rithm 1 without any additional heuristics, using compu-

tational resources similar to the MACSminmax experi-

ment in terms of function evaluations.

The tuning procedure followed for the nested approach

is unrealistic: as a precomputation, the design space has

been sampled in 100n points and, with the reference worst

cases of the sample made available, maximization with

MPAIDEA has been conducted until convergence to a 0.1%

of the reference. With the aim of obtaining reasonably robust

solutions during the maximization, the lower-level algorithm

of the nested loop, MPAIDEA, has been passed a maximum

number of function evaluations corresponding to the quartile

99 of the aforementioned experiment, and the higher-level

algorithm, MACS, has been passed a reasonable number

of function evaluations so that the total cost of the nested

optimization lays between 10 and 20 times the cost of

MACSminmax.

The indicators used to assess the quality of the Pareto

front obtained by MACSminmax or the other procedures

with respect to a reference Pareto front are the convergence

and spreading front-averaged metrics Mconv and Mspr :

Mconv =
1

Np

Np

∑
i=1

min
j∈Mp

∥∥g j− fi

∥∥ , (3)

Mspr =
1

Mp

Mp

∑
i=1

min
j∈Np

∥∥ fi−g j

∥∥ , (4)

where Np is the cardinality of the solution Pareto front f ,

Mp is the cardinality of the reference front g, and each

fitness function has been scaled with its span in g. In

order to assess the quality of the maximization, i.e. the

robustness of the solutions, the fraction of solution points

that converged within 0.1% of the span in g is measured for

each objective and reported as pmax. All these indicators are

presented in Section V as mean and standard deviation over

a number of runs (50 for MACSminmax, 20 for the other

two approaches).

All reference solutions have been obtained by means

of computationally-expensive ad hoc approaches that take

advantage of the separability of the test functions. The

reference worst cases are mapped via multi-start SQP maxi-

mization of each component. The reference Pareto fronts are

a combination of the best solutions obtained by NSGA-II [3]

and MOEA-D [15], 30 exhaustive runs each.

V. RESULTS

Table IV and Figure 1 illustrate the performance of MAC-

Sminmax after 50 runs. The results are overall very good

both in terms of robustness — indicated by p1
max and p2

max

—, and optimality — measured by Mconv and Mspr.

Regarding robustness, the only failure is test case 5

presenting quite a low probability of maximization of f1 in

the upper left part of the front. Analysis shows this is due

to the minimization algorithm returning solutions in a pit of

deceptively-maximized individuals over robust solutions of

very close but lower optimality, especially in its last selection

stages. In a pragmatical context this would translate into the

possibility of selecting a promising design in that part of the

front to later notice upon closest uncertainty analysis that the

worst-case budget of f1 was underestimated. Nevertheless, it

is interesting to remark that the front in which these deceptive

designs’ true worst cases lay is still non-dominated by the

truly robust solutions found by MACSminmax in the lower

right part of the front, i.e. these individuals might still be con-

sidered interesting worst-case Pareto optimums after noticing

the underestimation. Neither does their miscomputed front

dominate the reference front, which would turn them into

very attractive candidates for selection.

As for optimality, MACSminmax achieves remarkably

good results in all test cases, with convergence metrics

consistently under 5% and generally even lower, and a good

fraction of solution points on the reference front. Spreading

metrics appear slightly higher, but Figure 1 shows this

is due to inhomogeneous density of front coverage rather

than to regions not being covered (with the exception of

the deceptive region in test case 5 discussed above), and
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combined coverage of a few runs is almost total. All test

cases present a high relation of robust points that are on or

very close to the reference front; the results provide a sound

basis for the selection of candidate worst-case designs.

Table V and Figure 2 show the analogous results for 20

runs of the finely-tuned nested approach with a cost of 10

to 20 times that of MACSminmax. Table VI and Figure 3,

for the relaxation procedure without additional heuristics and

roughly the same cost as MACSminmax. Comparison with

these sets of results illustrates the positive effects of the

additional heuristics discussed in Section III.

