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ABSTRACT: Ligand metathesis of Pd(II) complexes is mecha-
nistically essential for cross-coupling. We present a study of hal-
ide—OH anion metathesis of (Ar)Pd(II) complexes using vi-
nylBPin as a bifunctional chemical probe with Pd(II)-dependent
cross-coupling pathways. We identify the variables that profound-
ly impact this event and allow control to be leveraged. This then
allows control of cross-coupling pathways via promotion or inhi-
bition of organoboron transmetalation, leading to either Suzuki-
Miyaura or Mizoroki-Heck products. We show how this
transmetalation switch can be used to synthetic gain in a cascade
cross-coupling/Diels-Alder reaction, delivering borylated or non-
borylated carbocycles, including steroid-like scaffolds.

Ligand metathesis at catalytically generated (Ar)Pd(II) com-
plexes is an essential mechanistic event that underpins the most
widely employed catalytic processes, such as the Suzuki-Miyaura,
Negishi, and Mizoroki-Heck reactions.' A pertinent example is
the X—>OH anion metathesis of (Ar)Pd(I[)(X) complexes (where
X = halide), which enables oxopalladium transmetalation in the
Suzuki-Miyaura reaction.”” In seminal studies by Hartwig, stoi-
chiometrically prepared (Ar)Pd(II)(OH) complexes were shown to
engage organoboron compounds and thereby provide key evi-
dence to support oxopalladium transmetalation (Scheme la).’
Contemporaneously, Amatore and Jutand provided compelling
evidence for the same complexes and pathway in solution using
electrochemical methods.® More recently, Denmark unequivocally
demonstrated the role of (Ar)Pd(II)(OH) complexes in oxopalla-
dium transmetalation using rapid injection low temperature NMR
techniques to detect the elusive pretransmetalation intermediates.®

The essential role of (Ar)Pd(II)(OH) complexes for organobo-
ron transmetallation renders X—OH anion metathesis a critical
mechanistic event, and highlights the different reactivity modes of
(Ar)Pd(IT) based on the associated anion. Designed manipulation
of this event may provide a powerful, yet untapped, control vector
in Pd catalysis for the chemoselective manipulation of multi-
reactive systems and control of transmetalation more generally.

Here we describe the use of a bifunctional chemical probe to in-
terrogate X—>OH anion metathesis of (Ar)Pd(II)(X) complexes
(Scheme 1b). We show how this event can be controlled to allow
selection of Suzuki-Miyaura or Mizoroki-Heck cross-coupling
pathways on a bifunctional template leading to development of a
chemoselective triene cascade annulation that provides borylated
or non-borylated carbocycles (Scheme Ic).

The groundbreaking studies by Hartwig,> Amatore and Jutand,®
and Denmark® used stoichiometrically prepared Pd(Il) complexes

and/or spectroscopic methods to interrogate oxopalladium
transmetalation, with each of these studies providing key insight
into this previously ambiguous process. The Hartwig study pro-
vided the most detail on anion metathesis; specifically, equilibri-
um constants for OH—X exchange of (R;P),Pd(Ar)(OH) using n-
Bu,NX in H,O/THF (R = Cy, Ph; X = I, Br, C}).>"
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Scheme 1. Anion metathesis of (Ar)Pd(II)(X). (a) Organoboron trans-
metalation; (b) Control of anion metathesis using a bifunctional probe; and
(c) utility in a triene cascade annulation.

In this context, we hypothesized that additional reactivity-
relevant information on this event may be obtained using a chem-
ical probe approach. (Ar)Pd(IT)(X) complexes are known inter-
mediates for many Pd-catalyzed reactions, including the Mizoro-
ki-Heck reaction."'" Accordingly, use of an appropriately selec-
tive chemical probe capable of Mizoroki-Heck via (Ar)Pd(II)(X)
or Suzuki-Miyaura via (Ar)Pd(I)(OH) would give a pathway
selectivity response based on the (Ar)Pd(II) species present in
solution and the relative rates of reaction. To this end, vinylBPin
is a competent organoboron nucleophile for Suzuki-Miyaura and
is known to undergo Mizoroki-Heck at the terminal carbon.'?

