Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems

Soltowski, Bartosz and Strachan, Scott and Anaya-Lara, Olimpo and Frame, Damien and Dolan, Michael (2017) Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems. In: 7th Annual IEEE Global Humanitarian Technologies Conference, GHTC 2017, 2017-10-19 - 2017-10-22.

[img]
Preview
Text (Soltowski-etal-GHTC-2017-energy-utilization-and-reliability-within-a-microgrid-of-interconnected-solar-home-systems)
Soltowski_etal_GHTC_2017_energy_utilization_and_reliability_within_a_microgrid_of_interconnected_solar_home_systems.pdf
Accepted Author Manuscript

Download (276kB)| Preview

    Abstract

    Over the past 20 years, off-grid solar home systems (SHS), comprised of solar panels, batteries, a charge controller and loads, have proved the most popular and immediate solution increasing energy access, mainly through rural electrification, across the Global South. Although deployed in significant numbers, issues remain with SHS cost, reliability, utilization and sustainability. Interconnection of SHS to form a microgrid of connected prosumers and consumers may offer a solution that, by employing smart management of the power distribution amongst connected households, has the potential to ‘unlock’ latent generation and storage capacity and so improve reliability and security of supply, reduce the system cost per head, and ultimately the levelized cost of energy supplied. These factors combine to improve the overall sustainability, efficiency and flexibility of SHS technology. This paper presents the functionality of a Smart Power Management (SPM) that seeks to distribute power across prosumers/consumers connected to a microgrid of interconnected SHS, to maximise the utilisation of available generation and storage across the system and so improve the reliability and affordability of the energy supplied. The SPM is applied and appraised using a simulation involving representative generation and demand profiles for a village with a high penetration of SHS technology. The power management methodology utilizes algorithms applied to manage power flows between customers. The simulated results demonstrate significant improvements in reliability of supply within the microgrid during low generation season.