
This version is available at https://strathprints.strath.ac.uk/62164/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Sensitivity analysis of the dynamic response of an electronic fuel injector regarding fuel properties and operating conditions

Nao Hu1,2,*, Jianguo Yang1,3, Peilin Zhou2

1. School of Energy and Power Engineering, Wuhan University of Technology, 430063, Wuhan, PRC;

2. Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, G4 0LZ, Glasgow, UK;

3. Key Laboratory of Marine Power Engineering &Technology, Ministry of Communications, 430063, Wuhan, PRC;

* Corresponding author.

Abstract: The effects of fuel properties, such as its bulk modulus, density and viscosity, on the injector dynamic response (needle valve opening/closing delay and needle valve opening/closing time) were investigated individually. Firstly, an electronic fuel injector model was built and validated by injection rate and injection mass at three different rail pressures and three different activation times. Secondly, a DOE (design of experiment) model was built and the Uniform Latin Hypercube (ULH) design method was applied to study the influences of the fuel properties on the injector dynamic response from a statistical point of view. The effects of the fuel properties were compared by using a SS-ANOVA (smoothing spline analysis of variance) method at both a low and a high rail pressure. The bulk modulus was found to play a dominant role in influencing the valve opening/closing delay at the low rail pressure. However, at the high rail pressure, the effects of the viscosity are prominent, while the effects

* Email: nao.hu.0128@gmail.com (N. Hu)
of the bulk modulus and the density are negligible. Additionally, how these fuel properties affect the dynamic response were reported by RSM (Response Surface Method) function charts, and the details of the pressure differences and needle valve movements were also disclosed.

Key words: electronic fuel injector; fuel properties; dynamic response; DOE

Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>one dimensional</td>
</tr>
<tr>
<td>AC</td>
<td>accumulation chamber</td>
</tr>
<tr>
<td>Ab_Visc</td>
<td>absolute viscosity</td>
</tr>
<tr>
<td>B</td>
<td>bulk modulus</td>
</tr>
<tr>
<td>Bulk_M</td>
<td>bulk modulus</td>
</tr>
<tr>
<td>CC</td>
<td>control chamber</td>
</tr>
<tr>
<td>C_f</td>
<td>friction coefficient</td>
</tr>
<tr>
<td>D</td>
<td>pipe diameter</td>
</tr>
<tr>
<td>Dens</td>
<td>density</td>
</tr>
<tr>
<td>DOE</td>
<td>design of experiments</td>
</tr>
<tr>
<td>HPCR</td>
<td>high pressure common rail</td>
</tr>
<tr>
<td>L</td>
<td>pipe length</td>
</tr>
<tr>
<td>n</td>
<td>levels</td>
</tr>
<tr>
<td>NN</td>
<td>neural networks</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>RSM</td>
<td>response surface method</td>
</tr>
<tr>
<td>SS-ANOVA</td>
<td>smoothing spline analysis of variance algorithm</td>
</tr>
<tr>
<td>T</td>
<td>time constant</td>
</tr>
<tr>
<td>ULH</td>
<td>Uniform Latin Hypercube</td>
</tr>
<tr>
<td>v</td>
<td>pressure wave propagation speed</td>
</tr>
<tr>
<td>μ</td>
<td>absolute viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>τ</td>
<td>delay</td>
</tr>
<tr>
<td>cP</td>
<td>centipoise</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kg/mm³</td>
<td>kilograms per cubic millimetre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mg/st</td>
<td>milligram per stroke</td>
</tr>
<tr>
<td>MPa</td>
<td>mega Pascal</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>Pa·s</td>
<td>Pascal second</td>
</tr>
</tbody>
</table>
1. Introduction

Electronic fuel injectors play an indispensable role in HPCR fuel injection systems and interest numerous researchers to improve their performance. A lot of work has been undertaken in the nozzle area, such as the nozzle structure types [1-3], the hole numbers and arrangements [4-7] and the internal cavitation [8-11] of orifices. They have been thoroughly studied because they have a direct effect on the fuel injection and atomisation. The spray characteristics [12-14], the penetration [15-17] and the lift-off length [18,19] have also been investigated by experiment or simulation in many studies. With the continual focus on the emissions of diesel engines, the use of different alternative fuels has come into the sight of researchers [20]. The differences in fuels lie in their properties [21], such as the density, viscosity and bulk modulus. Fuel properties significantly affect the spray characteristics of a fuel injector, as were studied by Dernotte et al. [22] and Payri et al. [23]. In addition, fuel properties change in vast ranges of different pressures and temperatures, as were revealed by Salvador et al. [24] and Desantes et al. [25].

The multi-injection performance of a solenoid injector was evaluated by Salvador et al. [26] by using a standard diesel fuel and a biodiesel fuel. The biodiesel fuel was identified as have a larger valve opening delay and valve opening time due to it have a larger viscosity. This implies that the fuel properties may have an effect on the dynamic response of a fuel injector. However, to date, only a few studies have found considered the effects of fuel properties on the dynamic response of electronic fuel injectors. Han et al. [27] experimentally investigated the injection process of three fatty acid esters on an HPCR system. He pointed out that fatty acid esters have larger injection delays and smoother rising slopes of the injection rate than diesel fuel. They also indicated that a reduced injection delay, along with a prolonged injection duration, was seen at increased rail pressures. Salvador et al. [28] experimentally investigated the impact of
fuel temperature on the injection dynamics (stationary mass flow rate, injection delay, and
valve opening/closing slope of the mass flow rate) of a ballistic injector, with special attention
paid to the needle valve opening and closing stages. They indicated that the temperature had a
huge influence on the valve opening delay. In a further study to extend insights into the injector
dynamics, Payri et al. [29] developed a one-dimensional model and paid special attentions to
the pressure drop in the control chamber, the viscous friction and the needle lifts. These studies
investigated the injection dynamic with different fuels or different fuel temperatures and
pressures, yet the impact of each fuel property on the injector dynamic response is still not
clearly identified. Boudy et al. [30] investigated the influence of the properties of a biodiesel
fuel on the injection process; in this study, the fuel density, bulk modulus and absolute viscosity
were examined individually in both single- and triple-injection situations. He pointed out that
density is one of the most influential fuel properties on the injection process. Han et al. [31]
investigated the isolated effect of the fuel density, viscosity and bulk modulus on the injection
mass and pressure propagation waves under split injection strategy conditions. They indicated
that the fuel density and bulk modulus have a larger impact than the viscosity on the injection
mass and pressure propagation. However, in these studies, the fuel properties varied only
slightly, and the dynamic response, such as the needle valve opening/closing delay and
opening/closing time, was not in their interests.

One-dimensional (1D) models are efficient and practical for predicting the performance of
electronic fuel injectors, and have been adopted by many studies. For example, a 1D model of
a solenoid-driven common rail ballistic injector was built by Payri et al. [32] to study the
influences of the inlet fuel temperature on the injection rate. Ando et al. [33] investigated the
magnetic aftereffect on the dynamic response of a fuel injector by building a simple and high
accurate 1D simulation model. They indicated that a significant delay was caused by a lower
maximum activation current, which generated a smaller magnetic force than a higher maximum activation current. Another 1D model was built by Seykens et al. [34] to investigate the elasticity and nonlinearities of the injector needle valve. Additionally, 1D hydraulic models were also established by Han et al. [31] and Rahim et al. [35]. The detailed modelling of fuel injectors was demonstrated by Bianchi et al. [36], Payri et al. [32, 37] and Salvador et al. [38].

In this paper, the effects of three fuel properties (the fuel density, bulk modulus and absolute viscosity) on the valve opening/closing delay and the valve opening/closing time were carefully investigated. Firstly, an electronic fuel injector model was built according to Payri et al. [37] and completely validated by the experimental data disclosed in that article. Then, this validated injector model was included in a DOE model, where a Uniform Latin Hypercube method was adopted. Then, the effects of these fuel properties on the injector dynamic response were compared and shown by RSM function charts from a statistical point of view, in which an SS-ANOVA method was adopted.

DOE is a systematic method for building a relationship between the input factors and output factors of a process. A great deal of information can be obtained through a reduced number of DOE simulations; therefore, it is effective to investigate the influences of individual variables on the response. In DOE, “factors” refer to design variables, and “level” refers to a specific value assigned to a factor. A DOE method creates a number of design points, which is a variation in the selected model’s parameters [39].

The ULH is one of the most commonly used DOE methods. In it, the design space of each factor or design parameter is divided into n uniform levels. On each level of every factor, only one design point is placed. For each factor, n! permutations of the n levels are possible. The design matrix of the ULH consists of one column for each factor, which is determined by a
randomly chosen permutation of the n levels. For a row of the design matrix, \(n^k \) combinations are possible and have an equal chance of occurring. As the matrix is generated randomly, a correlation between the columns may exist [40].

The RSM is frequently used as a tool for building an approximation model based on the data generated through DOE [41]. Several methods can be adopted to build this model, such as polynomials, SS-ANOVA, NN, k-nearest, etc. SS-ANOVA is a statistical modelling algorithm based on a function decomposition similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction. It belongs to the family of nonparametric or semi-parametric models and shows some peculiarities such as the interpretability of the results, which distinguishes from the classical set of standard parametric models (polynomial models, etc.). It is suitable for both univariate and multivariate modelling/regression problems [42]. The SS-ANOVA [43] was adopted here for data analysis.

2. The injector model and its validation

The injector model can be built either by a set of ordinary differential equations or some advanced tools, i.e., Hydsim and AMESim software. Here, the fuel injector model was built in AMESim software, as shown in Fig. 1. The model consisted of three different parts: the injector holder, the electro-valve and the nozzle. Each of its internal elements were geometrically characterised by using a silicone moulding technique [44] together with Scanning Electron Microscopy (SEM) images. The silicone moulding technique has been proven to be an accurate and useful tool for obtaining the geometry of different components. In addition, the hydraulic characteristic of some most important orifices, i.e. the control oil inlet/outlet orifices, and the nozzle orifices, were tested in purpose-made test rigs [37, 38]. In this model, some assumptions were made: (1) all the variations are isothermal; and so, the fuel temperature and the fuel
properties were assumed to be constant along the injector and equal to those at the injector inlet; (2) the pressure feeding the model is constant; therefore, it ignores the pressure fluctuations caused by the cyclical oil supply from the high-pressure pumps.

Fig. 1 One-dimensional fuel injector model
The model was validated by the experimental injection rate and injection quantities of 30 MPa, 80 MPa and 130 MPa rail pressures. Three different activation times, i.e., 0.5 ms, 1 ms and 2 ms, were applied. The comparisons of the injection rate and the injection quantity are shown in Fig. 2 and Fig. 3 respectively. Detailed values of the injection quantity are shown in Table 1. From Fig. 2, the simulation injection rates show an identical tendency at the end of needle valve closing are much lower than the experimental results. This can be attributed to the elastic differences in the material between an injector model and an authentic fuel injector. The authentic fuel injector has an elastic body. Thus, when the injector is deactivated, the needle valve moves back to its original place and hits on the seat. The needle valve bounces back several times before it closes completely, which results in a small fuel injection rate in the experimental results. In Fig. 3, it can be seen that there is a small difference between the simulation results and experimental results, which becomes larger with an increase in the rail pressure. This is because a high rail pressure leads to a larger flow speed. When the cross-section area of the nozzle orifice is the same, a larger flow speed results in a larger injection quantity. However, these tiny differences in the injection rate and injection quantity can hardly have an impact on the injector dynamic response (opening/closing delay and opening/closing time), which are mainly decided by the injection rate slopes. Fig. 2 indicates that the injection rate slopes in all the sub-figures present a highly accurate reproduction of the experimental injection rate. Therefore, the injector model is precise enough and can be used for further study. For the detailed parameters of the injector model and the experimental data, refer to Payri et al. [37].
Fig. 2 Comparison of the injection rate under varies activation times and rail pressures
Fig. 3 Comparisons of the injection quantity under varies activation times and rail pressures

