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ABSTRACT
Recently, the geolocalisation of tweets has become an important
feature for a wide range of tasks in Information Retrieval and other
domains, such as real-time event detection, topic detection or dis-
aster and emergency analysis. However, the number of relevant
geo-tagged tweets available remains insu�cient to reliably per-
form such tasks. �us, predicting the location of non-geotagged
tweets is an important yet challenging task, which can increase
the sample of geo-tagged data and help to a wide range of tasks.
In this paper, we propose a location inference method that utilises
a ranking approach combined with a majority voting of tweets
weighted based on the credibility of its source (Twi�er user). Using
geo-tagged tweets from two cities, Chicago and New York (USA),
our experimental results demonstrate that our method (statistically)
signi�cantly outperforms our baselines in terms of accuracy, and
error distance, in both cities, with the cost of decrease in recall.
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1 INTRODUCTION
In recent years, social media services such as Twi�er have gained
increasing popularity within the research community since their
data is spatially �ne-grained (i.e. at street or neighborhood level).
Such a characteristic has provided new opportunities for a broad
range of applications in Information Retrieval (IR) including real-
time event detection [2], sentiment analysis [3], topic detection
[7], and disaster and emergency analysis [1, 8, 11]. However, since
only a very small sample of messages in the Twi�er stream contain
geographical information [5], geo-locating (or geolocalising) indi-
vidual tweets has become an important yet challenge task. In this
paper, we focus on geolocalisation of tweets at a �ne-grained level.
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To tackle this problem, we propose a novel approach to combine
evidence gathered from geo-tagged tweets that are similar based
on their contents to a given non-geo-tagged tweet.

Several approaches have been proposed in the past to provide
�ne-grained geolocalisation of tweets, e.g. [9, 13]. �ese works
�rst create a document for each prede�ned geographical area by
concatenating the texts of the tweets belonging to that area. �ey
then create a vector representation of that area from the gener-
ated document using a bag-of-word approach. To geolocate a given
tweet, they then �nd the most similar area to that tweet based on its
content-similarity, using the generated vectors [9]. Paraskevopou-
los and Palpanas [13], in addition to above, have also considered
time-evolution characteristics in their matching algorithm. Al-
though these approaches have provided important insights on how
to tackle �ne-grained geolocalisation of tweets, due to the noisy
nature of Twi�er data [19], such an aggregation method could af-
fect the accuracy of matching algorithms and in turn, decrease the
accuracy of the geolocalisation.

In this work, we adopted a weightedmajority voting algorithm to
the problem of �ne-grained geolocalisation of tweets. In particular,
we estimated the geographical location of a given non-geo-tagged
tweet by collecting the geo-location votes of the geo-tagged tweets
that are most similar regarding their contents to that tweet. �e
weights of the votes were calculated based on the credibility of
its source, (i.e. Twi�er user). We then performed an exhaustive
study of di�erent models across two test collections generated
based on tweets gathered from two di�erent cities to validate our
models. Our experimental results showed signi�cant improvements
regarding accuracy and reduction of geographical distance error
compared to our baselines.

�e rest of the paper is organised as follows. First, we discuss
previous research and motivate our work. Second, we introduce
our approach for �ne-grained geolocalisation of a non-geo-tagged
tweet. Finally, we present our experimental setup and discuss our
results.

2 BACKGROUND
Several research e�orts have identi�ed the problem of geolocalising
individual non-geo-tagged tweets. For example, Schulz et al. [18]
tackled this problem by exploiting di�erent spatial indicators of a
tweet – i.e. tweet text or user pro�le – and mapping them to di�er-
ent geo-spatial datasets such as DBpedia Spotlight or Geonames.
More recently, other works tackled this problem by dividing the
geographical space into areas of a given size and then modelled the
language for each area [9, 13, 17, 20]. �en, a ranking approach is
used to retrieve the most likely area based on the probability that
a non-geo-tagged tweet was issued in that area. However, these



studies used a coarse-grained level of granularity – i.e. zip codes
to city or country level. In contrast, the problem we aim to tackle
is the geolocalisation of Twi�er posts at a �ne-grained level – i.e.
street or neighbourhood level.

An example of previous work on �ne-grained geolocalisation is
the work by Kinsella et. al. [9]. �ey a�empted to predict location
from country level to postal code level. As a result, the accuracy of
their model decreases signi�cantly when trying to predict at such
�ne-grained level. Another example of �ne-grained geolocalisation
is the work by Paraskevopoulos et. al. [13]. �e authors re�ned
the approach proposed by Kinsella et. al. [9] by dividing the ge-
ographical space into �ne-grained squares of size 1km. Also, the
authors reduced the granularity of time by considering time slots
of 4 hours, and computing the number of tweets by time for each
candidate location compared with the global activity of the city. In
this way, the model promotes short-term events in detriment of
long-term events.

