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Abstract

Two signatures of quantum effects on radiation reaction in the collision of a

∼ GeV electron-beam with a high-intensity (> 3 × 1020 Wcm−2) laser-pulse have

been considered. We show that the decrease in the average energy of the electron-

beam may be used to measure the Gaunt factor g for synchrotron emission. We

derive an equation for the evolution of the variance in the energy of the electron-

beam in the quantum regime, i.e. quantum efficiency parameter η 3 1. We show

that the evolution of the variance may be used as a direct measure of the quantum

stochasticity of the radiation reaction and determine the parameter regime where

this is observable. For example, stochastic emission results in a 25% increase in

the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after

it collides with a laser pulse of intensity 1021 Wcm−2. This effect should therefore

be measurable using current high-intensity laser systems.
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1 Introduction

Radiation reaction is the effective recoil force on an accelerating charged particle caused

by the particle emitting electromagnetic radiation. This effect will play an important

role in laser-matter interactions at the intensities set to be reached by next genera-

tion high-intensity laser facilities (& 1023 Wcm−2), where radiation reaction can lead

to almost complete absorption of the laser-pulse: Bashinov and Kim (2013) (using a

classical theory) and Zhang et al. (2015) (including quantum corrections), have shown

that radiation reaction gives an imaginary part in the dispersion relation for waves in

a plasma. At intensities & 1023 Wcm−2, plasma electrons will become sufficiently en-

ergetic that in their individual rest frames the electric field ERF approaches the critical

field for quantum electrodynamics Ecrit = 1.38 × 1018 Vm−1 (Heisenberg and Euler

(1936)). In this case, the emission of radiation by the electrons must be described in

the framework of strong-field quantum-electrodynamics (QED), using the Furry (1951)

picture. Specifically, when the quantum efficiency parameter η = ERF/Ecrit & 0.1

the radiation reaction force becomes stochastic (Duclous et al. (2011)) and electron’s

dynamics are no longer well approximated by deterministic motion along a classical

worldline (Shen and White (1972)).

This quantum regime has been reached in experiments at CERN SPS in the inter-

action of ∼ 100 GeV electrons with the strong fields of atoms in a crystal lattice, as

described by Andersen et al. (2012), where the Gaunt factor for synchrotron emission

was measured. The analogous process of non-linear Compton scattering was studied

experimentally at the Stanford Linear Accelerator (SLAC) in the interaction between

an electron beam of energy E = 46.6 GeV and a counter-propagating high-intensity

(1018 − 1019 Wcm−2) laser-pulse, as reported by Bula et al. (1996) (positron generation

was also observed in this experiment – see Burke et al. (1997)). In this experiment the

laser intensity was too low to access the very non-linear regime of relevance to next

generation laser-matter interactions, where a0 ≈
√

Iλ2/1018 Wcm−2µm2 ≫ 1 (λ is the

laser wavelength). This is now possible with current Petawatt laser systems, which

can achieve focused intensities of I > 1021 Wcm−2. In the interaction of an electron-

beam with energy E with a counter-propagating laser-pulse of intensity I, η can be

estimated as η ∼ 0.1(E/500 MeV)
√

I/1021 Wcm−2. The quantum, non-linear regime

of Compton scattering and the resultant radiation reaction can therefore be studied by

accelerating the electrons to energies greater than 500MeV. Laser wakefield accelera-

tion (Tajima and Dawson (1979)) is a technique that can generate monoenergetic, well

collimated and ultra-relativistic electron beams (Mangles et al. (2004),Geddes et al.

(2004) & Faure et al. (2004)). Recent experiments have now demonstrated energies

approaching 5 GeV (Leemans et al. (2014)). Laser wakefield accelerators are ideal for

studying electron beam collisions with the tightly focused lasers required for studies of

nonlinear Compton scattering due to the inherent synchronicity of the generated elec-

tron beam and the laser which allows precise overlap in space and time. Therefore,

all-optical equivalents of the SLAC experiment are possible using PW lasers (Sokolov

et al. (2010); Thomas et al. (2012); Bulanov et al. (2012); Neitz and Di Piazza (2013);

Blackburn et al. (2014); Vranic et al. (2014); Blackburn (2015)). Non-linear Compton

scattering at a0 ≃ 2 (but not radiation reaction) was recently observed in such a setup by
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Sarri et al. (2014). Devising ways in which quantum effects on radiation reaction can

be distinguished is therefore timely, as has been considered by Di Piazza et al. (2010);

Neitz and Di Piazza (2013); Blackburn et al. (2014); Wang et al. (2015); Vranic et al.

