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Abstract: Partial	discharge	(PD)	can	provide	a	useful	forewarning	of	asset	failure	in	electricity	substations.	A	significant	
proportion	of	assets	are	susceptible	to	PD	due	to	incipient	weakness	in	their	dielectrics.	This	paper	examines	a	low	cost	
approach	for	uninterrupted	monitoring	of	PD	using	a	network	of	inexpensive	radio	sensors	to	sample	the	spatial	patterns	of	
PD	received	signal	strength.	Machine	learning	techniques	are	proposed	for	localisation	of	PD	sources.	Specifically,	two	
models	based	on	Support	Vector	Machines	(SVMs)	are	developed:	Support	Vector	Regression	(SVR)	and	Least-Squares	
Support	Vector	Regression	(LSSVR).	These	models	construct	an	explicit	regression	surface	in	a	high	dimensional	feature	
space	for	function	estimation.	Their	performance	is	compared	to	that	of	artificial	neural	network	(ANN)	models.	The	results	
show	that	both	SVR	and	LSSVR	methods	are	superior	to	ANNs	in	accuracy.	LSSVR	approach	is	particularly	recommended	as	
practical	alternative	for	PD	source	localisation	due	to	it	low	complexity. 
 

1. Introduction 
Electrical substation assets such as transformers are known 
to be susceptible to partial discharge (PD). PD occurs when 
an electrical discharge partially bridges the dielectric 
between conductors; it tends to be highly focused where 
electric field strength is greater than the breakdown strength 
of the insulator. Example locations of local defects include 
air pockets in solid insulation, gas bubbles or particles in 
liquid insulation [1] [2] [3].  Regardless of the underlying 
cause, PD is indicative of degraded insulation. The 
discharges themselves further deteriorate the quality of the 
insulation thereby giving rise to a vicious circle of atrophy 
until failure [4].  Instituting a monitoring process permits 
PD activity to be detected at an early stage and proactive 
maintenance can be employed to avoid catastrophic failure 
of assets. Thus, unplanned outages and expensive repair 
costs can be significantly ameliorated. 
 
The occurrence of partial discharge can be determined using 
protection equipment that monitors changes in the electric 
current [5]. The discharges also produce acoustic emissions 
[6] [7]; consequently, ultrasonic detectors have been used to 
determine their location. This is particularly useful in small 
indoor installations. Another approach is to monitor the 
radio spectrum for RF pulses emitted by the discharges [8] 
[9]; the method is more suited to larger transmission 
substations.  
 
In recent past, effort towards accurate PD localization has 
been reported. Hou proposed a PD location method based on 
L-shaped array [1], which composed of four UHF 
omnidirectional antennas. In [4] and [10], remote 
radiometric technology was used to locate PD source in two-
dimension (2-D). In [11] and [12], time delay method based 
on energy accumulation was employed to estimate the 
location of a PD source in three dimension (3-D). The setup 

composed of four omnidirectional micro-strip antennas and 
four omnidirectional discrete disk-cone antennas. [13] used 
four omnidirectional antennas to capture the UHF signals 
radiated by PD and the principle of signal time delay 
estimate based on high order statistics to locate PD sources. 
In [8], omnidirectional and directional antennas were both 
used to locate PD source in air-insulated substation. The 
time-delay was computed using the cross-correlation 
algorithm based on wave-front. A vehicle, such as a van, 
furnished with the necessary equipment can be taken 
periodically to substations to monitor for the presence of 
discharge [14] [15]. In previous works, radiolocation-based 
approaches for localisation of PD sources used Time 
Difference of Arrival (TDoA)/Time Delay Estimation (TDE) 
and Direction of Arrival (DoA) [16] [17] [18] [19] of the RF 
signal as the basic principles. However, time based methods 
require accurate temporal synchronisation, making it 
expensive and complex, and hence too costly to deploy for 
continuous monitoring of PD. The DoA method is also 
complex, requiring directional antenna array. Consequently, 
alternative solution to network relatively low-cost sensors 
for continuous monitoring an entire substation are of 
practical interest and are being explored. The 
cost/complexity of other approaches prompts an 
investigation into methods based solely on the use of 
Received Signal Strength (RSS) measurements due to their 
simplicity, low-power consumption and cost effectiveness. 
Theoretical RSS-based methods require knowledge of the 
underlying radio propagation environment (e.g. path loss) 
such that a suitable propagation model that defines the 
relationship between RSS and distance to an antenna can be 
built. It is not appropriate to use a ready-made propagation 
model due to multipath problem that often characterise the 
real-life radio environments in which PD is experienced. 
Alternative methods based on radio fingerprinting present 
themselves [20] [21]. These consist of identifying radio 
signatures (finger prints) from discharges at known locations, 
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and sophisticated machine learning algorithms can be used 
to estimate the location of true discharge. Fingerprinting 
often involve a resource intensive survey stage where a new 
radio map (of signatures) is needed each time a change 
occur in the propagation environment in order to maintain 
the needed accuracy.  
 