Inspired by Paraskevopoulos et. al. [13], we follow the strategy
of dividing the city into squares of size 1km. However, the time
dimension is out of the scope of this paper. �us we consider
short-term and long-term events alike. Moreover, the works above
perform a concatenation of texts of tweets belonging to a pre-
de�ned area to represent that area as a single bag-of-word vector.
We believe that by concatenating the content of the tweets, relevant
information can be missed when predicting a location. In contrast
to these works, we consider each tweet individually, representing
each area as multiple bag-of-word vectors during the prediction
process.

Also, our approach take into account the credibility of tweets.
Other works have also considered the credibility of tweets. For
example, McCreadie et. al. [11] has considered the idea of assigning
a credibility score to tweets but for the disaster and emergency
detection task. �ey have computed the credibility score using re-
gression models with text features and user information. �ey have
used this score to inform the user about the veracity/credibility of
events derived from social media. We also incorporate the credibil-
ity of tweets in our �ne-grained geolocalisation approach. But in
contrast to McCreadie et. al. work, we incorporate this score as a
weight of each vote in our adopted majority voting approach. �e
majority voting algorithm is a well known, fast and e�ective strat-
egy widely adopted for prediction and re-ranking tasks [4, 12, 16].
However, to the best of our knowledge, this is the �rst time the
majority voting is considered to tackle the geo-location of tweets.
Next section describes our approach in detail.

3 FINE-GRAINED GEOLOCALISATION
Our proposed approach consists of three steps. First, we create
a grid to divide the geographical area into squares of size 1km
and associate each geo-tagged tweet to an area based on its loca-
tion. As discussed in Section 2, the grid approach has been widely
used in the literature to represent geographical areas at di�erent
levels of granularity [9, 13]. Second, we obtained the Top-N content-
based similar geo-tagged tweets to a non-geo-tagged using di�erent
retrieval models (see Section 4.1). Finally, we combine evidence
gathered from the Top-N tweets by adopting a weighted major-
ity voting algorithm where the weight is calculated based on the
credibility information of tweets source.

3.1 Combining Evidence using Weighted
Majority Voting

In order to combine evidences gathered from the Top-N content-
based similar geo-tagged tweets to a non-geo-tagged tweet tnд , we
adopted a weighted majority voting algorithm [4, 12, 16] as follows.
We represent each element of the Top-N tweets as a tuple (ti , li , si )
where li is the location associated to a geo-tagged tweet ti posted
by the source si . We then select the most frequent location within
the Top-N set and associate that as the geo-location of a given tweet.
In formal de�nition:

Location(tnд) = argmax
lj ∈L

( N∑
i=1

Wti ∗Vote(t
li
i , lj )

)
(1)

where L is the set of locations (lj ) in the Top-N tweets and t lii is the
location of the i-th tweet in the rank. �en, a vote is given to the
location lj by the tweet ti as follows:

Vote(t lii , lj ) =
{

1 t lii = lj

0 t lii , lj
(2)

�e vote of the tweet ti is weighted by:

Wti =
|{tsi ∈ TNi | distance(tsi , tvi ) ≤ 1km}|

|TNi |
(3)

where Wti is based on the credibility of tweet’s source si . �e
credibility of tweet’s source is calculated as follows. First, we obtain
the Top-N content-based most similar tweets for every tweet in a
validation set (see Section 4). Second, we calculate the geographical
distance (see Section 4) between the tweet in the validation set and
each element in its Top-N. Next, for each source si we de�ne a
set TNi that contains all the tweets appearing in any of the Top-N
rankings (tsi ) produced for each tweet in the validation set (tvi ).
Finally, the credibility of source si is given by the ratio of all tweets
in TNi placed within less than 1km distance from the tweets in the
validation set (tvi ).

Finally, the location lj that obtains the highest number of tweet
votes is returned as the �nal predicted geo-location of a given
non-geo-tagged tweet.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup that supports
the evaluation of our proposed approach for �ne-grained geolocali-
sation of non-geo-tagged tweets.

Data: Previous studies have shown that geo-tagged and non-
geo-tagged data have the same characteristics [6]. �us, models
built from geo-tagged data can be generalised to non-geo-tagged
data. We, therefore, experimented over a ground truth sample of
English geo-tagged tweets located in two di�erent cities: Chicago
and New York City (USA) with 131,273 and 155,114 tweets respec-
tively. Tweets were collected from the Twi�er Public stream during
March 2016.

