
Biaxial shear behaviour of HDNR with Mullins effect and 

deformation-induced anisotropy 
Laura RAGNI1 , Enrico TUBALDI2 , Andrea DALL'ASTA3, Hamid AHMADI4 , Alan MUHR4  

1 Department of Construction, Civil Engineering and Architecture, Polytechnic University of 
Marche, Via Brecce Bianche Ancona (AN), Italy; E-mail: laura.ragni@univpm.it. 

2 Department of Civil and Environmental Engineering, Imperial College London, London, UK; E-
mail: etubaldi@ic.ac.uk 

3School of Architecture and Design, University of Camerino, Viale della Rimembranza, 63100 
Ascoli Piceno (AP), Italy; E-mail: andrea.dallasta@unicam.it 

4Tun Abdul Razak Research Centre (TARRC), Brickendonbury, Brickendon Lane, Hertford SG13 
8NL, UK; E-mail: hahmadi@tarrc.co.uk  amuhr@tarrc.co.uk 

SUMMARY 

High damping natural rubber (HDNR) bearings, commonly employed to isolate structures, are 
subjected to biaxial horizontal deformations by the seismic motion. If they have virgin material 
properties, biaxial models including the stress softening due to the Mullins effect should be used for 
describing their force-deformation behaviour. Specific studies oriented at characterizing and 
modelling the biaxial behaviour of HDNR bearings accounting for the stress-softening are very few 
in number because they would require a large number of virgin isolators or long times of rest 
between two consecutive tests. Moreover, available studies consider the Mullins effect as an 
isotropic phenomenon, whereas experimental investigations have shown that it is direction-
dependent and thus induces anisotropy of the rubber behaviour. This paper describes an 
experimental campaign carried out on a large number of small material test pieces aimed at 
achieving a satisfactory characterization of the biaxial anisotropic response of a highly dissipative 
rubber compound. These results are then used to develop a two-dimensional constitutive model for 
the virgin HDNR material accounting for the direction-dependence of the Mullins effect, based on 
the concept of representative directions applied to the biaxial shear deformation state. Because for 
commonly employed laminated HDNR bearings under design actions the approximation of uniform 
simple shear is realistic, the proposed material model can also be used to simulate the global 
bidirectional horizontal response of the bearings.  

INTRODUCTION 

Steel-laminated high damping natural rubber (HDNR) bearings show a significant dependence of 
the horizontal response on the loading history. The shear stress required for loading the rubber 
layers from the virgin state to a certain strain level is larger than in any subsequent loadings for all 
strains up to the same maximum strain level. This phenomenon is commonly known as the “Mullins 
effect” [1] and may be considered as a macroscopic consequence of breakdown of filler-filler 
structure and rubber-filler interaction which takes place during deformation and mainly depends on 
the amount of carbon black filler present in the material and the maximum stress applied. Further 
stress softening also occurs on subsequent cycles to the same strain level, but the stress-strain cycles 
tend to asymptotically approach stable behaviour. For simplicity, we shall refer interchangeably 
here to stress softening and the “Mullins effect”; a review of alternative definitions and 
inconsistencies in the literature was given previously [2]. The stress softening can be induced 
deliberately on the bearings in production tests (usually termed “scragging”) or during earthquakes 
in service. However, in both the cases it recovers over time. The recovery rate and extent depends 



on rubber formulation details, but has not been studied in much detail. In any case, the virgin 
horizontal behaviour of bearings should be considered in evaluating the seismic response of isolated 
structures, given the long time between earthquakes major enough to induce significant stress 
softening.  
Given the multi axial nature of the ground shaking, appropriate models considering the biaxial 
horizontal behaviour of the bearings and accounting for stress softening should be employed. 
However, the technical literature on the horizontal biaxial response of seismic isolators [3]-[14] has 
mainly focused on characterizing the stable (i.e. post-softening) behaviour of the bearings; only 
three studies [3]-[5] have aimed at quantifying and modelling also the stress-softening. This may be 
explained by the fact that a large number of virgin isolators or long times of rest between two 
consecutive tests would be needed for characterizing such strain-history effects. In particular, 
Huang reported the results of biaxial displacement-controlled tests on an isolated rigid block 
supported by four laminated HDNR bearings, showing the path and strain-history dependence of the 
response  under different idealised displacement trajectories [3]. This model was later extended and 
improved by explicitly including the stress softening [4]-[5]. In particular, two different degradation 
mechanisms have been adopted by Grant et al. [5], one for simulating the “scragging” and the other 
for simulating the “Mullins effect”, defined in [6] to be first-cycle and continuous cyclic softening 
respectively. However, the first contribution (which is the most important and accounts for the 
dependence on the maximum experienced strain) does not evolve for any strain history, because it 
does not fully take effect until the bearing is unloaded. Moreover, while the parameters relevant to 
the “Mullins effect” have been calibrated based on several tests (separated by time periods ranging 
from 5 minutes to 24 hours), the model for the “scragging” has been calibrated based on just one 
test, carried out on a virgin device. This model was recently included in a three-dimensional bearing 
model developed by Kumar et al. [7] and implemented in Opensees [8], accounting for other 
specific phenomena such as the cavitation/buckling phenomena occurring under 
tensile/compression strains [9] and the interaction between the horizontal and vertical behaviours. 
The other studies in the technical literature on multi-axial testing and modelling of HDNR isolators 
do not consider stress softening [10]-[14], although it was observed in the bearing response.  
More experimental and modelling information about the Mullins effect can be found in papers 
dealing with the material behaviour of HDNR, because it is less costly to study the virgin stress-
strain behaviour of material test pieces rather than that of full sized bearings. Material models 
accounting for the Mullins effect have been developed, based for example on coupling of 
continuum damage theory with elasticity theory [15], pseudo-elasticity theory [16], or 
viscoelasticity theory [17]. However, in most cases the Mullins effect is modelled as an isotropic 
phenomenon, whereas experimental investigations have demonstrated that it is direction-dependent. 
In particular, Besdo et al. [18] and Diercks and Lion [19], based on simple shear strain test of filled 
rubber under different directions, have shown that while a loading in one direction results in a 
reduced stress for subsequent loading in the same direction (stress-softening), the effect is less 
pronounced in other directions. The same conclusion is reached by Dorfmann and Pancheri [20] by 
performing a series of uniaxial and planar biaxial tension tests. Physical explanations for such 
deformation-induced anisotropy have been proposed, e.g. in [21], and some micro-mechanical 
material models, such as a three-dimensional one by Göktepe and Miehe [22] have been developed. 
Less complex phenomenologically-based approaches have also been employed to model 
deformation-induced anisotropy, such as the  constitutive model based on the pseudo-elasticity 
theory and accounting for the Mullins effect and  the changes in the material symmetry proposed by 
Dorfmann and Pancheri [20]. In the same paper an interesting overview of other available 
phenomenological models is given. Among these, the concept of representative directions [23] 
appears very convenient, since it allows to generalize the one-dimensional material laws to describe 
three-dimensional material behaviour.  
This paper aims to extend the uniaxial model developed in [2] for the non-linear, hysteretic and 
history-dependent stress-strain behaviour of virgin HDNR material and accounting for the stress-



