Spatio-temporal characteristics of retinal response to network-mediated photovoltaic stimulation

Ho, Elton and Smith, Richard and Goetz, Georges A and Lei, Xin and Galambos, Ludwig and Kamins, Theodore I and Harris, James and Mathieson, Keith and Palanker, Daniel and Sher, Alexander (2017) Spatio-temporal characteristics of retinal response to network-mediated photovoltaic stimulation. Journal of Neurophysiology. pp. 1-29. ISSN 0022-3077

Text (Ho-etal-JN2017-Spatio-temporal-characteristics-of-retinal-response-to-network-mediated)
Accepted Author Manuscript

Download (2MB)| Preview


    Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex-vivo, we estimated their spatio-temporal properties from the spike-triggered average (STA) responses to photovoltaic binary white noise stimulus with 70μm pixel size at 20Hz frame rate. The average photovoltaic receptive field size was 194±3μm (S.E.M.), similar to that of visual responses (221±4μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision.