
This version is available at https://strathprints.strath.ac.uk/62242/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
The relationship between sedentary bout duration and glucose in adults with Type 2 diabetes

Katie McMillan¹, Alison Kirk¹, Allan Hewitt¹, Sandra MacRury²

University of Strathclyde¹, Glasgow, UK and University of Highlands and Islands², Inverness, UK (Sponsor: Dr David Rowe, FACSM)

Abstract

Physical activity is important for blood glucose management in people with Type 2 diabetes (T2D). Little research has explored the relationship between sedentary behaviour and mean glucose and glucose variability in people with T2D using objective and continuous measurements.

Aims: To explore the relationship between sedentary bout duration and mean glucose and glucose variability in people with T2D using objective and continuous measurements.

Methods: 16 participants with T2D managed with diet, Metformin or DPP4 inhibitors were recruited (mean age 64.1±10.9 yr & BMI 29.4±6.9 kg/m²). Participants completed a demographic questionnaire and wore an activPAL accelerometer and FreeStyle Libre continuous glucose monitor for 3-14 days whilst documenting sleep, food and medication.

Results: On average, participants spent 65% of their day sitting/lying, 76% of sedentary bouts were ≥30 minutes and 29% of bouts were ≥60 minutes. Mean glucose was negatively associated (r = -0.08, p <0.01) with sedentary bout duration. Glucose range (r =0.47, p <0.001) and glucose coefficient of variation (r =0.26, p <0.001) both positively correlated with sedentary bout duration. Participant characteristics such as age, gender and BMI appear to influence the relationship between sedentary bout duration and glucose response.

Conclusions: Results indicate increased sedentary time leads to improved mean glucose and increased glucose variability.

Methods

• 16 participants with Type 2 diabetes managed with diet, Metformin or DPP4 inhibitors were recruited (mean age 64.1±10.9 years & BMI 29.4±6.9 kg/m²). Participants completed a demographic questionnaire and wore an activPAL accelerometer and FreeStyle Libre continuous glucose monitor for 3-14 days whilst documenting sleep, food and medication.

• Participants completed a demographic questionnaire and wore an activPAL accelerometer and FreeStyle Libre continuous glucose monitor for 3-14 days whilst documenting sleep, food and medication.

• Average proportion of time spent sitting/lying, during the waking day were calculated. Bouts of wake time sedentary behaviour were identified and defined as a period of at least 30 minutes continuous, uninterrupted sitting/lying during the waking day. Correlation analysis was conducted to investigate the relationships between sedentary bout duration and mean glucose, glucose range and glucose coefficient of variation.

• Results indicate increased sedentary time leads to improved mean glucose and increased glucose variability.

Results

• On average, participants spent 65% of their day sitting/lying, 26% standing and 9% stepping. This is illustrated in Figure 1

• 76% of sedentary bouts were ≥30 minutes and 29% of bouts were ≥60 minutes

• Mean glucose was negatively associated (r = -0.08, p <0.01) with sedentary bout duration

• Figure 2 illustrates the positive association between sedentary bout duration and glucose range (r =0.47, p <0.001)

• Glucose coefficient of variation (r = 0.26, p <0.001) positively correlated with sedentary bout duration

Figure 1: Proportion of time spent Sitting/Lying, Standing and Stepping

Figure 2: Sedentary Bout Duration and Glucose Range

Conclusions

Results indicate increased sedentary time leads to improved mean glucose and increased glucose variability.

Recommendations

Future research should focus on examining the relationship between sedentary behaviour patterns and glucose in a larger sample size and examine the influence of characteristics such as age and BMI.

References


Contact details: kathryn.mcmillan@strath.ac.uk

Follow on Twitter: @KathrynMc91