softening to cover general biaxial shear states typical of rubber bearings. Under the assumption of 
uniform simple shear strain in the rubber layers of laminated HDNR bearings, realistic for 
commonly employed shape factors of bearings and design values of axial load [24]-[25], the 
proposed material model can be used to simulate the global bidirectional horizontal response of 
virgin HDNR bearings, by means of simple geometrical considerations.  
The paper first describes an extended experimental campaign carried out on double and single shear 
specimens, manufactured by TARRC from a HDNR compound usually employed for seismic 
isolators and showing a significant stress softening similarly to other highly dissipative rubber 
compounds [26]. These tests have been devised to better understand and hence model the 
deformation-induced anisotropy due to the Mullins effect, as well as the coupled bi-axial shear 
behaviour of the HDNR material. The use of material test pieces rather than bearings has enabled a 
large number of tests on separate virgin HDNR samples to be performed, so as to achieve a 
satisfactory characterization of stress softening. In the second part of the paper, a phenomenological 
model for the HDNR material under biaxial shear accounting for stress-softening is proposed, 
whose parameters are calibrated against the experimental results. The stress-softening of the 
proposed model provides a satisfactory description of the transient response of the rubber 
(characterizing the transition from the virgin state to the damage stabilization) and it is based on a 
degradation model taking into account, for any strain history, the dependence on the maximum 
strain experienced and the effects of the deformation-induced anisotropy. In particular, the use of 
the representative directions approach is employed to generalize uniaxial shear models, previously 
developed by some of the authors of this study [2],[26]-[29], to a bi-axial shear model for HDNR.  

EXPERIMENTAL CAMPAIGN 

This section illustrates the experimental campaign aimed at studying the direction-dependence of 
the Mullins effect and the resulting deformation-induced anisotropy of the transient response of 
filled rubber. Small material test pieces have been employed, due to the large number of 
independent tests that have to be carried out on separate virgin HDNR samples to achieve a 
satisfactory characterization of the stress softening affecting the transient response. All the rubber 
specimens have been manufactured by TARRC using a rubber compound employed for seismic 
isolators and satisfying the prescriptions of the current European code for anti-seismic devices [25] 
about the stability of shear properties under repeated cycling (the ratio between the stiffness of the 
tenth and first cycle must not be less than 0.6). The results of uni-axial double shear tests, aimed at 
characterizing the virgin and stable one-dimensional behaviour of this rubber, are first reported. 
Since the focus of the paper is on the bi-axial behaviour of virgin filled rubbers, only some results 
are included and a more complete description of these tests may be found in [2]. The second set of 
tests consists of rotated uni-axial double shear tests, in which the testpieces are first loaded in one 
direction, then rotated, and finally reloaded in different directions. This enables the dependence of 
the Mullins effect on the reloading direction to be investigated. Finally, biaxial tests are carried out 
to study and characterize the virgin and stable rubber behaviour under bi-axial shear, with particular 
attention to the deformation-induced anisotropy and coupling effects between deformations on the 
two axes.  
 