The relaxation approach performs well in test cases 1

and 3. In these problems, the positions of the maxima in U

vary very smoothly along D, nevertheless MACSminmax still

gives quite better coverage of the front due to the presence of

the surrogate-assisted minimization. This is not the case with

test case 6, that presents a very rugged landscape in D×U

for f1, and arguments in U of the maxima of f2 moving

along D, hence its pmax indicators are low. But the differences

between the modes when one moves along D are small or

smooth enough so that a good approximation of the reference

front can be detected after several runs, in other words the

algorithm is capable of detecting the front but the proportion

of false outliers is still large. In this case, the solution of

MACSminmax is much neater thanks to the local-search

refinement, which filters most outliers. On the other hand,

for test case 2 the robustness of the solutions is excellent

but the relaxation procedure gets stuck in a deceptive Pareto

front optimality-wise. In such a case, running a maximization

refinement is worthless. Analysis shows that the algorithm

quickly detects that front but remains oscillating because of

the multi-modality of f2 in D×U ; the problem is the transfer

of information between the minimization and maximization

steps (note that the nested approach outperforms the relax-

ation procedure in overcoming this deceptive front). Neither

does MACSminmax reach the slippery reference front, but

the surrogate-assisted minimization heuristic allows it to

return a much better estimate. The same occurs in the well-

approximated region of test case 5. Finally, a combination of

the two effects just described allow MACSminmax to find

an acceptable solution for test case 4, which presents both

minimization convergence issues and outliers in f2.

As for the nested approach, in spite of the high number of

function evaluations devoted to mitigating the noisy-function

effect that inaccurate maximizations produce in the multi-

objective minimizer, the pmax indicators are overall worse

than MACSminmax and Figure 2 shows a high number of

unfiltered false outliers in test cases 1, 2, 4 and 6. This

behaviour is of course not unusual in nested optimization;

since false outliers will outperform true min-max individuals

in the Pareto-ranking selection steps of the minimizer, it is

often necessary to combine several runs and remove outliers

by hand based on density of individuals, but note that in test

case 4 only a very small fraction of the front is inferable at

all even after 20 runs, and in test case 2 the probability of

mistaking a false outlier whose true worst-case happens to

be in the deceptive front discussed in the former paragraph is

annoyingly high amongst the non-dominated solutions with

f2 ∈ [35,45]. On the other hand, in test cases 3 and 5 the

nested solution achieves good robustness, but gives fronts

of much worse optimality (convergence and spreading) than

MACSminmax, failing to explore a whole region of the front.

VI. CONCLUSIONS

This paper presents MACSminmax (Algorithm 2), a meta-

algorithm for multi-objective worst-case optimization, and

demonstrates the gain that the heuristics deployed achieve

both with respect to a much more expensive nested approach

and with respect to the procedure detailed in Algorithm 1,

which MACSminmax takes inspiration from. It has been

proven, by means of six min-max optimization toy problems

of variate landscape and complexity:

1) that surrogate-assisted minimization catalyses the

transfer of information between the minimization and

maximization loops of Algorithm 1, and enhances the

convergence rate and spreading properties of the Pareto

fronts obtained,

2) that archive-based local-search refinement manages to

filter a great portion of false outliers in worst-case

problems with a complex min-max structure,

3) and that, endowed with such heuristics, MACSminmax

can be used to effectively provide a means for selection

of worst-case Pareto-optimal solutions in preliminary

model-based design that vastly outperforms nested

optimization.

Research is in progress to further reduce the cost of

multi-objective worst-case optimization by exploring effi-

cient techniques based on Kriging metamodels for single-

objective [6], multi-objective [7], and single-objective min-

max [8] optimization. From the broader point of view of the

evidence-based robust design approach which MACSminmax

constitutes a first building block of, future works will put to

the test several approaches for the approximate evaluation of

the Belief in the realisation of a system budget, and pave

the way towards a model-based systems design paradigm

where the problem of quantifying the optimal gain-risk curve

of a preliminary design under inhomogeneous sources of

uncertainty can be effectively solved.
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Fig. 1. Pareto fronts obtained with 50 runs of MACSminmax.
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Fig. 2. Pareto fronts obtained with 20 runs of the nested approach.
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Fig. 3. Pareto fronts obtained with 20 runs of the relaxation procedure.
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