In this work we suggest a low-cost Wireless Sensor Network 
(WSN) approach where the network itself builds the spatial 
RSS map of signatures autonomously and continually.  With 
this approach PD monitoring system can be permanently 
deployed and thus monitor the substation in real-time at low 
cost without interruption. 
The key challenge of the above described PD localisation 
procedure is how to effectively and efficiently model 
RSS/location relation and hence derive PD location from 
RSS. The complexity of this inverse problem motivates the 
use of flexible models based on machine learning. This 
approach not only obviate the need for a propagation model 
but can also improve localisation precision. 
 
The rest of this paper is organized as follows. Section 2 
presents the statement of the problem. In section 3, a 
description of the PD localisation learning algorithms is 
presented. The experimental set up and data preparation 
procedure are addressed in section 4. The experimental 
results are discussed in section 5. Finally, the concluding 
remarks are stated in section 6. 

2. Problem Statement 
This low-cost approach is based on the deployment of 
wireless sensors at arbitrary but know locations in the 
substation compound; these sensors can record radio 
emission from PD sources in real-time. The locations of 
these sources can be inferred by sophisticated algorithms.   
Due to the topography of assets in a substation, PD 
localisation in this setting can be regarded as a 2 
dimensional problem. The compound is modelled as a finite 
location space },...,{ 1 nllL =  of n discrete locations where 

),( y
i

x
ii lll =  represents the 2D coordinate of a PD source 

in physical space. In this paper we exploit the mathematical 
relationship between PD location and signal attenuation to 
estimate a function which provides PD source location 

),( y
i

x
ii lll = from measured signal strength. This can be 

modelled as;   

)()( rerfl +=                        (1) 

where RrÎ  is the vector containing the RSS from M 
known locations captured by Q antennas, LRf Q

M ®=  
and e accounts for the noise.      
Each of the sensors take a turn at emitting a radio pulse, 
which is monitored by the others. Given that they are at 
known locations, this permits a database of to be built which 
implicitly characterises the radio environment of the 
substation. The database is defined as },...,{ 1 MDDD =  

with ),( mmm lrD =  where ],...[ 1 Q
mmm rrr =  are the RSS 

measurement from the Q antennas at location ml . The 
transmission power of a true PD source is dependent on a 

great many factors and cannot be known a priori, 
furthermore, it increases in severity over time. Therefore, 
the ratio of RSS components between pairs of sensor nodes 
is preferred to absolute values of RSS in our model.  
 
It is assumed that for any pair of PD sources close in the 
physical location space, their RSS, hence RSS ratio vectors 
should be similar compare to sources far away. This 
assumption is based on the fact that these locations may 
have relatively similar propagation channels and may 
exhibit comparable RF characteristics. Suppose 

],...,[ 1 iQii rrr = and ],...,[ 1 jQjj rrr =  are the signal 

strength vectors from locations il  and jl . If |||| ji ll -  is 

small, then |||| ji rr -  should also be small.  

The key challenge is to develop a model that can 
determine as accurate as possible the planar location of PD 
sources based on the location data at low cost. Both the 
receiving sensor nodes and the PD sources are made 
stationary during measurement. 

3. Modelling ANN and SVM for PD Location  
3.1 Artificial Neural Network 

 
The artificial neural network (ANN) [22] approach for PD 
localisation is regarded as a function approximation problem 
consisting of a nonlinear mapping of the PD signal strength 
input onto dual output variables representing the location 
coordinates of the PD source. In this work, two variants of 
ANN; the multilayer perceptron (MLP) [23] [24]  and the 
radial basis function neural network (RBFN) [25] [26] 
models are adopted for PD localization.  
 