Uni-axial double shear tests  

The testpiece for double-shear tests consists of two cylindrical rubber discs (Figure 1a) moulded 
between three metal end pieces. The nominal thickness of the disc is 6mm and its diameter is 
25mm, complying with Standards for testing rubber in simple shear [30] which prescribe a ratio of 
width (in the direction of shear) to rubber thickness > 4 to justify the assumption that the rubber is 
in uniform simple shear. The two external metal end pieces are fixed in the stationary clamp of the 
testing machine (Figure 1b), attached to the load cell. For each test the load cell force and the 
imposed displacements are recorded by the testing machine’s internal sensors. Results are reported 



in terms of shear stress () versus shear strain (), calculated by dividing the measured force and 
displacement by the area and the thickness of the testpiece respectively.  
Double shear tests have been carried out at different strain amplitudes and strain rates. Since the 
dependence on the strain rate is quite low [2], only the results of tests carried out with a strain rate 

equal to 14  s&  are reported in this paper. Figure 2a-d illustrates the shear stress-strain cycles of 

four different virgin rubber test pieces subjected to maximum strain amplitudes max equal to 2, 1.5, 
1, and 0.5. The strain path of each test consists of 20 cycles at the maximum strain amplitude 
followed by a further 20 cycles at each smaller amplitude. For example, in Figure 2 the 20 cycles at 

max =2 are followed by 20 cycles at amplitudes equal to 1.5, 1, 0.5 and 0.25. 

   a) 
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  b)  

 

 
Figure 1. Test set-up: (a) double shear test piece geometry and (b) test machine 

Figure 2. Uniaxial shear test results at strain rate 4 s-1 corresponding to maximum shear strains of (a) 2.0, (b) 1.5, (c) 1.0 
and (d) 0.5. 
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It is evident from the figures that the stress-softening characterizing the shear response under 
repeated cycling is significant, and that, once the stress-softening is stabilized for the cycles at the 
maximum strain amplitude, successive cycles at smaller amplitudes are also stable (no additional 
stress softening occurs) and their stiffness increases as the strain amplitude decreases (Payne effect). 
In order to show the dependence of the stress-softening level on the maximum deformation 
previously experienced by the rubber, only the stable cycles observed at the maximum strain 
amplitude for each test are reported in Figure 3a. It is evident that the stiffness associated with a 
cycle is the higher, the lower is the maximum previously experienced strain, thus resulting in less 
stress-softening of the rubber. This is also confirmed by the comparison reported in Figure 3b, 
reporting for all the tests the stable cycles at the strain amplitude equal to 0.5. It is evident that the 
stiffness of these cycles decreases as the maximum strain amplitude previously imposed increases. 
Beside the dependence on the maximum experienced strain, another important aspect of the Mullins 
effect that can be analyzed by means of uni-axial double-shear tests, is the dependence on the strain 
direction (positive and negative strains), which has been reported also in other experimental 
investigations [18]-[19]. To this end, a second series of tests have been carried out, in which a pair 
of virgin rubber samples have been subjected to the strain histories reported in Figures 4a. The first 
strain history consists of a common sequence of 6 cycles with triangular shape at an amplitude of 
1.5 and strain rate of 2 s-1, whereas the second one consists of 6 half cycles with triangular shape at 
an amplitude of 1.5 followed by 6 half cycles with triangular shape at an amplitude of -1.5. Figure 
4b shows the hysteretic cycles corresponding to the applied strain histories. The comparison 
between the results of the two tests clearly shows that the stress-softening occurring in one direction 
has a negligible influence on the stress-softening in the other direction.  
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Figure 3. Stable cycles for uniaxial shear test results: (a) at different maximum strain amplitudes and (b) at a strain 

amplitude of 0.5 after different maximum strain amplitudes 

Figure 4. Symmetric and asymmetric tests: (a)  strain histories imposed and (b) hysteretic response.  
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Rotated uni-axial double shear tests  

This section illustrates a series of experimental tests conducted on many different vulcanized virgin 
material samples in simple-shear under strain histories acting in different directions.  
The cylindrical double shear testpieces were installed in a special jig in a uniaxial servohydraulic 
testing machine. This jig permitted rotation of the testpiece about its axis, such that all three metal 
pieces go through the same angle so as not to induce torsion between consecutive uniaxial tests 
along the invariant machine axis. During these uniaxial tests, the metal pieces were firmly clamped 
to eliminate any backlash or tendency to rotate. Starting from zero shear strain, the special jig 
enabled the testpieces to be subjected to a sequence of cycles in uniaxial shear, first in the reference 
direction (denoted by a rotation angle =0°), then in a different direction rotated of an angle  with 
respect the reference one. In particular, each virgin rubber specimen has been subjected to 6 
consecutive cycles in a sequence of increasing strain amplitudes along each of two different 
directions: the reference direction (first) and the rotated direction (after the six cycles along the 
reference direction). The strain amplitudes considered for the cycles are 0.25, 0.5, 1, 1.5, and 2.5 
(with a strain rate equal to 2 s-1) whereas the adopted values of  are: 0°, 30°, 60°, 90°, 135°, 180°. 
In order to allow time to rotate the specimen, 60 seconds of rest between cycling at every amplitude 
and direction 0° have been imposed, as shown in Figure 5. Figure 6 shows the stress-strain loops 
obtained. The response without rotation (0° of rotation) is illustrated in Figure 6a. It is important to 
note that the contribution of the Mullins effect is strongly reduced when repeating the tests in the 
same direction, though it is not negligible due to some recovery occurring between the time 
intervals of rest of the test sequence. However, from the Figures 6b-6f it is evident that an 
additional softening, in the new direction, becomes more and more pronounced in the repeated test 
(red) as the rotation angle increases. 
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Figure 5. Imposed strain history of the rotated double shear test.  
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Figure 6. Double shear tests on rotated testpieces: (a) =0°, (b) =30°, (c) =60°, (d) 90°, (e) =135° and (f) =180°. 