(2015); Harvey et al. (2017).

To simplify the treatment of quantum radiation reaction, we use the quasi-classical

approach described by Baı̆er and Katkov (1968). Here, we assume that the electromag-

netic fields may be split into two types depending on their frequency scale. Fields vary-

ing on the scale of the laser frequency are treated as classical background fields. The

photons emitted by the electrons on acceleration by these background fields, i.e. those

responsible for the radiation reaction force, are treated in the framework of strong-

field QED. These photons are of much higher energy (typically hν & MeV) than the

laser photons (hν ∼ eV). Two further simplifying approximations are made (see Kirk

et al. (2009)). By making the quasi-static approximation we assume that the formation

length of the hard photons is much smaller than the scale over which the background

fields vary and thus the background fields may thus be treated as constant over the

space-time interval during which the emission occurs. This approximation is valid for

a0 ≫ 1, which is the case in high-intensity laser matter interactions (Di Piazza et al.

(2010) has shown that a0 & 10 is sufficient). By making the weak-field approximation,

we assume that the emission rate of photons depends entirely on η and not the field in-

variants F = (E2 − c2B2)/E2
crit

and G = cE ·B/E2
crit

. This is valid if these invariants are

much smaller than η. For next-generation laser-matter interactions E, cB . 10−3Ecrit,

so this approximation is also reasonable. The weak-field approximation allows us to

assume that the rate of photon emission (and the energy spectrum of the emitted pho-

tons) is well described by the well known rate in an equivalent set of constant fields

as given in Ritus (1985) (for constant crossed electric and magnetic fields) and Erber

(1966) (for a constant magnetic field). The accuracy of this quasi-classical approach

has recently been demonstrated by comparison to full QED calculations for the electron

energies and laser intensities considered here by Dinu et al. (2016).

Using this quasi-classical model (making the quasi-static and weak-field approx-

imations), it is possible to include the quantum radiation reaction force in a kinetic

equation describing the evolution of the electron distribution, as given by Shen and

White (1972), Elkina et al. (2011), Sokolov et al. (2010), Neitz and Di Piazza (2013)

and Ridgers et al. (2014). Although this equation has been solved numerically using a

Monte-Carlo algorithm (see Duclous et al. (2011); Elkina et al. (2011); Ridgers et al.

(2014); Gonoskov et al. (2015)) it has not been solved analytically for even the simplest

configuration of electromagnetic fields (for example a uniform, static magnetic field as

in Shen and White (1972)). On the other hand, the electron equation of motion contain-

ing a classical model of radiation reaction, using the prescription of Landau & Lifshitz

(Landau and Lifshitz (1987) – shown to be consistent with the classical limit of strong

field QED by Krivitskii and Tsytovich (1991); Ilderton and Torgrimsson (2013)), has

been solved analytically in several cases for example: for electron motion in a rotating

electric field (by Bell and Kirk (2008)) and a plane electromagnetic wave (by DiPiazza

(2008)). A modified classical model, where the radiated power is reduced by the Gaunt

factor, has been used to derive the dispersion relation for an electromagnetic wave mov-

ing through a plasma where the electrons experience significant radiation reaction by

Zhang et al. (2015) (and the equivalent classical result by Bashinov and Kim (2013)).
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The kinetic equation can be used to show that the modified classical model of radiation

reaction is sufficient to describe the average energy loss of the electrons (Ridgers et al.

(2014)). In addition, the kinetic equation can give insight into which observables can

be used to measure various aspects of quantum radiation reaction. Here we show that

the measurements of the average energy loss can be used to measure the Gaunt factor

associated with the emission and that the evolution of the variance of the electron en-

ergy distribution can be used to measure the degree of stochasticity of the emission.

To do the latter, we derive an equation of motion for the variance, which extends the

results of Vranic et al. (2015) to arbitrary η.

2 Radiation reaction models

In this section we describe the radiation reaction models considered here: (i) classical

– using the ultra-relativistic form of the Landau & Lifshitz prescription; (ii) modified

classical – as the classical model but including a function describing the reduction in

the power radiated due to quantum effects, the Gaunt factor g (Baier et al. (1991));

(iii) stochastic – a probabilistic treatment of the emission consistent with the approxi-

mations made in the quantum emission model described above and in more detail by

Ridgers et al. (2014). The stochastic model is the most physical as it includes both the

important quantum effects (the Gaunt factor and quantum stochasticity).