Table 1 Experimental and simulation injection quantity

<table>
<thead>
<tr>
<th>Pressure</th>
<th>30 MPa</th>
<th>80 MPa</th>
<th>130 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp., mg/st</td>
<td>Sim., mg/st</td>
<td>Exp., mg/st</td>
</tr>
<tr>
<td>0.5 ms</td>
<td>1.5</td>
<td>2.0</td>
<td>8.1</td>
</tr>
<tr>
<td>1.0 ms</td>
<td>7.5</td>
<td>8.2</td>
<td>25.5</td>
</tr>
<tr>
<td>2.0 ms</td>
<td>23.1</td>
<td>23.0</td>
<td>45.4</td>
</tr>
</tbody>
</table>
3. Preparation

3.1. Definition of the injector dynamic response

The injector dynamic response refers to the needle valve opening/closing delay and needle valve opening/closing time, as shown in Fig. 4. The valve opening delay is defined as ΔT_1, which is from the moment of t_1 to the moment of T_1; the valve opening time is defined as ΔT_2, which is from the moment of T_1 to the moment of T_2; the valve closing delay is defined as ΔT_3, which is from the moment of t_3 to the moment of T_3; and the valve closing time is defined as ΔT_4, which is from the moment of T_3 to the moment of T_4.

![Fig. 4 Schematic diagram of the definition of the dynamic response](image)

t1: the control signal initiates; t2: the control signal reaches its maximum amplitude; t3: the control signal begins to de-activate; t4: the control signal has fully disappeared; T1: the needle valve starts to open; T2: the needle valve has reached its maximum displacement; T3: the needle valve begins to close; T4: the needle valve has fully closed.

The injector dynamic response will simply be represented by a limited delay integrator transfer function:
Where: \(T \) is the time constant; \(s \) is the field; \(\tau \) is the delay.

3.2. DOE model

A DOE model was built within the modeFRONTIER software for investigating the effects of fuel properties on the dynamic response, as shown in Fig. 5. Firstly, a uniform Latin hypercube method was adopted in the DOE type for generating DOE designs, totally 1000 designs were generated. Then, the fuel injector model was included in the AMESim node. The control signal and the needle valve displacements generated by the fuel injector model were firstly written into a text file, and to do this, appropriate writing and reading rules needed to be specified. The text file is read by the MATLAB code, where the control signal opening/closing moments (\(t_1, t_2, t_3 \) and \(t_4 \)) and the needle valve opening/closing moments (\(T_1, T_2, T_3 \) and \(T_4 \)) are calculated [45]. Therefore, the valve opening/closing delay and the valve opening/closing time can be obtained. The simulation takes about 3 hours on an 8-core Intel i7-4790 CPU @ 3.60 GHz computer.

3.3. Boundaries and resolutions

The boundaries of the three fuel properties derive from the Figure 2 of the reference [24]. In that figure, the fuel properties of a stand winter diesel fuel are shown for a range of 0.1-300 MPa in pressure and 300-400 K in temperature. In the paper, the boundaries of a specific pressure are set according to the minimum and the maximum values when the temperature changes. Totally two pressures, including a low rail pressure (40 MPa) and a high rail pressure (200 MPa) were applied. The details of the boundaries are shown in Table 2.

Table 2 Fuel properties and their boundaries for DOE
4. Results and discussion

4.1. Sensitivity analysis

The sensitivity of the three fuel properties on the dynamic response were compared at both the low rail pressure and at high rail pressure, as shown in the left part and right part of Fig. 6, respectively. They were examined and obtained by using a first order SS-ANOVA algorithm.