Finally, Figure 6f shows that the response in the direction with 180° of rotation is very close to the 
response in the reference direction of the virgin testpiece, which confirms that the Mullins effect 
depends on the sign of the strain, consistent with the uni-axial test results described previously. In 
other words, the softening effect of the half cycles in the reference direction on the subsequent 
behaviour in the opposite direction is nearly negligible; for intermediate angles, the softening effect 
lies in between these limits. 

Bi-axial shear tests  

The last part of the experimental campaign consisted of bi-axial shear tests performed on separate 
virgin HDNR samples, with particular attention to the deformation-induced anisotropy 
characterizing the transient response due to the direction-dependence of the Mullins effect, to 
elucidate the response of the virgin rubber under biaxial inputs. Different strain trajectories were 
used in the tests, to probe both the Mullins and the biaxial coupling effects in a comprehensive but 
also a systematic way. These trajectories have been controlled by imposing a biaxial (but not 
torsional) relative motion to the two steel plates bonded to the rubber specimen, which consisted of 
a cylindrical single rubber layer of thickness h equal to about 8 mm and radius a equal to 25 mm 
(Figure 7).  
Parallel motion of the metal plates between which the rubber layer is bonded essentially imposes a 
state of nominal uniform simple shear on the rubber provided that the width to height ratio of the 
rubber specimen is sufficiently high, because the imperfection in the boundary conditions due to the 
stress-free edges of the rubber then becomes less significant. Standards for testing rubber in simple 
shear [30] stipulate a minimum value of this ratio equal to 4, while the value for the tested pieces is 
6.25. The biaxial horizontal displacements have been imposed on the specimens, by means of two 



plates sliding on horizontal orthogonal linear bearings. Each plate was attached to a horizontal 
actuator, with maximum load and stroke capacities respectively of 10 kN and 150 mm. Here again, 
results are reported in terms of shear stress () versus shear strain (), calculated by dividing the 
measured force and displacement by the area and the thickness of the testpiece respectively. In 
addition to the horizontal displacement, a sliding plate on a vertical linear bearing was used to 
impose a vertical deformation, producing an initial vertical pressure of 2 MPa. 
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Figure 7. Single rubber layer bonded between shims  

Figure 8 shows the test rig used for performing the test. Throughout the experiments, the 
displacements and forces in the horizontal directions have been measured by internal sensors of the 
actuator. Forces, free of the rolling resistance of the linear bearings, have also been measured by a 
triaxial load cell connecting the testpiece to the lower linear bearing. In general, the differences 
observed between the forces measured by the two instruments were very low. Thus the forces 
measured by the internal sensor of the actuators are reported hereinafter.    
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Figure 8. Biaxial test rig: (a) front view and (b) plan view (b). 



A series of cyclic two-directional displacement trajectories of different shapes and amplitudes have 
been imposed on the rubber layers. The tests corresponding to a cruciform trajectory in the strain 
plane are reported first. These tests consist of imposing a cyclic sinusoidal displacements in one 
direction (y) and then in the orthogonal direction (x) as shown in Figure 9a. The frequency of the 
imposed motion is 0.5 Hz and the amplitude max is 1.5, for consistency with frequency and 
amplitude of laminated rubber bearings usually employed for seismic isolation. The stress trajectory 
as well as the stress-strain diagrams along the x and y directions are reported in Figures 9b-9d. This 
test confirms that cycling in one direction (y) up to the stable behaviour has a not negligible effect 
on the response along the orthogonal direction (x). However, the amount of stress-softening along x, 

although not negligible, is reduced with respect to that along y, showing the Mullins effect induces 
anisotropy. Results of this bi-axial test along the first load direction (y) are compared in Figure 9d 
with the results of the uni-axial test carried out on double-shear specimens at the same maximum 
strain amplitude (red dashed cycles). The two plots are very similar, confirming that the vertical 
load has negligible influence.  
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Figure 9. Biaxial tests: (a) cruciform strain trajectory at 150%, (b) stress trajectory, (c) stress-strain response in the x-
direction, (d) stress-strain response in the y-direction 

Circular strain trajectories have also been imposed to study the consequence of the direction-
dependence of the Mullins effect on the bi-axial rubber response. A circular trajectory of radius max 
= 1.5 in the shear strain plane was first applied. This trajectory has been obtained by imposing, after 
a ramp in the x-direction up to max, sinusoidal motions at the same frequency of 0.5 Hz in the two 
orthogonal directions with a phase lag of /2. Circular trajectories at smaller strain amplitudes (max 
= 1.0 and max = 0.5) have also been imposed after the larger circular trajectory; 20 cycles were 
applied at each amplitude. Figure 10 reports the stress trajectory and the stress-strain loops. The 