3.1.1 PD Localisation Based on Multilayer Perceptron 
 
The MLP network consists of an input layer, hidden layer(s) 
and an output layer. An MLP with a single hidden layer can 
be represented graphically as shown in Fig. 1. A sigmoidal 
activation function is used in the hidden layer to provide 
robustness against outliers and a linear activation function in 
the input and output layers. The MLP-type ANN is based on 
the back propagation [24] training of error estimate. It is 
generally an iterative non-linear optimisation technique. In 
this study, the MLP approach has been processed in two 
phases: a training phase and location estimation phase. 
During the training phase, the MLP network is trained to 
form a set of fingerprints as a function of PD location.  
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Fig. 1. MLP Architecture 
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Fig. 2. MLP model for PD localisation 

A set of training examples (fingerprint (RSS) and their 
corresponding locations) is applied to the network to learn 
the relation between fingerprints and their locations. This 
involves tuning the values of the weights and biases of the 
network to optimise network performance. The batch mode 
training is implemented in this work. All the inputs in the 
training set are applied to the network before weights are 
adjusted to minimise the error between the network output 
and the desired output. The MLP model developed for PD 
localisation is as shown in Fig. 2. 
During the estimation phase, the PD signal strength values 
from unknown locations are applied to the input of the 
trained network to give output corresponding to the PD 
location. To develop an appropriate MLP model for PD 
localisation, cross validation is used to determine a suitable 
network structure in terms of number of hidden neurons. 
The available training data is randomly partitioned into k 
disjointed sets. The network is trained for each set of 
parameters, on all the subsets except for one and the 
validation error is measured on the subset left out. The 
procedure is repeated for a total of k trials, each time using a 
different subset for validation. The average of MSE under 
validation represent the performance of the network. This 
process is repeated for different network architecture in 
terms of number of hidden neurons. The 3-4-2 network 
model with 3 inputs nodes, 4 hidden neurons and 2 outputs 
nodes has the best performance and is adopted in this work. 
In order to improve the generalisation of the model (that is 
model’s ability to do well on unseen data rather than just 
training set) and avoid overfitting, Bayesian regularisation 
[23] is used to train the network.  
 
3.1.2 Radial Basis Function Network Method 
 
In general, Radial Basis Function (RBF) networks are ANNs 
that have single hidden layer with nonlinear radial basis 
function. In this work, the RBF network architecture used 
for PD localisation consist of three inputs, corresponding to 
the RSS measurement data from the three sensors, a hidden 
layer and an output layer with two neurons, representing PD 
location coordinates ),( yx . The structure of a fully 
connected PD localisation RBF network is as shown in Fig. 
3. A radial basis type activation function (Gaussian function) 
is used for neurons in the hidden layer and a linear 
activation function for the output layer. The fully connected 
RBF network is used to approximate LRf Q

M ®= , a 
mapping of PD RSS fingerprints onto PD locations in the 
physical space.  

 
 

Fig. 3. RBFN PD localisation model 

 
The RBF network consist of two phases: a learning phase 
and an estimation phase. In the learning phase, the RBF 
network is trained to form a set of RSS fingerprints as a 
function of PD location. Each fingerprint is applied to the 
input of the network and corresponds to the measured RSS-
location data. The weights between the hidden layer and the 
output layer are iteratively adjusted to minimise location 
error. In the real-time estimation phase, measured PD RSS is 
applied to the input of the RBF network (acting as a pattern 
matching algorithm). The output of the RBF network which 
is the weighted sum of the radial basis function is the PD 
location estimate.  

