Non-Linear Dynamics of Ring World Systems
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The dynamics of a point mass and a thin solid ring are considered with the point mass located within the
perimeter of the ring. It is demonstrated that an equilibrium configuration exists only when the center-of-mass
of the ring and the point mass are collocated. However, this sole equilibrium configuration is unstable due to
perturbations within the plane of the ring, but is stable due to perturbations normal to the plane of the ring.
Such a ring system about a star has been envisaged in some detail in well-known works of fiction. While
qualitative, or sometimes quantitative linear analysis of the problem is to be found, a full non-linear analysis of
the dynamics of the problem does not appear to have been previously published.

Keywords: Ring world, instability

1. Introduction

The fabrication of a solid ring about a star has been the
subject of several popular works of fiction [1,2]. It
appears to be well known that such a system is dynami-
cally unstable, destining such ‘ringworlds’ to be true
works of fiction, or at least necessitating an active
control system to compensate for the natural instability
[2]. Occasionally, the instability is discussed in a quali-
tative form, or a linearised analysis is used to demon-
strate the instability analytically [3,4]. While linear in-
stability is in general, both a necessary and sufficient
condition for non-linear instability, insight can still be
obtained by completing the analysis of the problemina
fully non-linear manner.

This paper re-visits the ring world problem and for-
mulates the full, non-linear in-plane equation of motion
of the ring relative to the central mass. The sole equilib-
rium solution to the equation of motion is then sought
and its instability established. In addition, the timescale
for the instability is determined, and a simulation of the
evolution of the full non-linear instability shown. Simi-
larly, the full non-linear, out-of-plane equation of motion
is formulated and the stability properties of out-of-plane
perturbations investigated. While it can be shown that
the out-of-plane motion is in the form of non-linear
oscillations about the plane of the system, the exist-
ence of the in-plane instability renders the equilibrium
configuration unstable in general.

2. Gravitational Force Model

In order to locate any equilibria, and determine their
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stability properties, the functional form of the gravita-
tional force acting between the ring and point mass will
be derived. For a ring of radius R and linear mass
density p, the total mass of the ring M, is 27pR . The
gravitational force acting between the ring and point
mass M, can then be determined by calculating the
gravitational force acting between the point mass and
an infinitesimal ring element, and then integrating
around the ring. It will be assumed that M/, << Mg, so
that the barycentre of the problem remains fixed at A/..

Firstly, an arbitrary ring mass element Jm will be

located on the ring at position R relative to the cen-
tre-of-mass of the ring C, such that

R = Rcosge, + Rsinge, (1)

where (e, e,) are the basis vectors of a Cartesian coor-
dinate system with origin at the point mass, as shownin
fig. 1. Similarly, the position of the centre-of-mass of
the ring C relative to the point mass is defined by

r=re (2)

so that the position of the mass element Jm relative
to the central mass r' =r + R is given by

r' = (Rcos¢+r)e, + Rsin ge, (3)

Therefore, the gravitational force 4f between the
point mass and the ring element dm can be written as



i = GMS

4)

where || is the distance from the point mass to the
ring mass element, which may be obtained from (3)
as

| = (r2 +2rRcosd + R? )1/2

(5)

However, as the integration is performed around
the ring, it can be seen that the component of force
along the e,-axis will vanish, leaving a net radial force
acting along the e -axis only. Therefore, the vector
force component df, acting along the radial line con-
necting the centre-of-mass of the rmg C and the
point mass is given by

v

S ¢4 dm

GM
dfr = —el P . 6
e’ ©

where (%) donates a unit vector. From (2) and (3) it
can be seen that ¢’ may be written as

Py 7+ Rcos¢
(r2 +2rR cos<1)+R2)l/2 ™

Therefore, the vector force component df, along
the radial line connecting the centre-of-mass of the
ring C and the point mass can now be written as

(r+Rcos¢) dm

dfr =—e1GMS
(r +2rRcos¢ +R )3/ ®)

The total force is now obtained by integrating (8)
around the ring using the relation dm= pRd¢ . There-
fore, using the non-dimensional variable & =7/R
yields