stress trajectory reported in Figure 10b shows that after the application of the ramp along the x-
direction, a relaxation process occurs, with the maximum stress falling from about 1.9 MPa (point A 
of Figure 10b) to about 1.5 MPa (point B of Figure 10b). Assuming that this effect has vanished 
after one half cycle of deformation, as in the previous tests, the maximum stresses observed in the –
x and –y directions (points C and D of Figure 10b) are similar to the maximum value of 1.9 MPa 
observed in the +x direction (point A of Figure 10b). This confirms that a softening of the material 
in one direction has little influence on the behaviour in other directions. Finally, it is important to 
observe that during all the response history the stress resultant is not oriented as the strain vector. In 
fact, when the stresses are at points C and D in the stress trajectory, the strains are at points C’ and 
D’ in the strain trajectory. In the case of linear elastic behaviour, the orientation of the stresses and 
of the strains would be the same. Figures 10c and 10d report the shear stress-strain diagram in the 
two orthogonal directions (x and y). Also in this case, the results in terms of stress-strain diagrams 
are compared with the results of the uni-axial double shear tests carried out at the same maximum 
strain amplitude (red dashed cycles in Figure 10c and 10d). As expected, the two initial load paths, 
in the +x direction of Figure 10c, are very similar whereas the stable cycles are significantly 
different. This shows that the stress in one axis is not only influenced by the deformation in that 
axis, but also by the simultaneous deformation in the orthogonal axis: i.e. there is a marked 
coupling effect.  The coupled horizontal behaviour results for this trajectory in a larger hysteresis 
loop than in the case of uncoupled uni-axial behaviours, as also observed in [10]. The circular test 
has been repeated on a different testpiece with a maximum amplitude max = 1.0 and similar 
conclusions may be drawn for the test results (Figure 11).  
 
 a) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2 

-1.5

-1 

-0.5

0

0.5

1

1.5

2

 
y 

[ 
] 

 x [ ] 

C´

D´

A,B

 

 b) 

 
y
 [

M
P

a]
 

x [MPa] 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2 

-1.5

-1 

-0.5

0

0.5

1

1.5

2

-0.5

C

D

AB

 
 c) 

-2 -1.5 -1 -0.5 0.5 1.5 2
-2 

-1.5

-1 

-0.5

0

0.5

1

1.5

2

 
x 

[M
P

a 
] 

x [ ] 
-0.5 1.0 0

bi-axial test
uni-axial test

A

B

C

D

 

 d) 

-2 -1.5 -1 -0.5 0.5 1.5 2
-2 

-1.5

-1 

-0.5

0

0.5

1

1.5

2

 
y 

[ 
] 

y [ ] 
-0.5 1.0 0

bi-axial test
uni-axial test

D

C
A,B

 
Figure 10. Biaxial tests: (a) circular strain trajectory at 150%,  (b) stress trajectory, (c) stress-strain response in the x-

direction, (d) stress-strain response in the y-direction.  
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Fig 11. Biaxial tests: (a) circular strain trajectory at 100%,  (b) stress trajectory, (c) stress-strain response in the x-

direction, (d) stress-strain response in the y-direction 

A square trajectory (Figure 12 a) and a figure 8-shaped trajectory (Figure 13a) have also been 
carried out on other virgin specimens at a maximum strain amplitude level of 1.0. The figure 8-
shaped trajectory was obtained by imposing a sinusoidal displacement at a frequency of 0.5 Hz 
along the y-direction and at twice this frequency along the x-direction. The test with the square 
trajectory is particularly interesting because it confirms the deformation-induced anisotropy due to 
the Mullins effect, since similar observations about the first cycle may be made as for the circular 
trajectory case. Moreover, by comparing the strain and stress trajectories reported in Figure 12a and 
12b, a rotation of the stress resultant with respect to the imposed displacement can be observed, 
which provides an indirect measure of the dissipation properties of the material.  
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Figure 12. Biaxial tests: (a) square strain trajectory at 100%, (b) stress trajectory, (c) stress-strain response in the x-
direction, (d) stress-strain response in the y-direction   

In fact, if the material behaviour were isotropic elastic, the stress would be oriented as the strain, 
and the stress trajectory would not be rotated (segments OA and OA’ in Figure 12 would have the 
same direction). Thus, the rotation angle between these two segments is due to dissipation 
mechanisms of the material and this can be useful for calibrating the material response.  
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Figure 13. Biaxial tests: (a) figure 8-shaped strain trajectory at 100%, (b) stress trajectory, (c) stress-strain response in 

the x-direction, (d) stress-strain response in the y-direction 

 



The stress-strain results in each orthogonal direction (x and y) are again compared with those of the 
uni-axial double-shear test carried out at the same maximum strain amplitude (red dashed cycles in 
Figure 12c and 12d) and the increase in hysteresis over the uniaxial case is even more remarkable 
than in the case of the circular trajectory. In contrast, smaller differences are observed when the 
uniaxial data is compared to stress-strain results for either axis for the figure 8-shaped trajectory 
(Figure 13c and 13d), particularly in the x-direction, since coupling effects between responses along 
the x and y directions are reduced by the strain path passing at each cycle through the origin 
(corresponding to zero deformation).  
From the results reported in this section the following useful remarks can be drawn: (i) first of all a 
numerical model able to simulate the induced anisotropy of the Mullins effect is necessary to 
accurately simulate the seismic response of isolated structures, since in the first cycle of each test 
the maximum and minimum stresses in both the directions are very similar and only in the second 
cycle is a significant reduction of stress observed, (ii) coupling effects must also be simulated by the 
numerical model (eg 2D coupled plasticity models) because they may be of particular importance 
for both the transient and stable responses, depending on the strain trajectory shape during the 
seismic event. 