Given a PD fingerprint r ¢ (RSS), the estimated location l̂  
given by the weighted sum of Gaussian basis function [25] 
is 

å
=

-¢=¢=¢
H

k
kk hruwrfrl

1

)()()(ˆ                (2) 

 

Where )exp()( 2
kk hrhr -¢-=-¢ bj is the Gaussian 

radial basis function. H is the number of neurons (basis 
functions) in the hidden layer which correspond to the 
number of training samples, kh is the 3-dimensional center 

for hidden layer neuron k , and kw are the 2-dimensional 

weights for the linear output layer. b  is the spread or width 
of the Gaussian function. For improved performance, the 
normalized basis function can be used in the model. The 
weights can be determined in order to optimize the model. 
Each fingerprint defines the center of a neuron and the width 
b  is obtained via cross validation. Thus, forming the 
following set of equations; 

å
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                                                                                            (3) 
This system of linear equations can be written in matrix 
form as dUw =  and the weights are easily obtained by 

.1dUw -=  }...,,1),()({ RijhruU ij =-=  and 

)(×u  is the normalised Gaussian basis function. The 
computed weights are then used during the estimation phase 
to locate PD. RBF networks suffer from high memory 
requirements since all reference fingerprints are used as 
centers for the basis functions and required for localisation.  
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3.2 Support Vector Machine 

 
Support Vector Machines (SVM) [3] [27] [28] are kernel-
based learning techniques applicable to both classification 
and regression problems. SVMs are based on the idea of 
mapping the original input data point to a high dimensional 
feature space where a separating hyper-plane can be easily 
identified. SVMs have shown tremendous success in 
applications such as data classification, time series 
prediction, identification systems and data clustering [28] 
[29] [30] [31] [32]. In the context of PD localisation, SVM 
is formulated as a regression task, which consist of training 
a model that defines the non-linear mapping function 
between the PD RSS and its geo-spatial location in high 
dimensional feature space, leading to Support Vector 
Regression (SVR) [33] [34] [35].  
 
3.2.1 Support Vector Regression: 
 
3.2.1.1 Basic theory of SVR 

 
Support vector regression technique is a learning procedure 
based on statistical learning theory which employs structural 
risk minimisation principles [33]. SVR uses training data to 
build its prediction model. This method can solve both 
linear and nonlinear regression problems. If the training 
samples are nonlinear, SVR maps the samples into a high-
dimensional feature space by a nonlinear mapping function, 
where samples become linearly separable and the optimal 
regression surface is constructed [36].  
Suppose we are given training dataset )},{( ii lrD =  with 

Rri Î and Lli = , the goal of SVR is to find the mapping 

LRf ®=  and make ii lrf ~)( , where r  is input 
feature vector. For nonlinear problem, the training patterns 
are pre-processed by a map into some feature space before 
SVR is applied. SVR finds the best or optimal regression 
surface )(rf  within a deviation e  as the prediction model, 
leading to epsilon-SVR [37].  The model can be expressed 
as 
 

brwrf +ñá= ,)( ,       ÂÎÂÎ bw n ,          (4) 

Where ..,  denotes the dot-product and w and b are the 
support vector weight and bias respectively. A small w is 
desired to get an optimal regression surface. This can be 
achieved by solving the following optimisation problem 
with the training data ],[ LRD = : 
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Where .,2 www =  The problem in (5) might be 
restrictive by bounding the range of errors of the training 
data within e . Thus, to deal with otherwise infeasible 
constraints, introduce slack variables *, ii xx  for each point. 

The slack variables allow errors to exist up to the value of 

ix and *
ix  without degrading performance. With slack 

variables the problem becomes [38]: 
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Where C is the box constraint, a positive numeric value that 
controls the penalty imposed on data points that lie outside 
the e  margin and helps to prevent overfitting 
(regularisation).  To solve the problem in (6), a standard 
dualisation method with Lagrange multipliers *, ii aa  can 
be used [36]. By solving the dual problem, w  can be 
expanded as  

 å
=

-=
N

i
iii rw

1

* )( aa                                          (7) 

 
Where 0³ia  and 0* ³ia . Substituting (7) in (4), and 

replacing the dot-product .,.  with a kernel function 

),( rrk i  [38] to simplify the nonlinear mapping from the 
input space to the feature space in SVR, the model can be 
expressed as  
  

 å
=

+-=
N

i
iii brrkrf

1

* ),()()( aa                   (8) 

ia are the Lagrange multipliers which satisfy 

Ci << *0 a , ir  are the support vectors whose ia  is not 

zero,  and N  is the number of support vectors. Equation (8) 
shows that the decision function depends on support vectors. 
This means optimal regression surface is constructed by 
these support vectors. The idea of support vectors form a 
sparse subset of the training data that can be used and is 
particularly useful for resource constraint applications such 
as the one under investigation. 
 