To evaluate our approach, we divided our dataset into three
subsets. We used the �rst three weeks of tweets in our collection
(i.e. the �rst three weeks of March) as a training set. We then
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randomly divided the last week data into validation and test sets
to ensure that they have similar characteristics. �erefore, for
Chicago dataset, our training, validation and test sets contained
111,627, 9,823 and 9,823 geo-tagged tweets respectively. For New
York dataset, our training, validation and test sets contained 128,746,
13,184 and 13,184 geo-tagged tweets respectively.

4.1 Models
4.1.1 Baseline Models. We implemented our baseline (denoted

by “Baseline”) inspired by Paraskevopoulos et al. [13] work. To
do so, for each of our cities, we �rst created a grid structure of
squared areas with a side length of 1 km. For each of these de�ned
squared areas, we created a document by concatenating the text
of the tweets associated with each area. We then indexed these
documents. As a preprocessing step, usernames and hashtags were
preserved as tokens, all hyperlinks were removed from tweets, and
re-tweets were preserved in the dataset. �en, we retrieved the
most content-based similar document (Top-1) for each non-geo-
tagged tweet. As the model returns the Top-1 tweet, the longitude
and latitude coordinates of the tweet are returned as the predicted
location instead of the squared area associated to the post. We
investigated several retrieval models to maximise the performance
of our baseline. Five di�erent retrieval models were evaluated:
Divergence From Randomness (dfr), Language Model with Dirichlet
Smoothing (lmd), IDF (idf), TF-IDF (tf idf) and BM25 (bm25) using
the Apache Lucene1 implementation. �e di�erence between our
baseline and the work by [13] are two-fold. First, we removed stop-
words [10] and applied Porter stemming.2 Second, we also did not
consider the time dimension, as described in Section 2.

4.1.2 WMV Models. We also implemented our proposed ap-
proach explained in Section 3, denoted by “WMV”. We used the
same squared areas de�ned for our baseline models. However, in
WMV model, each of these de�ned squared areas was represented
as multiple bag-of-word vectors where each vector represents a sin-
gle tweet associated with that area. By doing this, we treated each
tweet as a single document for the retrieval task. We performed
the same preprocessing step applied in our baseline models.

Similarly to our baselines, we investigated the same �ve retrieval
models to maximise the performance of our approach. �e results
indicated that using IDF gave us the best performance. �is is
consistent with previous research �ndings [15].

We apply our weighted majority voting algorithm on top of the
retrieval task. We considered the Top-3, -5, -7 and -9 content-based
most similar tweets obtained from the retrieval task. �e �nal
predicted location is the prede�ned area that obtain the highest
number of votes.

Metrics: To evaluate the e�ectiveness of our approach, the
following metrics are reported. Average Error distance (km): we
compute the distance on Earth (Haversine formula [14]) between
the predicted location and the real coordinates of the tweet in
our ground truth. Accuracy@1km: the accuracy of the model is
measured by determining whether a predicted location lies within

1h�p://lucene.apache.org/
2We also tried our baseline without removing stop-words and applying Porter stem-
ming, but resulted in the lower performance and hence we did not report them due to
lack of space.

a radius of 1km from the real location. Recall: we consider Recall
as the fraction of tweets in the test set that was geolocalised by our
approach regardless of the distance error.

5 RESULTS
Table 1 and 2 shows the average error distance, accuracy, and
recall for our approach evaluated on the Chicago and New York
datasets respectively. A paired t-test was conducted to assess if
the di�erence in e�ectiveness between the models is statistically
signi�cant. As shown in Table 1 and 2, our approach (“WMV”)
(statistically) signi�cantly outperforms the best performed baseline
(i.e. “Baseline lmd”) in terms of accuracy and error distance, in both
cities, across all the investigated values of N for the Top-N tweets,
with the cost of decrease in recall.
Table 1: Results for Chicago city dataset. �e table presents the Average Error
Distance in kilometres (A Err km), Accuracy at 1 kilometre (Acc@1km) and
Recall for our proposed approach (“WMV”) against our Baseline using the
Top-N (@TopN) elements in the rank. Signi�cant di�erences with respect to
our best Baseline (“Baseline lmd”) are denoted by ∗ and ∗∗ where p<0.05 and
p<0.01 respectively.