BIAXIAL CONSTITUTIVE MODEL FOR THE VIRGIN HDNR 

This section describes a biaxial shear constitutive model for HDNR accounting for the deformation-
induced anisotropy observed in the experimental tests presented in the previous section. The 
proposed model introduces several advances in the description of the stress-softening behaviour of 
rubber over the models already available in the technical literature, which mainly focus on the 
stable horizontal biaxial behaviour, or describe the stress-softening by employing isotropic laws 
neglecting the anisotropic behaviour induced by the stress path. Based on the proposed material 
model, the force-displacement relationship of HDNR bearings used in seismic isolation can be 
evaluated through simple geometrical considerations. The validity of the assumption that the 
horizontal load-deflection behaviour of HDNR bearings can be estimated with sufficient accuracy 
from the shear stress-strain behaviour of the material follows if the deflection estimated from the 
bending compliance of the bearing is negligible compared to the sum of the shear compliances of all 
the rubber layers. For HDNR bearings used in seismic isolation (having large shape factors) this 
assumption is reasonable under the design condition, characterized by vertical loads and shear 
deformations less than limit values imposed by design codes [25]. It is worth to note that in these 
conditions the proposed model can be used both for circular and square bearings. Others situations 
where the axial force may influence significantly the horizontal bearing response, which becomes 
anisotropic for square bearings [13], are out of the scope of the present study. 

Proposed biaxial constitutive  model  

Let  Tyx γ  and  Tyx τ  denote respectively the vectors collecting the shear strains and 

shear stresses (in two orthogonal directions x and y), as defined in the previous sections describing 
the experimental tests. The proposed model provides a relation between γ and τ. In particular, it is 
based on the additive decomposition of the stresses into two components. According to this 
concept, already employed in [2] for describing the one-dimensional response, the stress-strain 
material response is decomposed into two contributions:  

 mτττ  0     (1) 

where the former ( 0τ ) is the stable component not affected by the strain history, whereas the latter 

( mτ ) describes the additional transient response, which degenerates as the stress-softening evolves 

during the strain history. The component 0τ of the stress is described by assuming a rheological 



model consisting of a nonlinear elastic spring ( eτ ), modelling the non linear elastic behaviour of the 

rubber and acting in parallel with other elements, modelling the dissipative component of the 
response. At least two elements are required to describe the dissipative behaviour of the HDNR: 

1vτ , representing the main dissipative contribution of the response, sensitive to very low strain rates 

but not to strain rates typical of seismic histories, and the term 2vτ , which is a visco-elastic term 

sensitive to strain rates typical of seismic histories. The component 0τ may be expressed as 

follows: 

      22110 ,,,, vvvve γγγτγγγτγττ &&&&     (2) 

The first term describing the elastic shear strain eτ  is oriented as the shear strain γ and can be 

expressed as: 

  γγγτ cbae 
24

 (3) 

where   denotes the norm of a vector. The main dissipative contribution 1vτ  is modelled by a 

nonlinear plastic element in series with a viscous element (a simple Maxwell element), accounting  
for the long-term relaxation and providing the viscous shear strain rate 

 111 vv τγ &
  (4) 

The remaining part of the total strain is a plastic shear strain rate  1vp γγγ &&&   controlling the 

response of the plastic element. This contribution is described by a modified bounding surface (BS) 
model with vanishing elastic region [31]-[32], [4]-[5]. In the 2D shear stress space, the adopted 
boundary surface  pR γ  reduces to a curve with the expression 

   2

0 1p pR   γ γ  (5) 

where the possible state of stress are limited by the condition 1v Rτ . The assumed BS does not 

depend on the stress direction but it changes during the strain process, as pγ  changes. The shear 

stress is provided by an incremental law and its progress is driven by the strain rate and by the 
position of the current stress with respect to the current BS. It is useful to define the current image 

stress  nγτ pv R1ˆ , where /p pn γ γ& &  is the unit vector in the direction of the plastic strain rate. 

The stress rate has the expression: 

  1 1 2 1 1ˆ
v p v vR   τ n γ τ τ& &&   (6) 

The first term accounts for the variation of the BS and is proportional to the rate of 
2

pγ , i.e., 

ppR γγ &&  2 , the second stress contribution points to the image stress and is proportional to the 

distance between the current stress and the current image stress laying on the BS. According to the 
mono-dimensional case [2] the parameter 2  depends linearly on the magnitude of the current 

plastic deformation: 

 2 2,1 2,2 p    γ     (7) 

It is worth noting note that, in accordance with experimental evidence, Eqn. (6) implies that the 
current stress is differently oriented with respect to the current total strain. Finally, a simple 
Maxwell element is sufficient to describe the viscous term 2vτ in the strain-rate range of interest, 

where a very low contribution is expected. The stress contribution is provided by the law: 



  222 vvv E γγτ     (8) 

where 2vγ  is the inelastic strain and 2vτ  is  the inelastic stress vectors oriented as the elastic strains 

 2vγγ  . The increment of the inelastic strain is along the same direction of the stress, i.e. of the 

elastic strain: 

 222 vv τγ &     (9) 

The values of the model parameters characterizing the stable response are reported in Table 1 and 
are consistent with those employed for the one-dimensional constitutive law presented in [2] for the 
same rubber compound. The reader is referred to that paper for figures of the uniaxial simple shear 
data from which they were fitted and also for a more-in depth description of the model features and 
the differences with previous models employing the bounding surface concept [4],[5]. The 
assumption that this contribution to the stress is isotropic is made here and justified that the 
extended model fits the new biaxial data. 
 

