Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A novel visual pipework inspection system

Summan, Rahul and Jackson, William and Dobie, Gordon and MacLeod, Charles Norman and Mineo, Carmelo and West, Graeme and Offin, Douglas and Bolton, Gary and Marshall, Stephen and Lille, Alexander (2017) A novel visual pipework inspection system. In: QNDE 2017, 2016-07-16 - 2017-07-21.

[img]
Preview
Text (Summan-etal-QNDE2017-A-novel-visual-pipework-inspection-system)
Summan_etal_QNDE2017_A_novel_visual_pipework_inspection_system.pdf
Accepted Author Manuscript

Download (742kB)| Preview

    Abstract

    The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localise surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorealistic, geometrically accurate surface model. The error of the system output was evaluated through comparison to a ground truth laser scan (ATOS GOM Triple Scan) of a nuclear grade split pipe sample (stainless steel 304L, 80mm internal diameter) containing defects representative of the application – the error was found to be submillimetre across the sample.