 
3.2.1.2 PD Localisation based on SVR 
 
In PD localisation problem, sensors are deployed at arbitrary 
but known locations in a two-dimensional substation 
compound; these sensors record radio emission from PD 
sources in real-time and estimate the location of the PD. The 
compound is divided into a 1x1 squared grid. Each grid 
point represented by x-y coordinate is considered a PD 
location (source).  Therefore, to compute PD location, two 
SVR models are required; one for each x-y coordinates The 
PD features/patterns used to develop the SVR models is the 
received signal strength. Firstly, RSS from known locations 
are gathered by the three sensors deployed in the substation 
compound. These RSS and their locations form a database 
for the compound. Suppose the true coordinates of PD 
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location il  are ),( ii yx  and the corresponding values of 

RSS for the PD from this location are ),,( 321
iii rrr .   

 
 

Fig. 4. SVR PD Localisation model 

 
The vector ],,[ 321

iiii rrrR =  is taken as the SVR input 

feature vector and used to infer the location ),( iii yxl . All 
the feature vectors from known locations and their 
corresponding location coordinates constitute the SVR 
training sample set. Using this training set, the SVR is 
trained to build a PD localisation models that would 
subsequently be used to predict or estimate PD location 
given RSS vector. During training, the input features (RSS) 
from each known location are transformed to a new feature 
space with N features, one for each support vector. That is to 
say that, they are represented only in terms of their dot 
products with support vectors (special data points chosen by 
the SVR optimisation algorithm). Gaussian kernel function 
is employed in the transformation to provide a nonlinear 
mapping from the input space to the new feature space.  In 
the location estimation phase, for a given RSS vector the 
kernel finds the similarity or a distance measure between the 
vector and the support vectors stored after training. The 
corresponding coordinates of the support vectors closest to 
the RSS vector are used to compute the PD location for the 
given RSS vector. The SVR PD location model is as shown 
in Fig. 4. 
However, when the electromagnetic environment changes 
due to external influences, for example change in the 
location of an electrical equipment, the localisation model 
would be retrained by the latest collected data. The 
retraining process can be done automatically, triggered by 
the location error analysis. If the location error exceeds a 
predefined threshold, the retraining begins.  
The optimal combination of the RBF kernel based SVR 
hyper-parameters (kernel parameter, insensitive loss 
function and regularisation parameter) is obtained via cross 
validation/grid search method. 
 
 
3.2.2 Least Squares Support Vector Regression: 
 
Least squares support vector regression (LSSVR) algorithm 
[32] [39]  is a reformulation of the standard SVR algorithm 
described in section 3.2.1.1, which leads to solving a system 
of linear equations. The idea of linear equations makes 
LSSVR more appealing and computationally more 

economical compare to solving the convex quadratic 
programming (QP) for standard SVR.  LSSVR algorithm for 
PD localisation consist of two phases: Training and 
Localisation. During the training phase, the parameters of 
LSSVR algorithm are estimated using PD measurements at 
known locations (training points). In the localisation phase, 
PD measurements taken at unknown locations are analysed, 
and their locations obtained using the parameters estimated 
in the training phase. Given a training data set 

Â´ÂÌ n
nn lrlrlr )},(.,..),,(),,{( 2211  of n points, with 

PD input (RSS) data n
ir ÂÎ , and output (PD location 

coordinate) data 2),( ÂÎiii yxl  in 2-dimension, the 
LSSVR based PD location optimisation problem in the 
primal weight space is formulated as: 
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  s.t  

niebrwl iii ,...,1,)(, =++F=  

with hnn Â®Â× :)(j  a function which non-linearly map 
the input space into the so-called higher dimensional feature 
space, weight vector hnw ÂÎ  in primal weight space, bias 
term b and error variable Â=ke . The error term here 
represents the true deviation between actual PD location and 
estimated location, rather than a slack variable which is 
needed to ensure feasibility (as in SVR case). 0³g  is a 
regularisation constant. 
To solve the optimisation problem in the dual space, one 
defines the Lagrangian 