Table 1 – Model parameters of the stable (left)  and transient (right) response 

e v1 v2  me mv 

a b c 0 1 2,1 2,2 1 E2 2  e e  v v 

MPa MPa MPa MPa MPa - - (MPa)-1s-1 MPa (MPa)-1s-1  - - - - - - 

0.015 -0.05 0.28 0.14 0.08 3.5 1.5 0.4 0.068 8.5  1.7 0.25 0.4 2.2 0.13 0.4 
 
The extension of the transient response requires a different approach due to the deformation-
induced anisotropy inherent to the Mullins effect. To model this direction-dependent material 
behaviour resort is made to the concept of representative directions [23], allowing the use of a one 
dimensional material law with damage parameters to simulate more complex 2D or 3D material 
behaviours. With reference to the 2D shear response, this homogenization technique is based on the 
selection of uniformly distributed directions in the plane and on the projection of the 2D shear strain 

state γ  to these directions. Let the unit vector n  represent the direction corresponding to the angle 

 ,  the projection along that direction identifies the 1D (one-dimensional) strain:  

 
 n     (10) 

For each direction, a 1D constitutive law relates the one-dimensional deformation measure   with 

a one-dimensional measure of the associated stress  , oriented as n . In addition, a set of internal 
variables is required to describe plastic and damage dissipative phenomena. These variables can be 

collected in the vector 
v  as their values may differ from direction to direction. The response in the 

considered direction is known once the evolution laws of the internal variables are given: 

  , ;g    v v&&     (11) 

and the stress is a derived quantity that can be expressed as follows 

    v;, &f   (12) 

If the selected directions are homogeneously and continuously distributed, the global 2D shear-
stress  mτ due to the Mullins effect can be obtained by the following integral 

    1
, ,m

o
f d

      


 τ v v n& &    (13) 



where v  contains the state variables for the different directions 
v . The integral of Eqn. (13) is 

extended over   rather than 2 as is the case in [23], since the generic angle   represents fibers 
along both the positive and negative direction. 
In numerical applications, a discrete number of directions is assumed, thus the integral of Eqn. (13) 
can by approximated to a sum over all discrete directions and the state vector function reduces to a 
finite number of internal variables. In this paper, the response along each direction is the same as in 
[2] and accounts for the direction-dependent stress-softening. In particular, the transient response 
can be divided into two contributions: 

     nmvme     (14) 

where the two damage contributions affecting the elastic and dissipative responses can be expressed 
as: 

     eeeme q  1  for  0  (15a) 

     eeeme q  1  for 0   (15b) 

     211 vvvvmv q    (15c) 

As already assumed in [2] damage parameters 
eq  and 

eq  tend to limit values depending on the 

current value of the strain experienced along the corresponding direction. Their evolution laws, for 

0 , may be posed in the following form: 

 0
eq&  (16a) 
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where mod  is the maximum amplitude for which the model is deemed valid ( mod = 2.5 for this 

model) and e  is a velocity parameter. Similarly for 0   the roles of 
eq&  and 

eq&  are 

interchanged in equations 16 and   is replaced by  .  For the damage parameter 
vq  a similar 

evolution law is assumed, with the same maximum values, but with a different velocity parameter 
( v ) and without the strain-direction dependency: 
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The parameters characterizing the transient response (e, e, v, vare the same as those used in 
the mono-dimensional model described in [2] and they are reported in the right part of Table 1. Also 

for the contributions to the stable response in each direction ( e

 ,  1v  and  2v ), the same expressions 

of the mono-dimensional case are used. The values of the parameters for the response along 



direction   need however to be scaled to obtain the same global stable uni-axial response of the 
uniaxial model. Table 2 reports the relation between the parameter adopted for the response along 
direction   and the original mono-dimensional model.  

Table 2 – Calibrated model parameters for the one-dimensional response in the j-th direction 

 e   1v   2v  

aa 2.3  bb 8.2  cc 2  00
2



    pp EE 2

 22 2 vv EE 
 5.022     

 
It is worth noting that under the assumption of isotropic Mullins effect the model would simplify 
notably, and the approach based on representative directions would not be necessary to describe the 
transient response. In fact, under this assumption, the damage progresses with the norm of the 
displacement, as also assumed in [4]-[5], and Eq. 13-17 would be replaced by the following 
expressions: 

 mvmem τττ    (18) 

where 

   eeeme q ττ  1   (19a) 

   211 vvvvmv q τττ    (19b) 

and the evolution laws for the both damage parameters ( eq and vq , denoted in the following 

expressions as 
ve

q ) would be: 
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  (20b)  

By employing this approach the dependence of the Mullins effect on the strain direction and on the 
strain sign cannot be accounted for.  