From Fig. 6 (a) and (b), it can be seen that the bulk modulus plays a dominant role in influencing the valve opening/closing delay at the low rail pressure. Interestingly, both the density and the bulk modulus have an dominant effect on the valve opening/closing time; the effects of the former are slightly larger than the latter, as shown in Fig. 6 (c) and (d). The bulk modulus affects the fluid’s incompressibility. A large bulk modulus indicates that a larger pressure is needed to decrease the volume of a fluid. Therefore, a high incompressibility factor is provided by a fuel with a large bulk modulus. The fuel’s incompressibility is one of the factors that affects the pressure wave’s propagation speed and amplitude. Since the needle valve and the solenoid valve are hydraulic connected. The effects of bulk modulus are eventually reflected in the injector dynamic response. Density has an impact on the inertia resistance and on the pressure wave propagation speed. Therefore, the density also profoundly affects the dynamic response. The relationship of the bulk modulus and density with the speed of sound is shown in equation(2):
Where, \(v \) is the speed of sound in the fluid; \(B \) is the bulk modulus of the fluid; and \(\rho \) is the density of the fluid.

The right part of Fig. 6 indicates that the effects of the absolute viscosity and the bulk modulus are influential on the dynamic response of the injector at the high pressure, and the former plays a dominant role in the valve opening/closing time. This is because viscosity drastically increases at high pressures. Viscosity is related to the friction force, which impedes the movements of the needle valve. Since the fuel oil in the control chamber flows in a laminar form. The pressure loss is proportional to the friction coefficient, fluid density and fluid velocity, as shown in equation (3) \[30\]:

\[
\Delta P = C_f \frac{L \rho u^2}{D} \tag{3}
\]

Where, \(C_f \) is the friction coefficient; \(\rho \) is the fluid density, kg/m\(^3\); \(u \) is the fluid velocity, m/s; \(L \) is the pipe length, m; \(D \) is the pipe diameter, m.

The friction coefficient of a fluid flow in laminar conditions can be calculated as:

\[
C_f = \frac{64 \mu}{R_e} = \frac{64 \mu}{\rho u D} \tag{4}
\]

Where, \(\mu \) is the absolute viscosity, Pa·s; \(R_e \) is the Reynolds number [46, 30].
From (4), it can be seen that the friction coefficient is proportional to the absolute viscosity.

Therefore, the absolute viscosity is also an influential factor and is significant to the injector dynamic response.
Fig. 6 Sensitivity of fuel properties on the injector dynamic response. (a) opening delay at 40 MPa rail pressure; (b) closing delay at 40 MPa rail pressure; (c) opening time at 40 MPa rail pressure; (d) closing time at 40 MPa; (e) opening delay at 200 MPa rail pressure; (f) closing delay at 200 MPa rail pressure; (g) opening time at 200 MPa rail pressure; (h) closing time at 200 MPa.
rail pressure; (e) opening delay at 200 MPa rail pressure; (f) closing delay at 200 MPa rail pressure; (g) opening
time at 200 MPa rail pressure; (h) closing time at 200 MPa rail pressure.

The effects of the bulk modulus, density and absolute viscosity on the dynamic response are
shown in Fig. 8, Fig. 14 and Fig. 19 respectively. They were generated by the RSM function,
with only one factor changing at a time.

4.2. Effects of the bulk modulus

The trends of the effects of the bulk modulus are identical at both the low and the high rail
pressures, as are the effects of the fuel density. Since the bulk modulus and the density were
influential at the low pressure, only those effects are presented, as shown in Fig. 8, in which
the effects are shown as red lines.

It is well known that the valve opening time and the valve closing time depend on the pressure
difference between the control chamber and the accumulation chamber. Therefore, the
pressures in the control chamber and the accumulation chamber are shown in Fig. 9 and the
details of Section A and Section B are reported in Fig. 10 and Fig. 11 respectively. In these
figures, only three different values of the bulk modulus were reported in order to get a clear
view of the differences in the pressures. The pressures in the control chamber and the
accumulation chamber were drawn in thick lines and in thin lines respectively. The same colour
in a figure indicates the same value of factors. The above rules also apply to Fig. 14, Fig. 15,
Fig. 16, Fig. 19 and Fig. 21.