å
=

-++F-=
n

i
iii

T
i lebrwewJebwL

1

})({),();,,( aa       (10) 

with Lagrange multipliers ÂÎia . The conditions for 
optimality are given by 
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After eliminating w and e, the solution yields the following 
linear equations: 
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where T
v

T
nlll )1,...,1(1,),...,( 1 ==  and  

T
n ),...,( 1 aaa =  the Lagrange multipliers. Appling 
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Mercer’s condition [32]  , the ik-th element of W  is given 
by nkirrKrr kik

T
iik ,...,1,),()()( ==FF=W , 

where W  is a positive definite matrix and ik-th element of 
the matrix ),( kiik rrK=W  is a symmetric, continuous 
function. The resulting LSSVR model for PD location 
estimation becomes: 

 å
=

+=
n

i
iii brrKrf

1

),()( a            (13) 

 where b,a  are obtained during the training phase by 
solving (10). In LSSVR, there are only two parameters to be 
tuned: the kernel setting and the regularisation constant. 
Cross-validation/grid search is used to determine the optimal 
combination of the parameters. 

4. Experimental Procedure 

4.1 Experimental Set Up 

 
In order to verify the effectiveness of the PD localisation 
system that is based on the deployment of a network of 
sensor nodes, a systematic test experiment was conducted in 
a 19.20m x 8.40m laboratory at the University of 
Strathclyde.  
 

 
Fig. 5. Measurement grid for measurement campaign 

The laboratory contained a great deal of clutter including 
metallic objects which gives rise to a multipath rich radio 
environment. Within the accessible area of the laboratory,  
144 distinct training locations and 32 testing locations were 
uniformly selected to form a grid such that the spacing 
between adjacent training locations is 1 m and the spacing 
between a training location and its nearest testing location is 
0.7 m which represent an array of sensor nodes. Pulse 
emulated PD sources were set up and 20 RF PD 
measurements collected at each training and testing location, 
resulting in 2880 training and 640 testing cases.  In real life 
however, the electrical equipment in which PDs are most 
likely to appear are not evenly arranged in substations and 
moreover some areas may be inaccessible. Signal strength 
decays as the transmission distance increases. This signal 
propagation characteristic in conjunction with an 
interpolation algorithm can be explore to automatically 
estimate PD signal strength at unobserved locations based 
on the known data values. The duration and the repetition 
frequency of the discharge pulses were 10ps and 100 kHz 
respectively. Three omnidirectional antennas used for 

capturing the RF signals were deployed at predefined 
locations. The arrangement of this procedure is shown in Fig. 
5. A high-speed multichannel oscilloscope with memory 
function was used as a signal-acquisition system to capture 
and store the PD traces. The oscilloscope has a bandwidth of 
9GHz. The PD data acquired from measurement were 
sampled at 2GS/s. A sample waveform of the received PD 
signals is shown in Fig. 6. The injected PD pulse waveform 
and the sensor response are shown in Fig. 7. 

 4.2 Data Preparation  

 
RF signals collected during the measurement campaign are 
corrupted by noise/interference and this needs to be 
removed before the PD signals are analysed. In this work, 
the process of noise removal is accomplished using a 
wavelet multivariate de-noising technique [6]. This de-
noising scheme combines the decomposition of information 
given by wavelet transform and the ability of decorrelation 
among variables given by the Principal Component Analysis 
(PCA) [40].  The objective is to obtain better de-noised data 
so as to extract meaningful information from the raw data 
for PD location. The energy (defined here as the signal 
strength) contained in each PD trace is then calculated.  The 
average of the 20 individual measurements taken at each 
training and test locations is computed. Fig. 8 shows PD 
signal strength variation with respect to location for each of 
the antennas. The unique signatures created by PD signal 
strength at different locations facilitate the application of 
machine learning algorithms for PD localisation. In order to 
provide more robustness to our system, the ratio of the 
averaged signal strength components between pairs of 
receiving antennas is computed and used as fingerprint input 
vectors to the developed models.  

 
Fig. 6. Recorded PD signal 

 
Fig. 7. Response of the receiver sensor for the injected PD 
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Fig. 8. Spatial variation of RSS for each antenna 

5. Results and Discussions 
The performance of SVM-based models (SVR and LSSVR) 
on the PD data collected is presented and compared with the 
ANN method. The empirical evaluation of the models is 
based on statistical operators of location error as well as 
their cumulative distribution functions (CDFs).  
 

 
 

Fig. 9. Model localisation error in x-coordinate 

 

The localisation error is computed as the Euclidean distance 
between the true location and the estimated location of the 
PD source. CDF describes the probability of locating PD 
within a specify range of localisation error. This shows how 
consistent the models perform and capture both the accuracy 
and precision of the models.  
Fig. 9 and Fig. 10 show the errors in each coordinate (x and 
y) of the test locations for the three models. This result 
shows that the location errors in x and y vary from -3.5 m to 
1.9 m and -3.7 m to 3.7 m respectively for the MLP model 
and from -5.2 m to 2.3 m in x and -3.9 m to 3.6 m in y for 
RBFN. For SVR model, the errors in x and y vary from -3.4 
m to 1.5 m and -3.7 m to 2.9 m respectively. The result for 
LSSVR model is similar to that for the other models with 
errors in x and y varying from -3.3 m to 1.5m and -3.9 m to 
3.3 m respectively. It is observed that the overall accuracy 
of each of the models will be affected mostly by the y-
coordinate predictions. 
Fig. 11 shows the localisation error in Euclidean distance for 
each test location. The maximum localisation error for MLP, 
RBFN, SVR and LSSVR models is found to be 3.90 m, 6.20 
m, 4.5 m and 3.99 m respectively with LSSVR model 
producing location estimate with the lowest error of 0.2 m. 
Fig. 12 shows CDFs of localisation error for the models. 
The LSSVR model has a precision of 72 % within 2.5 m 
compare to SVR, RBFN and MLP models with precision of 
69 %, 54% and 60 % within 2.5 m respectively. In other 
words, the localisation error is less than 2.5 m with 
probability of 72 %, 69 %, 54% and 60 % for LSSVR, SVR, 
RBFN and MLP respectively.  

 
Fig. 10. Model localisation error in y-coordinate 

 

 
Fig. 11. Model localisation errors 
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Fig. 12. CDF of model localization errors 

 

 
Fig. 13. Model location accuracy 

Table. 1. Cumulative error probability of model location 
error 

                      MLP     RBFN       SVR     LSSVR 
CEP=0.25     1.09        1.40          1.43         1.46 
CEP=0.50     2.14        2.43          2.03         1.97 
CEP=0.75     2.83        3.39          2.76         2.94 
 
Comparison of the performance of the models based on 
localisation error corresponding to 0.25, 0.50, and 0.75 
overall cumulative error probabilities (CEP) is presented in 
Table. 1. This clearly shows that half of the time PD sources 
were located with error less than 2 m when LSSVR 
algorithm is used for localisation. 
The results of localisation accuracy for the models are 
shown in Fig. 13. It is clear that there is a steady 
improvement in location accuracy in terms of median error 
when the SVM-based models are used compared to ANN 
models. LSSVR model particularly shows an 8.32 % and 
22.8 % reduction in median location error when compared 
with MLP and RBFN models respectively. 

6. Conclusion 
 Machine learning technique for locating PD sources 

based on RSS measurement have been considered. The 
principle and computational realisation of the methods based 
on support vector machine have been described. Support 
vector regression (SVR) as well as least squares support 
vector regression (LSSVR) approach uses the spatial pattern 
of received signal strength to construct a regression surface 
in a high dimensional feature space where PD location is 
determined. This approach models PD location as a linear 

combination of RSS measurement. In this study, signal 
strength ratio is used as location fingerprints rather than 
absolute RSS. The performance of the proposed methods 
have been evaluated and compared with ANN in terms of 
statistical operators of localisation error. The results indicate 
that SVM-based approaches are superior to ANN in 
accuracy showing a reduction in median location error and 
represent practical alternatives for PD source localisation. It 
is believed that the superior performance of SVM-based 
approaches is due to their ability to converge to a global 
minimum whereas neural networks are susceptible to 
converging to local minima. Given the rich complexity of 
the underlying radio environment convergence to a local 
minima is highly likely; therefore, SVM-based approaches 
are more appropriate in this environment. This PD 
localisation system can monitor and locate discharges from 
several items of plant concurrently making it suitable for 
substation-wide PD localisation. 
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