Numerical simulation of shear tests 

In this paragraph the ability of the proposed model to simulate the transient and stable response 
under different shear strain paths is checked through the comparison between experimental tests and 
numerical simulations. Moreover, the importance of considering the deformation-induced 
anisotropy due to the Mullins effect is highlighted by showing the results of the simulations 
obtained by using the isotropic Mullins model with the same parameters as those used for the 
proposed model. Figure 14 reports the simulation of the cruciform tests. As expected, the proposed 
model is able to simulate that after cycling in one direction (y) to reach relatively stable cycles 
(Figures 14b and 15b), significant stress-softening still occurs in the orthogonal direction (Figures 
14a), i.e., the response has not been fully stabilized as in the case of the isotropic Mullins effect 
(Figure 15a).  
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Figure 14. Numerical simulation of bi-axial shear tests with cruciform trajectory (proposed model). 
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Figure 15. Numerical simulation of  bi-axial shear tests with cruciform trajectory (isotropic model) 

In Figure 16 the simulations of the circular tests are shown for both the cases of maximum 
amplitude max = 1.5 (left column) and max = 1.0 (right column). From the stress trajectory reported 
in Figures 16a and 16b it can be observed that the softening progresses similarly in the experimental 
and numerical responses. Also the stress-strain cycles in the two orthogonal directions (x and y) are 
very similar to each other for both the transient and the stable response.  
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Figure 16. Numerical simulation of  bi-axial shear tests with circular trajectory at maximum strain of (a, c, e) 150% and 

(b, d, f) 100%. 

For these tests, also the stress trajectory obtained by using the isotropic model are reported (Figure 
17), revealing that in this case the softening progresses towards a stable state in significantly fewer 
cycles with respect to the experimental behaviour. This is again the consequence of the isotropic 
stress-softening assumption (i.e. softening in one direction has an effect in all the other directions). 
Finally, Figure 18 shows that the proposed model can accurately simulate also the experimental 
tests with square and figure-8 trajectories. 
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Figure 17. Numerical simulation of  bi-axial shear tests with circular trajectories at maximum strain of  (a) 150% and 

(b) 100% by using the isotropic model. 

 



a) 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5


x
 [MPa]

 y [
M

P
a]

 

 

test
model

 

b) 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5


x
 [MPa]

 y [
M

P
a]

 

 

test

model

 
c) 

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5


x
 [ ]

 x [
M

P
a]

 

 

test

model

 

d) 

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5


x
 [ ]

 x [
M

P
a]

 

 

test

model

 
e) 

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5


y
 [ ]

 y [
M

P
a]

 

 

test

model

 

f) 

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5


y
 [ ]

 y [
M

P
a]

 

 

test

model

 
Figure 18. Numerical simulation of bi-axial shear tests with  (a, c, e)  square and (b, d, f)  figure 8-shaped trajectories at 

maximum strain of 100% . 

It is worth noting that the proposed model is able to simulate (by using the same parameters) both 
bi-axial and uni-axial responses. In order to show this aspect, the simulation of the uni-axial double 
shear tests reported in Figures 2 and 4 are illustrated in Figure 19. In particular, in Figure 19a the 
symmetric cyclic test of Figure 2 at max = 2.0 is simulated, whereas Figure 19b reports the 
simulation of the asymmetric test of Figure 4. These plots confirm the ability of the model to 
account for the direction dependence of the Mullins effect also for the uni-axial case. 
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Figure 19. Numerical simulation of uni-axial shear tests of (a) Figure 2a and (b) Figure 4 

CONCLUSIONS 

This study illustrates the results of an extensive experimental campaign aimed at characterizing the 
complex stress-softening behaviour of high damping natural rubber (HDNR) bearings, commonly 
employed in seismic isolation. A series of uni-axial double shear tests, rotated double shear tests, 
and biaxial test has been performed on separate virgin HDNR samples showing two important 
features of the stress-strain behaviour: (i) the softening due to the Mullins effect is direction-
dependent and so will result in anisotropic mechanical properties of rubber if the scragging is not 
isotropic (ii) there is coupling between the responses in the two shear directions, that is, the stress 
response along one axis depends not only on the coaxial strain, but also on details of the strain in 
the orthogonal axis. These effects need to be considered when simulating the seismic response of 
structural systems isolated by HDNR bearings, since they may affect significantly both the transient 
and stable responses depending on the deformation path. 
A numerical biaxial model able to accurately describe these significant features of the HDNR 
bearing behaviour is proposed, based on the additive decomposition of the stresses. The stable 
behaviour is described by a 2D nonlinear elastic model in parallel with a 2D plasticity model (for 
the hysteretic contribution) and a 2D Maxwell model (for the viscous contribution). On the other 
hand, the transient response, characterized by the deformation-induced anisotropy inherent to the 
Mullins effect, is described by resorting to the concept of representative directions. This approach 
involves a homogenization of the responses of a set of uniformly distributed directions in the plane, 
each characterized by the one dimensional material law (with damage parameters) already 
developed for the one-dimensional case. 
The effectiveness of the proposed model is verified by comparing the results of both the uni-axial 
and the bi-axial shear tests with the corresponding numerical simulations. Based on simple 
considerations of the isolator geometry, the model can be employed to accurately simulate the 
horizontal biaxial response of virgin HDNR bearings or of HDNR bearings subjected to a long 
period of rest, such that the virgin properties can be assumed to have fully recovered. Dynamic 
analyses accounting for the induced-anisotropy of the Mullins effects may be carried out to properly 
evaluate the seismic reliability of structures isolated by HDNR bearings under design actions. The 
proposed model could also be used to develop a 3D model of virgin HDNR bearings able to capture 
all the biaxial phenomena presented here, along with coupling effects between the horizontal and 
vertical behaviour, which could be useful to describe the cases where axial force fluctuations 
influence significantly the horizontal bearing response.   
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