Chicago
Model A Err km Acc@1km Recall
Baseline tf idf 8.100 42.40% 99.97%
Baseline idf 14.056 13.18% 99.97%
Baseline dfr 8.586 37.40% 99.97%
Baseline lmd 6.185 47.79% 99.97%
Baseline bm25 7.637 41.76% 99.97%
WMV@Top3 3.849∗∗ 61.17%∗∗ 83.28%∗∗
WMV@Top5 3.669∗∗ 62.78%∗∗ 79.08%∗∗
WMV@Top7 3.170∗∗ 66.82%∗∗ 70.41%∗∗
WMV@Top9 2.576∗∗ 71.29%∗∗ 62.28%∗∗

Table 2: Results for New York city dataset. �e table presents the Average
Error Distance in kilometres (A Err km), Accuracy at 1 kilometre (Acc@1km)
andRecall for our proposed approach (“WMV”) against ourBaseline using the
Top-N (@TopN) elements in the rank. Signi�cant di�erences with respect to
our best Baseline (“Baseline lmd”) are denoted by ∗ and ∗∗ where p<0.05 and
p<0.01 respectively.

New York
Model A Err km Acc@1km Recall
Baseline tf idf 7.505 38.39% 99.98%
Baseline idf 12.755 12.78% 99.98%
Baseline dfr 7.609 36.28% 99.98%
Baseline lmd 7.169 37.29% 99.98%
Baseline bm25 7.460 38.25% 99.98%
WMV@Top3 4.234∗∗ 52.33%∗∗ 75.84%∗∗
WMV@Top5 4.362∗∗ 51.98%∗∗ 75.09%∗∗
WMV@Top7 4.008∗∗ 54.81%∗∗ 67.83%∗∗
WMV@Top9 3.476∗∗ 59.23%∗∗ 59.94%∗∗

Additionally, our �ndings show that as the number of voting
candidates (i.e. Top-N) increases, our approach achieves lower error
distance, higher accuracy but lower recall. �erefore, considering
the Top-3 tweets resulted in the best trade-o� regarding error dis-
tance, accuracy and recall. Also, we observed that our approach
performed similarly across both cities despite their geographical
and cultural di�erences. Such similarity in performance suggests
that our approach can be generalised and adapted to di�erent cities.
Our promising results show the potential of our approach for �ne-
grained geolocalisation of tweets.
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6 CONCLUSIONS
In this work, we proposed an approach for �ne-grained geolocali-
sation of tweets by adopting a weighted majority voting algorithm.
�e weight of each tweet vote is obtained by calculating the credi-
bility of its source (i.e. Twi�er user). Our baseline model is inspired
by Paraskevopoulos [13] work, where a grid approach were applied
to divide a city into a set of prede�ned geographical areas of size
1 km. However, in contrast to this work, we did not concatenate
the text of tweets into a document to create a single bag-of-word
vector to represent a prede�ned area. Our approach, instead, treats
each tweet individually as a single document and represent each
area as multiple bag-of-word vectors.

We then indexed these documents and then retrieved the most
content-based similar document for each non-geo-tagged tweet.
Also, we investigated several retrieval models to �nd the best per-
formance for our baseline and our proposed approach. For our
baseline approach, the geographic location associated with the
Top-1 retrieved document is then assigned to the tweet, since each
prede�ned area is only represented by a single document. In our ap-
proach, we assign the most voted area of the Top-N content-based
similar tweets where N is set to 3, 5, 7 and 9.

To demonstrate the e�ectiveness of our approach, we conducted
an experiment on two datasets of geo-tagged tweets collected from
two di�erent cities, Chicago andNewYork, with 131,273 and 155,114
tweets respectively. �e data was collected during March 2016. Our
experimental results show that our weighted majority voting ap-
proach (statistically) signi�cantly outperforms the best-performed
baseline (i.e. “Baseline lmd”) in terms of accuracy and error dis-
tance, in both cities, across all the investigated values of N for the
Top-N tweets, with the cost of decrease in recall in the two cities of
study. Also, we observed that as the number of voting candidates
(i.e. Top-N) increases, our approach achieves lower error distance,
higher accuracy but lower recall. �is behaviour is observed across
both datasets which suggest that our approach can be generalised
and adapted to di�erent cities.

�is shows the power of our proposed approach in predicting
geolocation of tweets, and can substantially expand the sample of
geo-tagged data at a �ne-grained level (i.e. street level or neigh-
bourhood level), helping to a wide range of tasks in information
retrieval, including real-time event detection, topic detection and
disaster and emergency analysis. In future work, we will investi-
gate whether we can improve recall while maintaining the high
accuracy of our approach.
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