Using the quasi-classical approach we may write the evolution of the electron dis-

tribution function, including the radiation reaction force, as

∂ f

∂t
+ v · ∂ f

∂r
− e(E + v × B) · ∂ f

∂p
=

(

∂ f

∂t

)X

em

.

f d3xd3p is the number of electrons at position x with momentum p (velocity v). E and

B are the low frequency classical background electromagnetic fields. (∂ f /∂t)X
em is an

operator describing how recoil from photon emission affects the electron distribution

function – we will refer to this as the emission operator. The superscript X denotes

which of the classical (cl), modified classical (mod cl) and stochastic (st) models is

under consideration.

Note that we are neglecting pair production by the emitted gamma-ray photons in

the background electromagnetic fields. This is reasonable in the moderately quantum

regime described by Di Piazza et al. (2010), i.e. where η ∼ 0.1.

2.1 Classical and modified classical emission operators

If the radiating electron is ultra-relativistic with γ ≫ 1, we may assume that all photons

are emitted in the direction of the electron’s instantaneous velocity (Duclous et al.

(2011)). Using the Landau & Lifshitz prescription for radiation reaction (in the ultra-

relativistic limit – Landau and Lifshitz (1987)) the classical and modified classical

emission operators should describe radiation reaction forces of the form

Fcl = −
Pcl

c
p̂ Fmod cl = −

gPcl

c
p̂ (1)
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respectively. Here g(η) is the Gaunt factor for synchrotron emission, i.e. a function

that gives the reduction in the radiated power Pcl due to quantum modifications to the

synchrotron spectrum. Pcl is parameterised in terms of η as

Pcl =
2α f c

3Żc

mec2η2

and g(η) is defined as

g(η) =

∫ η/2

0
F(η, χ)dχ

∫ ∞
0

Fcl

(

4χ

3η2

)

dχ
=

3
√

3

2πη2

∫ η/2

0

F(η, χ)dχ.

Fcl and F are the classical and quantum synchrotron spectra respectively. For com-

pleteness their forms are given in appendix A. An accurate fit to this function is g(η) ≈
[1 + 4.8(1 + η) ln(1 + 1.7η) + 2.44η2]−2/3 (Baier et al. (1991)).

The emission operators which yield radiation reaction forces as given in equation

(1), as shown in section 3, are

(

∂ f

∂t

)cl

em

=
1

p2

∂

∂p

(

p2 Pcl

c
f

)

(

∂ f

∂t

)mod cl

em

=
1

p2

∂

∂p

(

p2g
Pcl

c
f

)

(2)

2.2 Stochastic emission operator

The stochastic emission operator should consist of two terms: a term describing the

movement of electrons out of a given region of phase space due to emission and a term

describing electrons moving into the region under consideration by leaving regions of

higher energy as they emit. Assuming the electrons are ultra-relativistic and so photon

emission is in the direction of propagation of the electron, we may formulate this as

(

∂ f

∂t

)st

em

= −λγ(η) f +
b

2mec

∫ ∞

p

dp′λγ(η′)ρχ(η′, χ)
p′2

p2
f (p′). (3)

We define η ≡ γb. For γ ≫ 1, we may take b = |E⊥ + v × B|/Es. χ = (hνb)/(2mec2) is

the quantum efficiency parameter for an emitted photon (with energy hν). The explicit

form of the photon emission rate λγ and the probability ρχdχ that an electron with

energy parameterised by η emits a gamma-ray photon with energy parameterised by χ

are given in appendix A.

3 Moment equations

The average over the distribution function f of a momentum dependent quantity ψ(p)

is defined as

〈ψ(p)〉 ≡ 1

ne

∫

d3pψ(p) f (x,p, t).

where ne is the electron number density.
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3.1 The temporal evolution of 〈p〉
The equation for the evolution of the expectation value of the momentum of the electron

population 〈p〉 has been derived previously by Elkina et al. (2011). The equation for

the evolution of the average energy 〈γ〉 of the population has been derived by Ridgers

et al. (2014):

(

d〈p〉
dt

)

st

= −〈gPclp̂〉
c

. (4)

In appendix B we show how this equation can be derived by taking the first moment of

the stochastic emission operator in equation (3).