27

GM Mg J‘ Ereosd o
27R* (1+2§cos¢+§ )3/ (9)

£E)=-

and so integrating (9) yields the total force f,(é)
acting along the radial line connecting the centre-of-
‘mass of the ring C and the point mass A/ as a func-
tion of the separation » between the the centre-of-
mass of the ring and the point mass. it can be shown
that the integral can be obtained in closed form in
terms of Hypergeometric functions. Again, using the
non-dimensional variable & =r/R yields the result-
ing force in compact form as
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Fig. 1 Schematic in-plane displaced ring.
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where the Hypergeometric function 2Fl[a, b;c;/’L] is
defined as

S (@ (B _/li

Fla,b;c;A]=
2 l[a c ] — (c)k k!

(11a)

=~

(@) = Ta+k)

I(a)

(11b)

where (a)k are the Pochammer symbols and I"the
gamma function. Using this result, the in-plane dy-
namics of the problem can now be investigated and
the instability of the sole equilibrium configuration
demonstrated.

3. In-Plane Dynamics

Using the non-dimensional variable &, the one-dimen-
sional equation of motion for the point mass and ring
may be written as
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d2& 2 7
dr‘g “Li+e)? 7{3; jFlL, 2,2
- 5
_2(§+§3)2E{Z,‘Z;I;)\.:”

where the time variable s has been normalised using

T=1,J/GMg/R® . From (10) it can be shown that

Limit (1+§2T5"2{3§ 21?{1,2;2:&}

i . (13a)
_ Blaml= 2o _
e+ e )EF{4,4,],AH 0
5/2 5
Limit (1+&2]° L3¢ 11{1.‘—;2;/1}
o | 474
(13b)

-2 +8)on] 5 e

as can be seen in Fig. 2. It is therefore clear that

d'§:0 & g=l (14)
dt”

which yields a single equilibrium configuration, with
the centre-of-mass of the ring C co-located with the
point mass M. The stability properties of this equi-
librium configuration can now be determined by ex-
panding f,(£) to first order to obtain

£ (1)

Then, in the limit as & — 0, the first order expansion
yields

Limit ;é{(l +g“2f5’;2 Jl3r§ zﬂ[lé;z;l}

E—0

so that the linearised equation of motion in a neigh-
bourhood of the equilibrium configuration is given
by
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Fig. 2 Non-dimensional gravitational force acting between
the point mass and ring.
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again, in non-dimensional form. The solution to the
linearised equation of motion is therefore of the form

E(r)=¢, exple/2) (18)

for some initial displacement £, so that the equilib-
rium configuration is unstable as expected. In di-
mensional variables, the instability timescale T can
be determined from (18) as

2R
GM

(19)

While the instability of the sole equilibrium con-
figuration has been demonstrated from the linear
analysis, which is both a necessary and sufficient
condition for non-linear instability, it is clear that
since _ﬁ.(§)>OV§e [(),l), the equilibrium configura-
tion is unstable in general. The evolution of the insta-
bility obtained by numerically integrating (12) is
shown in fig. 3 for a range of in-plane perturbations.
It can be seen that after a slow radial drift, there is a
rapid acceleration as the ring approaches the point
mass, as expected from fig. 2. The instability
timescale defined in (19) is related to the circular
orbit period at orbit radius R, since the circular orbit
period 7, =271-,,‘R3/GMS, Therefore, the instability
timescale is just T :T(,/ﬁn, For example, a ring
about the Sun at 1 AU has an instability timescale of



Fig. 3 Evolution of in-plane motion.

approximately 0.23 years. It can be seen from Fig. 3
that for an initial displacement £ of 1073, the ring
will ultimately collide with Sun after approximately
1.6 years, indicating the inherent, and rather fast,
instability of the system.

