Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Dynamics of a particle moving along an orbital tower

McInnes, C.R. (2005) Dynamics of a particle moving along an orbital tower. Journal of Guidance, Control and Dynamics, 28 (2). pp. 380-382. ISSN 1533-3884

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The concept of an orbital tower has been discussed in the literature by many authors over a number of years. Although the concept is clearly futuristic, interest has recently been revived as a result of advances in materials science (for example, see Refs. 1-4). In this Note, a simple model of the dynamics of a particle moving along an orbital tower is considered. First, it is demonstrated that at synchronous radius there exists a hyperbolic fixed point, resulting in an unstable equilibrium and a potential barrier that a particle must cross. The fixed point is an equilibrium point in the phase space, which represents the dynamics of the particle. It is shown that the addition of friction does not remove the hyperbolic fixed point, but merely modifies its instability timescale. Finally, it is shown that friction leads to phase paths converging asymptotically to a single manifold in the phase space of the problem. An approximation to this manifold is constructed. The analysis provides some insight into the practical application of orbital towers for the launch and retrieval of payloads.