In order to obtain a better understanding of the pressure fluctuation in the control chamber. A
theoretical pressure fluctuation prediction was given before the simulation pressure fluctuation
was investigated. This is presented along with the displacements of the solenoid valve and the
needle valve opening/closing, as shown in Fig. 7. The pressure in the control chamber is
identical to the rail pressure p_r before the solenoid valve is activated; when it is activated, it
leads to a continual pressure drop in the control chamber. When the pressure decreases to the
critical pressure p_{co}, it triggers the needle valve to open. During this process, the pressure in
the control chamber increases slightly. However, the pressure drops again to a lower and steady
pressure when the needle valve and the solenoid valve are both fully opened. When the solenoid
valve is deactivated and fully closed, the pressure in the control chamber is regaining the rail
pressure to push the needle valve to close. During this period of time, the pressure in the control
chamber decreases slightly and then rockets up to the level of the rail pressure once the needle
valve is completely closed.

![Diagram showing pressure changes in the control chamber.](image)

Fig. 7 Pressure change in the control chamber

From Fig. 8 (a) and (b), it can be seen that both the valve opening delay and the valve closing
delay decrease with an increase in the bulk modulus. From equation (2), it can be deduced that
the speed of sound through the fluid increases with an increase in the bulk modulus. A large
bulk modulus indicates a fast pressure wave propagation. This leads to an advanced pressure
fluctuation. Therefore, the pressure in the control chamber drops faster when the solenoid valve is activated than in a fluid with a small bulk modulus, as shown in Fig. 10. The fast pressure wave propagation also results in a faster pressure rise when the solenoid is deactivated, as shown in Fig. 11. In these conditions, a small valve opening delay and valve closing delay were seen in the large bulk modulus case. In addition, Fig. 10 also indicates that the advanced pressure fluctuation leads to a lower critical opening pressure \(p_{co} \), which would result in a larger pressure difference at the early stage of the needle valve opening. As is stated above, a large pressure difference is beneficial for a small valve opening delay; however, the large pressure difference changed to a small one at the later stage of the needle valve opening, as shown in the middle part of Fig. 9. A small pressure difference indicates a small force difference, which provides a small net force to push the needle valve upwards when the solenoid is activated; this leads to a slow needle movement, and thus a large valve opening time. In general, a large valve opening time is due to a large bulk modulus, as shown in Fig. 8 (c). However, the small pressure difference provides less resistance to the needle valve movements when the solenoid is deactivated. Thus, a small valve closing time is seen, as shown in Fig. 8 (d). The needle valve displacements under different bulk moduli are shown in Fig. 12. The needle valve opens earlier but reaches its maximum position later in cases with a larger bulk modulus, as opposed to those with a small bulk modulus. However, the needle valve closes and moves back to its original place in advance. The results shown in Fig. 12 agree with those shown in Fig. 7.
Fig. 8 Effects of the bulk modulus on the dynamic response at 40 MPa rail pressure
Fig. 9 Pressure in the control chamber and in the accumulation chamber at the low rail pressure

Fig. 10 Details of Section A in Fig. 9
Fig. 11 Details of Section B of Fig. 9

Fig. 12 Needle valve displacements under different bulk modulus conditions
4.3. Effects of the fuel density

A high fuel density contributes to increasing the valve opening/closing delay and the valve opening/closing time, as shown in Fig. 13. A high density indicates a large inertia; therefore, it retards the pressure wave propagation (as shown in Fig. 15 and Fig. 16) and results in a large resistance to the movements of the needle valve at both the valve opening and valve closing stages (as shown in Fig. 17). The retarded pressure wave propagation leads to large hydraulic delays (valve opening/closing delay), and the large inertia resistance is the main reason for the increased valve opening/closing time in high-density conditions.