4. Out-of-Plane Dynamics

Now that the in-plane dynamics of the problem have
been investigated, the stability of out-of-plane mo-
tion will be determined. Again, the gravitational force
acting between the ring and point mass M can be
determined by integrating around the ring. It will now
be assumed that the centre-of-mass of the ring C is
displaced relative to the point mass A/, along the axis
of symmetry of the ring, as shown in fig. 4. Again, the
mass element dm can be located on the ring at posi-
tion R relative to the centre-of-mass of the ring C,
such that

R = Rcos¢e; + Rsinde, (20)

Similarly, the position of the centre-of-mass of the
ring C relative to the point mass is now defined by

Y = ze, (21)

where e, is a the unit vector normal to the (e1 ,€) ) plane,
so that the position of the mass element dm relative
to the central mass ' —r + R is given by

r’' = Rcos ge, + Rsinge, + ze, (22)

As the integration is performed around the ring, it
can be seen that the component of force in the (el,e2 )
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Fig. 4 Schematic out-of-plane displaced ring.

plane will vanish, leaving a net force along the e,-
axis. Therefore, the vector force component df, act-
ing between the point mass and ring mass element
dm along the e,-axis can be written as

GM; . .,
df, = —e;3 2S r.xr'dm (23)

/|

where ||r'|| is the distance from the central mass to
the ring element, which may be obtained from (22) as

K= (2 + &2 )" (24)

Similarly, from (21) and (22) it can be seen that

S = 3 (25)

so that total force is now obtained by integrating (23)
around the ring using the relation dm = pRd¢. Again,
using a non-dimensional variable 1) = z/R yields

2n

GM M
fz(n)'_:_ ¢ RJ-(l u d¢ (26)
0

2 2
27R +n? )3/
which integrates to

GM M n
fn)=-—5-E
R’ (1+r;2)3/2 (27)

Using the non-dimensional variable 7, the out-of-
plane equation of motion for the central mass and
ring may now be written as

d’n.__ 1
— =0
dr? (1 +'72 )3/2 (28)
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where the time variable t has again been normalised
using T:JJGMS/R3. It can seen that the out-of-
plane problem, and hence (28), is not unlike the
Sitnikov problem [5]. For small displacements such
that 171 <<1 (28) reduces to

dz.n
—+n=0 29
dr? W

which has an oscillatory solution of the form

n(r)=n, cos(r) (30)

for some initial displacement 1) . It is therefore con-
cluded that the out-of-plane motion is linearly stable
with, in dimensional variables, a linear oscillation of

period of T:11R3/GMS. The non-linear nature of
the large amplitude oscillations can be seen in fig. 5,
where it is evident that there is a dependence be-
tween the amplitude and period of the oscillations.

Since linear stability is only a necessary condi-
tion for non-linear stability, the boundness of the
large amplitude behaviour of (28) can be investi-
gated by calculating an energy integral. Integrat-
ing (28) yields

IanY__ 2 _.
2\ dr ,’an (31)

for some constant C, which is a function of the initial
conditions. Level curves of C are shown on a phase-
plane in fig. 6, with a separatrix delineating bound
oscillatory motion from unbound motion defined by
C=0. The condition C=0 corresponds to dn/dr — 0
as 1) — 1o . The out-of-plane motion is therefore sta-
ble provided the initial conditions are chosen such
that C<0. In dimensional variables, the initial vertical
speed /, at some initial displacement z: must be

, . [26M; |
‘ R J1+(z,/RY (32)

which reduces to a quasi-parabolic escape speed
V. </2GM ¢ /R when the centre-of-mass of the ring
Cis initially collocated with the point mass.

4. Conclusions

The dynamics of a point mass and solid ring have
been investigated by deriving the full, non-linear
equation of motion for the in-plane and out-of-plane
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Fig. 6 Phase-plane for out-of-plane motion ( - - - separatrix

C=0).

dynamics. It has been shown that there is a single
equilibrium configuration with the centre-of-mass
of the ring co-located with the point mass. This
equilibrium configuration is unstable to in-plane
perturbations, but is stable to out-of-plane
perturbations, where the out-of-plane motion is
bounded by a separatrix in phase-space. The analy-
sis of the full non-linear problem allows the insta-
bility timescale to be investigated and the time to
collision between the ring and central mass can be
found.
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