Taking the first moment of the classical and modified classical emission operators

given in equation (2), as detailed in appendix B, yields

(

d〈p〉
dt

)

cl

= −〈Pclp̂〉
c

(

d〈p〉
dt

)

mod cl

= −〈gPclp̂〉
c

(5)

3.2 The temporal evolution of σ2

Following the derivation in appendix B we can obtain the following equation for the

evolution of the variance σ2 in the Lorentz factor γ of the electron distribution:

(

dσ2

dt

)

st

= −2
〈∆γgPcl〉

mec2
+
〈S 〉

m2
ec4

. (6)

σ2 = 〈γ2〉 − 〈γ〉2 and ∆γ = γ − 〈γ〉. The first term in equation (6), which we

label T−, always acts to reduce the variance. It arises because higher energy elec-

trons radiate more energy than those at lower energy. This term can be written T− =
(2/mec2)[〈∆γPcl〉 − 〈(1− g)∆γPcl〉], where the first term is purely classical and the sec-

ond shows that quantum effects reduce the rate of decrease of the variance by reducing

the power radiated below the classical prediction (g ≤ 1). The second term in equation

(6) T+ represents stochastic effects, is positive and so tends to increase the variance.

The competition between these two terms determines whether the emission operator

causes σ2(t) to increase or decrease.

The function S (η) is given by

S (η) =
55α f c

24
√

3Żcb
m2

ec4η4g2(η).

g2(η), which is analogous to g(η), is defined as

g2(η) =

∫ η/2

0
χF(η, χ)dχ

∫ ∞
0
χFcl

(

4χ

3η2

)

dχ
=

144

55πη4

∫ η/2

0

χF(η, χ)dχ.

As for g, it is useful to find an accurate fit to g2. We find the following g2(η) ≈
[1 + (1 + 4.528η) ln(1 + 12.29η) + 4.632η2]−7/6. This gives the correct limits for η ≪ 1
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Figure 1: g2(η) (solid line) and the fit used here (dashed line).

and η ≫ 1 (g2 ≈ 1 and g2 ≈ 0.167η−7/3 respectively). g2, as a function of η, along with

the fit are shown in figure 1.

We may also derive the corresponding expressions for dσ2/dt from the classical

and modified classical emission operators in equation (2) (the derivation is given in

appendix B).

(

dσ2

dt

)

cl

= −2
〈∆γPcl〉

mec2

(

dσ2

dt

)

mod cl

= −2
〈∆γgPcl〉

mec2
. (7)

We now consider the specific case where a high-energy electron beam with Gaus-

sian energy distribution collides with a plane electromagnetic wave. In the limit where

η ≪ 1 and the energy distribution is Gaussian with σ ≪ 〈γ〉 (and assumed to be a

Gaussian at all times), equation (6) reduces to

(

dσ2

dt

)

st

≈
α f cb2

Żc

(

55b

24
√

3
〈γ〉4 − 8

3
σ2〈γ〉

)

,

which reproduces equation 14 in Vranic et al. (2015).

4 Comparison to QED-PIC simulations

To test the validity of the expression for the evolution of σ2 given above we have

simulated the interaction of an electron-beam with a counter-propagating circularly

polarised plane-wave using the QED-PIC code EPOCH (Arber et al. (2015)). EPOCH

includes the stochastic emission model using a Monte-Carlo algorithm (described in

detail by Ridgers et al. (2014)). For this work we have extended the code to include

the classical and modified classical emission operators by directly solving equations

(1) using first-order Eulerian integration.

The simulation parameters were as follows. The laser pulse had peak intensity

1021 Wcm−2, wavelength 1 micron, and a half-Gaussian temporal profile (rise time

1 fs). 4000 grid cells were used to discretise a spatial domain extending from −40
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Figure 2: Electron energy distribution, 10.5 fs after collision of the electron bunch with

the laser-pulse, compared to initial distribution using the stochastic, modified classical

and classical emission operators.

microns to 40 microns. 105 macroparticles were used to represent an electron bunch

consisting of 109 electrons. The electron bunch had a Gaussian spatial profile, centred

on 39.7 microns, with a FWHM of 0.17 microns and had initial distribution f (x,p, t =

0) = [ne(x)/(
√

2πσ)]δ(py)δ(pz) exp[−(px + γ0mec)2/(2σ2)] where p = (px, py, pz) is

the momentum coordinate in phase space and ne the number density of electrons in the

beam. γ0 was the initial average energy of the bunch.

Figure 2 shows a comparison of the spatially integrated electron energy distribu-

tion using classical, modified classical and stochastic emission operators with the ini-

tial spectrum t = 10.5 fs after the collision. We see that the modified classical and

classical emission operators both give a decrease in the variance of the electron dis-

tribution whereas the stochastic emission operator gives an increase in the variance.

Figure 3 shows the temporal evolution of the mean Lorentz factor 〈γ〉 and the standard

deviation of the Lorentz factor σ. The QED-PIC simulations demonstrate the validity

of equations (4), (5), (6) & (7).

We saw earlier in equation (6) that the evolution of the variance is governed by

the competition between T− and T+. To characterise which of these terms is dominant

(in a similar way to Vranic et al. (2015)), and thereby how stochastic quantum effects

(prevalent when T+ dominates), may be measured in a colliding beams experiment, we

derive an analytical expression their ratio ξ:

ξ =
T+

T−
T+ =

〈S 〉
m2

ec4
T− = 2

〈∆γgPcl〉
mec2

.

Considering an electron bunch whose initial distribution is f (x, px, t = 0) = ne(x)/(2Wγ0mec)δ(py)δ(pz)

for γ0mec(1 −W) < |px| < γ0mec(1 +W) and assuming g = g2 = 1, we obtain (as out-

lined in appendix C)
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Figure 3: Left: mean Lorentz factor versus time using the various emission models

from simulation and as predicted by equations (4) and (5). Right: standard deviation in

Lorentz factor versus time from simulation and as predicted by equations (6) and (7).

ξ ≈ (3.0 + 1.5W−2 + 0.3W2)η0 (8)

where ξ is the ratio T+/T− when the electron bunch first collides with the laser pulse

(i.e. before the distribution f has evolved under the action of radiation reaction) and

η0 = γ0b. As the variance increases and the expectation value of the γ decreases we

expect T− to eventually become dominant and so we would expect the variance to peak

and then decrease after some time. This behaviour is clearly seen in the results from

the simulation using the stochastic emission operator shown in figure 3. Therefore, we

define T+ as being important for ξ > 2 initially in order to compensate for the increased

importance of T− at later times. In the case where the width of the electron distribution

is equal to the mean, W = 0.5, equation (8) shows that η0 > 0.2 is required for ξ > 2.

For a narrow electron distribution, W ≪ 1, η0 > 1.3W2 is required and so T+ can be

important at lower η0.

From equation (8) we see that ξ depends on three variables: the average Lorentz

factor of the electron bunch γ0; the width of the electron energy distribution W and

the laser intensity I (which determines b). Figure 4 shows ξ (including g & g2) as a

function of I & γ0 (for W = 0.2) and W & I (for γ0mec2 = 1.5 GeV). The prediction

of ξ = 2 from equation (8), i.e. making the assumption g = g2 = 1, is shown to be

reasonably accurate for I . 1021 Wcm−2.

To investigate whether the expression for ξ in equation (8) predicts whether T+ or

T− dominates the evolution of the variance we performed further EPOCH simulations

of the interaction of an electron-beam (again with initial distribution f (x,p, t = 0) =

[ne/(
√

2πσ)]δ(py)δ(pz) exp[−(px + γ0mec)2/(2σ)2]) and a counter-propagating plane-

wave of intensity I. The following parameters were chosen:
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Figure 4: ξ as a function of: laser intensity and average Lorentz factor of the electron

bunch (left); laser intensity and width of the electron energy distribution (right). The

solid white lines show ξ = 2 and the dashed white lines show the prediction of where

ξ = 2 from equation (8).

Simulation I/1021Wcm−2 γ0mec2/GeV FWHM/GeV Symbol

1 1.0 1.0 0.81 △
2 0.3 0.5 0.21 ^

3 1.0 1.5 0.17 o

4 0.3 1.5 1.3 �

We have shown where these simulations lie in the parameter space shown in figure

4 according to the symbols given in the table and assuming W =
√

2σ. The time

evolution of the change in the standard deviation of the electron energy distribution

in these simulations is shown in figure 5. We see that only those simulations where

equation (8) predicts that T+ is dominant show an increase in the variance.

5 Discussion

The results of this investigation can be summarised as follows:

1. 〈p〉 evolves in the same way for the stochastic and modified classical emission

operators and differently for the classical emission operator.

2. σ2 evolves differently for all operators. In particular, the stochastic emission op-

erator can result in an increase in σ2 whereas the classical and modified classical

operators can only cause a decrease in σ2 (as seen by Vranic et al. (2015) for

η ≪ 1).
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Figure 5: Temporal evolution of the change in standard deviation in the electron energy

distribution in simulations 1–4.

Result (i) requires further explanation. Although we have shown that (d〈p〉/dt)st

and (d〈p〉/dt)mod cl evolve according to the same equation, it does not necessarily follow

that the expectation values themselves are the same for these two emission models (as

noted by Elkina et al. (2011)). We have previously shown in Ridgers et al. (2014) that,

in fact, the expectation values of the energy using these two models do agree to a high

degree of accuracy and this was shown again for the parameters considered here in

figure 3. We would expect this in the classical limit where η ≪ 1. In this case T− in

equation (6) dominates (from equation (8) we see that ξ ∝ η0) and rapidly reduces the

variance of the electron bunch; the electron distribution in both the modified classical

and stochastic models approaches a delta-function δ(p−〈p〉). The time evolution of 〈p〉
depends on 〈Pcl〉 (g ≈ 1 in the classical limit) which is equal to (〈η〉)Pcl(〈η〉) for both

the stochastic and modified classical models when f is narrow in momentum-space.

However, in the simulation whose results are shown in figure 3 η > 0.1. From figure

2 we see that in this case the electron energy distribution is very different when the

stochastic emission operator is used compared to when the modified classical emission

operator is used. Despite this the evolution of 〈p〉 is the same due to the functional

form of gPcl. When η ≫ 1, gPcl ∝ η2/3. This almost linear dependence on η means

that the difference in the evolution of 〈p〉 between the models should be small. Finally

we note that, as shown in figure 3, 〈p〉 predicted by the classical emission model differs

markedly from that predicted by the modified classical and stochastic models due to

the neglect of the Gaunt factor g in the classical model.

dσ2/dt is always negative for both the classical and modified classical emission op-

erators. Physically, this is because electrons at higher energy radiate more energy than

those at lower energy, causing a decrease in the width of the energy distribution. The

classical operator predicts a more rapid decrease than the modified classical operator

due to the assumption that g = 1 and the consequent overestimate of the scaling of the

power radiated by the electrons with increasing η. For the stochastic emission opera-
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tor dσ2/dt can be either positive or negative and so σ2 can increase or decrease. The

evolution of σ2 is determined by the balance between T+ (which causes σ2 to increase

due the probabilistic nature of the emission) and T− (which, as just described, causes

σ2 to decrease as higher energy electrons radiate more energy). We have shown (as

did Vranic et al. (2015)) that which of these terms dominates depends on the width of

the energy distribution and η. For large width T− increases in importance as it depends

on ∆γ = γ − 〈γ〉. For high η T+ becomes more important due to its scaling with η4

compared to at most η3 for T− (assuming ∆γ ∼ γ). In equation (8) we have provided a

formula for the determination of which term is dominant.

The first of these results, i.e. that the evolution of the expectation value is the same

for the modified classical and stochastic (but not classical) models, is useful in two

ways. Firstly it shows that measuring the expectation value of an electron bunch after

interaction with a high-intensity laser-pulse can give information about one quantum

effect: the reduction of the total power emitted as expressed by g. It cannot, however,

give information about the probabilistic nature of the emission. Secondly, this result

suggests that the modified classical model of radiation reaction is sufficient for the

calculation of laser absorption in high-intensity laser-plasma interactions Brady et al.

(2012); Zhang et al. (2015). Laser absorption in this context depends on the average

energy loss by the electrons (and positrons) in the plasma due to radiation reaction. The

second result, i.e. the evolution of the variance differs between the models, can be used

to measure the stochasticity of the radiation reaction. An increase in the variance of the

energy distribution of electrons must be due to the probabilistic nature of the emission.

As further work we propose a comparison of QED-PIC simulations of laser absorption

in laser-plasma interactions using the different emission models and an investigation

of the use of the variance to observe stochasticity in 3D simulations of the interaction

of a focusing laser-pulse with a counter propagating electron bunch produced by laser

wakefield acceleration (with a realistic energy spectrum).

6 Conclusions

We have derived equations for the evolution of the expectation value of the momentum

and variance in the energy of an electron population subject to three different radi-

ation reaction models. We have considered classical and modified classical models,

where the radiation reaction is deterministic and the power emitted is the classical syn-

chrotron power in the former case and in the latter case accounts for reduction to the

power emitted by quantum effects (the Gaunt factor g). We have also considered a

stochastic model which calculates the emission using a more physically correct prob-

abilistic treatment. We have shown that the expectation value of the energy evolves in

almost the same way for the stochastic and modified classical models but differently for

the classical model. The variance of the energy distribution evolves differently for all

the models. This suggests that measuring the decrease in the expectation value of the

energy is sufficient to measure the Gaunt factor but that a measurement of the variance

is required to distinguish quantum stochastic effects.
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A Functions describing synchrotron emission

The rate of photon emission (making the quasi-static and weak-field approximations)

is

λγ(η) =

√
3α f c

λc

η

γ
h(η) h(η) =

∫ η/2

0

dχ
F(η, χ)

χ
.

The quantum synchrotron function is given in Sokolov and Ternov (1968) eq. (6.5).

In our notation it is, for χ < η/2,

F(η, χ) =
4χ2

η2
yK2/3(y) +

(

1 − 2χ

η

)

y

∫ ∞

y

dt K5/3(t)

where y = 4χ/[3η(η− 2χ)] & Kn are modified Bessel functions of the second kind. For

χ ≥ η/2, F(η, χ) = 0. In the classical limit ~ → 0 the quantum synchrotron spectrum

reduces to the classical synchrotron spectrum F(η, χ) → Fcl(yc) = yc

∫ ∞
yc

duK5/3(u);

yc = 4χ/3η2. The probability that a photon is emitted with a given χ (by an electron

with a given η) is ρχ(η, χ)dχ = [1/h(η)][F(η, χ)/χ]dχ.

B Derivation of the moment equations

We obtain an equation for the evolution of the expectation value of the electron mo-

mentum by multiplying equation (3) by p and integrating over momentum.

ne

(

d〈p〉
dt

)

st

= −
∫

d3ppλγ(η) f +

∫

d3pp
b

2mec

∫ ∞

p

dp′λγ(η′)ρχ(η′, χ)
p′2

p2
f (p′).

In spherical polars d3p = p2dpd2Ω. We also write p = pp̂. Therefore,

ne

(

d〈p〉
dt

)

st

= −
∫

d3ppλγ(η) f+

∫

d2Ω
bp̂

2mec

∫ ∞

0

dpp

∫ ∞

p

dp′λγ(η′)ρχ(η′, χ)p′2 f (p′).

We may exchange the order of integration over p and p′ in the second term on the

right-hand side

ne

(

d〈p〉
dt

)

st

= −
∫

d3ppλγ(η) f+

∫

d2Ω
bp̂

2mec

∫ ∞

0

dp′λγ(η′) f (p′)p′2
∫ p′

0

dppρχ(η′, χ).
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Here the p dependence of ρχ is in χ = [(p′ − p)b]/(2mec) (where we have assumed the

electrons are ultra-relativistic). To simplify the identification of gPcl we define ρhνdhν

as the probability that an electron with energy parameterised by η emits a photon with

energy hν. ρχ = ρhν(dhν/dχ) = ρhν(2mc2)/b. We may therefore write

ne

(

d〈p〉
dt

)

st

= −
∫

d3ppλγ(η) f+

∫

d2Ωp̂

∫ ∞

0

dp′λγ(η′) f (p′)p′2
∫ p′c

0

dhν

(

p′ − hν

c

)

ρhν(η
′, hν).

Now we use

∫ p′c

0

dhνρhν(η
′, hν) = 1

∫ p′c

0

dhνρhν(η
′, hν)hν = (hν)av

to get

ne

(

d〈p〉
dt

)

st

= −
∫

d3ppλγ(η) f +

∫

d3pp̂λγ(η) f (p)

(

p − (hν)av

c

)

.

Cancelling the appropriate terms and identifying gPcl = λγ(hν)av yields equation (4),

(

d〈p〉
dt

)

st

= −〈gPclp̂〉
c

.

The equation for the evolution of σ2 (6) is obtained by using the same procedure

to obtain an equation for (d〈γ2〉/dt)st, i.e. we multiply equation (3) by γ2 and integrate

over momentum,

ne

(

d〈γ2〉
dt

)

st

= −
∫

d3pγ2λγ(η) f +

∫

d3pγ2 b

2mec

∫ ∞

p

dp′λγ(η′)ρχ(η′, χ)
p′2

p2
f (p′).

Which can be written as

ne

(

d〈γ2〉
dt

)

st

= −
∫

d3pγ2λγ(η) f+

∫

d2Ω

∫ ∞

0

dp′λγ(η′) f (p′)p′2
∫ p′c

0

dhν

(

γ′ − hν

mec2

)2

ρhν(η
′, hν).

where we have assumed γ′ = p′/mec. Defining

∫ p′c

0

dhνρhν(η
′, hν)(hν)2 = [(hν)2]av

gives

ne

(

d〈γ2〉
dt

)

st

= −
∫

d3pγ2λγ(η) f +

∫

d3pλγ(η) f (p)

(

γ2 − 2γ
(hν)av

mec2
+

[(hν)2]av

m2
ec4

)

.

We again cancel the appropriate terms and this time identify S = λγ[(hν)2]av as well as

gPcl = λγ(hν)av to get

14



(

d〈γ2〉
dt

)

st

= −2
〈γgPcl〉

mec2
+
〈S 〉

m2
ec4

.

To get an equation for (dσ2/dt)st we identify σ2 = 〈γ2〉 − 〈γ〉2. Therefore,

(

dσ2

dt

)

st

=

(

d〈γ2〉
dt

)

st

−
(

d〈γ〉2
dt

)

st

=

(

d〈γ2〉
dt

)

st

− 2〈γ〉
(

d〈γ〉
dt

)

st

.

Substituting the results for (d〈γ2〉/dt)st and (d〈γ〉/dt)st = 〈gPcl〉/(mec2) (the latter is

obtained by taking the dot product of equation (4) with p̂ and assuming p = γmec)

gives the result in equation (6):

(

dσ2

dt

)

st

= −2
〈γgPcl〉

mec2
+
〈S 〉

m2
ec4
+ 2〈γ〉 〈gPcl〉

mec2
= −2

〈∆γgPcl〉
mec2

+
〈S 〉

m2
ec4

.

Here we have used ∆γ = γ − 〈γ〉.
The moments of the classical and modified classical emission operators are straight-

forwardly obtained by integration by parts. To obtain equation (5) for (d〈p〉/dt)mod cl

we multiply the emission operator (∂ f /∂t)mod cl
em in equation (2) by p and integrate over

momentum

ne

(

d〈p〉
dt

)

mod cl

=

∫

d3p
p

p2

∂

∂p

(

p2g
Pcl

c
f

)

.

Substituting d3p = p2dpd2Ω and p = pp̂ and integrating by parts yields

ne

(

d〈p〉
dt

)

mod cl

=

∫

d2Ωp̂

(

[

p3g
Pcl

c
f

]∞

0
−

∫ ∞

0

dpp2g
Pcl

c
f

)

= −
∫

d2Ωp̂

∫ ∞

0

dpp2g
Pcl

c
f .

We have used the fact that f → 0 as p → ∞ (faster than p5 diverges) to get the last

result. We have now derived equation (5)

(

d〈p〉
dt

)

mod cl

= − 1

ne

∫

d3pg
Pcl

c
p̂ f = −〈gPclp̂〉

c
.

To derive equation (7) for (dσ2/dt)mod cl we first multiply the emission operator

(∂ f /∂t)mod cl
em in equation (2) by γ2 and integrate over momentum

ne

(

d〈γ2〉
dt

)

mod cl

=

∫

d3p
γ2

p2

∂

∂p

(

p2g
Pcl

c
f

)

.

Substituting d3p = p2dpd2Ω, γ = p/(mec) and integrating by parts yields

ne

(

d〈γ2〉
dt

)

mod cl

=

∫

d2Ω

([

p4

m2
ec2

g
Pcl

c
f

]∞

0

− 2

∫ ∞

0

dp
p3

m2
ec2

g
Pcl

c
f

)

= −
∫

d2Ωp̂

∫ ∞

0

dpp2γg
Pcl

mec2
f .

Again, we have used the fact that f → 0 as p → ∞ (this time faster than p6 diverges)

to get the final result. We may write this more compactly as
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(

d〈γ2〉
dt

)

mod cl

= − 2

ne

∫

d3pγg
Pcl

mec2
p̂ f = −2

〈γgPcl〉
mec2

.

We get equation (7) by identifying σ2 = 〈γ2〉 − 〈γ〉2 and ∆γ = γ − 〈γ〉,
(

dσ2

dt

)

mod cl

= −2
〈γgPcl〉

mec2
+ 2〈γ〉 〈gPcl〉

mec2
= −2

〈∆γgPcl〉
mec2

.

C Derivation of ξ

For simplicity in what follows we define τS and τR as

S =
m2

ec4

τS

γ4 Pcl =
mec2

τR

γ2.

Then we may write ξ as

ξ =
τR

2τS

〈γ4〉
〈∆γγ2〉 . (9)

where we have set g2 = g = 1. We may evaluate the averages by substituting f =

[1/(2Wγ0mec)]δ(py)δ(pz) for γ0mec(1 −W) < px < γ0mec(1 +W).

〈γ4〉 = 1

2Wγ0mec

∫ γ0mec(1+W)

γ0mec(1−W)

γ4dpx =
γ4

0

10W
[(1+W)5−(1−W)5] =

γ4
0

5W
(10W3+5W+W5)

and

〈∆γγ2〉 = 1

2Wγ0mec

∫ γ0mec(1+W)

γ0mec(1−W)

(γ−γ0)γ2dpx =
γ3

0

24W
[(1−W)3(1+3W)−(1+W)3(1−3W)] =

2γ3
0

3
W2.

Substituting these results into equation (9) yields equation (8)

ξ =
33

64
√

3
(10 + 5W−2 +W2)η0 ≈ (3.0 + 1.5W−2 + 0.3W2)η0

where we have used τS /τR = (55b)/(16
√

3) and η0 = γ0b.
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