Fig. 13 Effects of the density on the dynamic response at 40 MPa rail pressure
Fig. 14 Pressure in the control chamber and in the accumulation chamber at the low rail pressure

Fig. 15 Details of Section C in Fig. 14
Fig. 16 Details of Section D in Fig. 14

Fig. 17 Needle valve displacements in different fuel density conditions
4.4. Effects of the viscosity

At the high rail pressure, the viscosity varies over a much bigger range with a change in temperature, than at the low rail pressure. A high viscosity suppresses the amplitude of the pressure wave and leads to a quick dampening rate \[30\]. In addition, from equations (3) and (4), it can be inferred that a high viscosity results in a large pressure loss in the control chamber.

A quicker pressure wave dampening rate means the pressure in the control chamber reaches the critical valve opening pressure in a shorter time when the solenoid is activated, as shown in Fig. 20. Therefore, a high fuel viscosity results in a small valve opening delay, as shown in Fig. 18 (a). A large pressure loss in the control chamber leads to a slightly lower steady pressure when the needle valve is fully opened, as shown in Fig. 19. This lower steady pressure also means that a larger pressure difference exists between the control chamber and the accumulation chamber. As stated previously, the pressure difference plays a dominant role in the valve opening and valve closing times. Although the friction force increases with the increase in viscosity, the friction force is still not comparable to the force generated by the pressure difference, as shown in Fig. 22. Therefore, a high viscosity generates a large pressure difference, which accelerates the needle movement to achieve a short valve opening time at the needle valve opening stage, and slows down the needle action when it is returning to its seat, which results in a large valve closing time, as shown in Fig. 18 (c) and (d). Additionally, the slightly lower steady pressure indicates that it takes a longer time to restore the critical valve closing pressure. Therefore, a larger valve closing delay is seen, as shown in Fig. 18 (b). Detailed needle movements are shown in Fig. 23.
Fig. 18 Effects of the absolute viscosity on the dynamic response at 200 MPa rail pressure
Fig. 19 Pressure in the control chamber and in the accumulation chamber at the high rail pressure

Fig. 20 Details of Section E in Fig. 19
Fig. 21 Details of Section F in Fig. 19

Fig. 22 Friction forces under different absolute viscosities
5. Conclusions

The effects of fuel properties (bulk modulus, density and absolute viscosity) on the injector valve opening/closing delay and valve opening/closing time were investigated individually. A fuel injector model was built and validated by injection rate and injection mass at three different rail pressures. Then, a DOE model was built in modeFRONTIER software to study the effects of the fuel properties on the injector dynamic response from a statistical point of view. The effects of these properties were compared using an SS-ANOVA at both the low and high rail pressures. And then reported by RSM function charts based on the DOE data. In addition, the details of the pressure differences and needle valve movements were also presented. The main conclusions are as follows:
1. The bulk modulus plays a dominant role in influencing the valve opening/closing delay at the low rail pressure.

2. At the high pressure, however, the effects of the absolute viscosity are dominant, while the effects of the bulk modulus and the density are negligible.

3. Both the valve opening delay and the valve closing delay decrease with an increase in the bulk modulus. A large valve opening time and a small valve closing time are the result of a large bulk modulus.

4. A high fuel density results in an increase in the valve opening/closing delay and the valve opening/closing time, and vice versa.

5. A high fuel viscosity results in a small valve opening delay and a large valve closing delay. In addition, it generates a large pressure difference, which accelerates the needle movement to achieve a short valve opening time, and slows down the needle valve movement when it is returning to its seat, to get a large valve closing time.

Acknowledgements

The authors are grateful to the Department of Naval Architecture, Ocean and Marine Engineering of the University of Strathclyde for its calculation support during the project.

Funding: This work was supported by the project ‘Engineering Development of a Medium-Speed Dual Fuel Engine (Ministry of Industry and Information Technology NO. (2013) 412,
2)’ from China and the project ‘An Investigation into the Characteristics of High-pressure Common Rail Injection System’ from Lloyds Register of Shipping in the UK.

References

[41] Box GEP and Wilson KB. On the experimental attainment of optimum conditions (with

[42] Rigoni E, Ricco L. Smoothing spline ANOVA for variable screening. ESTECO Technical
Report 2011-007.

blended fuel properties and engine performance with ether additive using statistical analysis