To demonstrate its suitability as a chemical probe, we exposed
vinylBPin to  stoichiometric  (Ph;P),(Ar)Pd(II)(Br) (1a),
(SPhos)(Ar)Pd(II)(Br) (2a), [(Ph;P)(Ar)Pd(II)(u-OH)], (1b), and
(SPhos)(Ar)Pd(IT)(OH) (2b) (Scheme 2).
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Scheme 2. Stoichiometric reactions of Pd(II) complexes with vinylBPin.
Ar = 4-FC¢H,4. Determined by F NMR. 1b includes cis and frans. 2a/2b
include monomer/dimer.

1a and 2a provided 3a as the only coupling product, while 1b
and 2b delivered only 3b. Use of a mono-deuterio labeled vi-
nylBPin ruled out cine substitution, supporting only Suzuki-
Miyaura and Mizoroki-Heck as the operational pathways (see
Supporting Information). While Suzuki-Miyaura was complete in
5 min at rt, the Heck process required heating and extended reac-
tion times for meaningful conversion: t;, for vinylBPin with 1a
was ca. 50 min at 353 K, while ca. 2 min at 293 K with 1b,
demonstrating a substantial difference in relative rate.'

To set a foundation for gaining control over cross-coupling
pathways as a function of anion metathesis, we assessed the im-
pact of base, temperature, and [H,O] on the distribution of 1a and
1b in isolation, using reaction-like base:Pd stoichiometry (Scheme
3 and Chart 1).
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Scheme 3. Effect of base and H;O on (Ar)Pd(II) concentration. Deter-

mined by *'P NMR.
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Chart 1. Impact of [H,0] (a) and temperature (b) on the relative concen-
trations of 1a and 1b in the presence of KOH. Determined by *'P NMR.

Under dry conditions, 1a predominated for all bases. However,
when H,O was added, the distribution of 1a and 1b varied as a
function of the base (see SI for the full range of bases). KOH now
favored 1b, K;PO, provided ca. 2:1 ratio of 1a:1b, while Et;N
continued to favor la. Using KOH, lower [H,O] and elevated
temperatures favored 1b (Chart 1), with the former consistent
with Hartwig’s observations.’ Accordingly, the Pd(II) speciation
is profoundly affected by both an aqueous basic medium and tem-
perature.

There are two implications of this data: (1) For oxopalladium
transmetalation, hydroxypalladium (e.g., 1b) and a neutral or-
ganoboron are required. From these data, lower [H,O] favors
increased [(Ar)Pd(II)(OH)]. In a landmark study of Suzuki-
Miyaura cross-coupling of potassium organotrifluoroborates,
Lloyd-Jones reported that lower [H,O] favors higher concentra-
tions of the boronic acid, with increasing [H,O] favoring the
boronate.'* Moreover, in basic biphasic systems, such as those

commonly employed for Suzuki-Miyaura, the boronate more
readily distributes to the aqueous phase where protodeboronation
can occur upon heating.'>'® Accordingly, for effective Suzuki-
Miyaura, at least in the mechanistic sense, low [H,O] would ap-
pear to be more favorable. (2) The Mizoroki-Heck of vinylBPin
requires thermal promotion. However, this then requires the sys-
tem to be strictly anhydrous. Adventitious H,O and elevated tem-
peratures favor higher [1b] (Chart 1), and based on the stark dif-
ference in relative rate (Suzuki-Miyaura t;,, = 2 mins (rt); Mizoro-
ki-Heck t;, = 50 min (80 °C)), this will favor the Suzuki-Miyaura
pathway. Again, from the mechanistic standpoint, anhydrous con-
ditions with organic base favors (Ar)Pd(II)(X), which will pro-
mote the Mizoroki-Heck.

With a functional understanding of how the metathesis event
can be manipulated, we used vinylBPin to probe the outcome of
control in a catalytic scenario using SPhos to allow subsequent
exploration of electrophile influence (Scheme 4).
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Scheme 4. Catalytic reactions with vinylBPin with variation of H,O and
base. Ar = 2-naphthyl. Determined by '"H NMR.

Regardless of the presence of H,O, the stronger bases (KOH,
K;PO,) favored the Suzuki-Miyaura pathway. Adventitious H,O
arising from the hygroscopic bases may be a contributing fac-
tor.'"® Alongside the recorded difference in half-life in the stoi-
chiometric experiments, this suggests a kinetic effect where low
[Pd(OH)] outcompetes the Pd(X)-promoted Heck pathway. This
was reinforced from the results using Et;N. Under dry conditions,
Heck is operational; however, despite 1a predominating in the
aqueous system (Scheme 3), Suzuki-Miyaura increases with in-
creasing [H,0] (9:1 shown in Scheme 4; see SI for full details).
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Scheme 5. Generality of speciation control under catalytic conditions.

Base-mediated hydrolysis of vinyl BPin could potentially ex-
plain some of the discrepancies observed. However, analysis of
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styrenyl BPin with a series of bases at 80 °C revealed no hydroly-
sis: the vinyl BPin remained intact with some small levels of pro-
todeboronation observed for KOH (see SI)."”

As shown above, a change in reaction medium is sufficient to
induce significant changes to the product distribution, favoring
Suzuki-Miyaura with inorganic bases (e.g., K3PO,) and Mizoroki-
Heck with Et;N. Accordingly, we assessed the generality of this
base-induced transmetalation switch across a range of aryl halides
(I, Br, Cl) using the Pd(OAc),/SPhos system (Scheme 5). The
switch took place with complete fidelity, delivering the orthogo-
nal products exclusively and in generally good yield. Some dimin-
ished Heck efficiency was noted with substrates containing Lewis
basic functionality, consistent with previous observations.'' Inter-
estingly, Mizoroki-Heck using Buchwald-type ligands is rare but
was found to be effective under these conditions.**?'

With control at Pd(II) established under catalytically-relevant
conditions, we sought to demonstrate the utility of the transmetal-
lation switch in a synthetic context. Inspired by cascade method-

Pd(OAC), (4 mol%)

ology used in natural product synthesis,” we designed a three-
component annulation reaction via cross-coupling of a vinylhal-
ide/pseudohalide with a vinylBPin reagent to generate a diene
intermediate. This diene would then engage a third olefin in a
Diels-Alder reaction to produce the expected carbocyclic prod-
ucts. Importantly, this would be a divergent platform: control of
Pd(IT) using the knowledge garnered above would allow selective
Mizoroki-Heck or Suzuki-Miyaura in the initial step, delivering
borylated or non-borylated diene intermediates, and therefore
borylated or non-borylated carbocycles (Scheme 6). In the event,
the orthogonal series of products were generated in good yield via
either pathway using a standard catalyst system (Pd(OAc),,
SPhos) with K;PO, driving Suzuki-Miyaura and Et;N driving
Mizoroki-Heck selectivity as expected. Use of AgOAc was found
to improve the efficiency of the Mizoroki-Heck process with these
olefinic electrophiles; this did not affect the selectivity profiles but
bolstered reactivity, consistent with previous observations.'
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Scheme 6. Cascade cross-coupling/Diels-Alder annulation: borylated or non-borylated carbocycles based on Pd(II) species.

mers. * As a mixture of two diastereomers arising from enolization.

“ As a mixture of two regioiso-
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Variation of the three olefinic components was broadly applicable
allowing the preparation of functionalized mono- (17a-g;
18b.e.f,h), bi-(17h; 18a,c,d,g), tri- (17i,j; 18K), and tetracyclic
(17k,1; 18i,j,1) products. Of particular note was the access to ster-
oid-like scaffolds bearing a BPin functional group (18i,j,1), allow-
ing straightforward functionalization of the boron-bearing carbon
and allylic position via established methods (Scheme 7). For
example, Brown oxidation (20), conversion of BPin to BF;K to
allow established cross-coupling methods at either position (22),%*
and nucleophilic allylation with carbonyl groups to deliver the

Vaultier-Hoffmann-type product 21.%°
PinB H [e)
/CE‘/ENPh 18g
| o]
H,0,, ArCHO, KHF 5,
KOH PhMe MeOH
o KF8 |,
M A
HG 0
21
93% 90% quant

Scheme 7. Derivitization of BPin products.

In summary, using vinylBPin as a bifunctional chemical probe,
we have demonstrated that X—OH anion metathesis of (Ar)Pd(II)
complexes can be controlled. In stoichiometric experiments,
cross-coupling-relevant bases, co-solvent medium (solvent:H,O
composition), and temperature can be used to control the relative
concentration of (Ar)Pd(IT)(X) or (Ar)Pd(II)(OH) complexes. This
allows control of cross-coupling pathways via promotion or inhi-
bition of organoboron transmetalation, leading to either Suzuki-
Miyaura or Mizoroki-Heck products on a bifunctional template.
Finally, we show how this transmetalation switch can be used in a
cascade cross-coupling/Diels-Alder annulation reaction, deliver-
ing (non)borylated carbocycles.
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